1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cpuidle-pseries - idle state cpuidle driver. 4 * Adapted from drivers/idle/intel_idle.c and 5 * drivers/acpi/processor_idle.c 6 * 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/moduleparam.h> 13 #include <linux/cpuidle.h> 14 #include <linux/cpu.h> 15 #include <linux/notifier.h> 16 17 #include <asm/paca.h> 18 #include <asm/reg.h> 19 #include <asm/machdep.h> 20 #include <asm/firmware.h> 21 #include <asm/runlatch.h> 22 #include <asm/idle.h> 23 #include <asm/plpar_wrappers.h> 24 #include <asm/rtas.h> 25 #include <asm/time.h> 26 27 static struct cpuidle_driver pseries_idle_driver = { 28 .name = "pseries_idle", 29 .owner = THIS_MODULE, 30 }; 31 32 static int max_idle_state __read_mostly; 33 static struct cpuidle_state *cpuidle_state_table __read_mostly; 34 static u64 snooze_timeout __read_mostly; 35 static bool snooze_timeout_en __read_mostly; 36 37 static __cpuidle 38 int snooze_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv, 39 int index) 40 { 41 u64 snooze_exit_time; 42 43 set_thread_flag(TIF_POLLING_NRFLAG); 44 45 pseries_idle_prolog(); 46 raw_local_irq_enable(); 47 snooze_exit_time = get_tb() + snooze_timeout; 48 dev->poll_time_limit = false; 49 50 while (!need_resched()) { 51 HMT_low(); 52 HMT_very_low(); 53 if (likely(snooze_timeout_en) && get_tb() > snooze_exit_time) { 54 /* 55 * Task has not woken up but we are exiting the polling 56 * loop anyway. Require a barrier after polling is 57 * cleared to order subsequent test of need_resched(). 58 */ 59 dev->poll_time_limit = true; 60 clear_thread_flag(TIF_POLLING_NRFLAG); 61 smp_mb(); 62 break; 63 } 64 } 65 66 HMT_medium(); 67 clear_thread_flag(TIF_POLLING_NRFLAG); 68 69 raw_local_irq_disable(); 70 71 pseries_idle_epilog(); 72 73 return index; 74 } 75 76 static __cpuidle void check_and_cede_processor(void) 77 { 78 /* 79 * Ensure our interrupt state is properly tracked, 80 * also checks if no interrupt has occurred while we 81 * were soft-disabled 82 */ 83 if (prep_irq_for_idle()) { 84 cede_processor(); 85 #ifdef CONFIG_TRACE_IRQFLAGS 86 /* Ensure that H_CEDE returns with IRQs on */ 87 if (WARN_ON(!(mfmsr() & MSR_EE))) 88 __hard_irq_enable(); 89 #endif 90 } 91 } 92 93 /* 94 * XCEDE: Extended CEDE states discovered through the 95 * "ibm,get-systems-parameter" RTAS call with the token 96 * CEDE_LATENCY_TOKEN 97 */ 98 99 /* 100 * Section 7.3.16 System Parameters Option of PAPR version 2.8.1 has a 101 * table with all the parameters to ibm,get-system-parameters. 102 * CEDE_LATENCY_TOKEN corresponds to the token value for Cede Latency 103 * Settings Information. 104 */ 105 #define CEDE_LATENCY_TOKEN 45 106 107 /* 108 * If the platform supports the cede latency settings information system 109 * parameter it must provide the following information in the NULL terminated 110 * parameter string: 111 * 112 * a. The first byte is the length “N” of each cede latency setting record minus 113 * one (zero indicates a length of 1 byte). 114 * 115 * b. For each supported cede latency setting a cede latency setting record 116 * consisting of the first “N” bytes as per the following table. 117 * 118 * ----------------------------- 119 * | Field | Field | 120 * | Name | Length | 121 * ----------------------------- 122 * | Cede Latency | 1 Byte | 123 * | Specifier Value | | 124 * ----------------------------- 125 * | Maximum wakeup | | 126 * | latency in | 8 Bytes | 127 * | tb-ticks | | 128 * ----------------------------- 129 * | Responsive to | | 130 * | external | 1 Byte | 131 * | interrupts | | 132 * ----------------------------- 133 * 134 * This version has cede latency record size = 10. 135 * 136 * The structure xcede_latency_payload represents a) and b) with 137 * xcede_latency_record representing the table in b). 138 * 139 * xcede_latency_parameter is what gets returned by 140 * ibm,get-systems-parameter RTAS call when made with 141 * CEDE_LATENCY_TOKEN. 142 * 143 * These structures are only used to represent the data obtained by the RTAS 144 * call. The data is in big-endian. 145 */ 146 struct xcede_latency_record { 147 u8 hint; 148 __be64 latency_ticks; 149 u8 wake_on_irqs; 150 } __packed; 151 152 // Make space for 16 records, which "should be enough". 153 struct xcede_latency_payload { 154 u8 record_size; 155 struct xcede_latency_record records[16]; 156 } __packed; 157 158 struct xcede_latency_parameter { 159 __be16 payload_size; 160 struct xcede_latency_payload payload; 161 u8 null_char; 162 } __packed; 163 164 static unsigned int nr_xcede_records; 165 static struct xcede_latency_parameter xcede_latency_parameter __initdata; 166 167 static int __init parse_cede_parameters(void) 168 { 169 struct xcede_latency_payload *payload; 170 u32 total_xcede_records_size; 171 u8 xcede_record_size; 172 u16 payload_size; 173 int ret, i; 174 175 ret = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, 176 NULL, CEDE_LATENCY_TOKEN, __pa(&xcede_latency_parameter), 177 sizeof(xcede_latency_parameter)); 178 if (ret) { 179 pr_err("xcede: Error parsing CEDE_LATENCY_TOKEN\n"); 180 return ret; 181 } 182 183 payload_size = be16_to_cpu(xcede_latency_parameter.payload_size); 184 payload = &xcede_latency_parameter.payload; 185 186 xcede_record_size = payload->record_size + 1; 187 188 if (xcede_record_size != sizeof(struct xcede_latency_record)) { 189 pr_err("xcede: Expected record-size %lu. Observed size %u.\n", 190 sizeof(struct xcede_latency_record), xcede_record_size); 191 return -EINVAL; 192 } 193 194 pr_info("xcede: xcede_record_size = %d\n", xcede_record_size); 195 196 /* 197 * Since the payload_size includes the last NULL byte and the 198 * xcede_record_size, the remaining bytes correspond to array of all 199 * cede_latency settings. 200 */ 201 total_xcede_records_size = payload_size - 2; 202 nr_xcede_records = total_xcede_records_size / xcede_record_size; 203 204 for (i = 0; i < nr_xcede_records; i++) { 205 struct xcede_latency_record *record = &payload->records[i]; 206 u64 latency_ticks = be64_to_cpu(record->latency_ticks); 207 u8 wake_on_irqs = record->wake_on_irqs; 208 u8 hint = record->hint; 209 210 pr_info("xcede: Record %d : hint = %u, latency = 0x%llx tb ticks, Wake-on-irq = %u\n", 211 i, hint, latency_ticks, wake_on_irqs); 212 } 213 214 return 0; 215 } 216 217 #define NR_DEDICATED_STATES 2 /* snooze, CEDE */ 218 static u8 cede_latency_hint[NR_DEDICATED_STATES]; 219 220 static __cpuidle 221 int dedicated_cede_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv, 222 int index) 223 { 224 u8 old_latency_hint; 225 226 pseries_idle_prolog(); 227 get_lppaca()->donate_dedicated_cpu = 1; 228 old_latency_hint = get_lppaca()->cede_latency_hint; 229 get_lppaca()->cede_latency_hint = cede_latency_hint[index]; 230 231 HMT_medium(); 232 check_and_cede_processor(); 233 234 raw_local_irq_disable(); 235 get_lppaca()->donate_dedicated_cpu = 0; 236 get_lppaca()->cede_latency_hint = old_latency_hint; 237 238 pseries_idle_epilog(); 239 240 return index; 241 } 242 243 static __cpuidle 244 int shared_cede_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv, 245 int index) 246 { 247 248 pseries_idle_prolog(); 249 250 /* 251 * Yield the processor to the hypervisor. We return if 252 * an external interrupt occurs (which are driven prior 253 * to returning here) or if a prod occurs from another 254 * processor. When returning here, external interrupts 255 * are enabled. 256 */ 257 check_and_cede_processor(); 258 259 raw_local_irq_disable(); 260 pseries_idle_epilog(); 261 262 return index; 263 } 264 265 /* 266 * States for dedicated partition case. 267 */ 268 static struct cpuidle_state dedicated_states[NR_DEDICATED_STATES] = { 269 { /* Snooze */ 270 .name = "snooze", 271 .desc = "snooze", 272 .exit_latency = 0, 273 .target_residency = 0, 274 .enter = &snooze_loop, 275 .flags = CPUIDLE_FLAG_POLLING }, 276 { /* CEDE */ 277 .name = "CEDE", 278 .desc = "CEDE", 279 .exit_latency = 10, 280 .target_residency = 100, 281 .enter = &dedicated_cede_loop }, 282 }; 283 284 /* 285 * States for shared partition case. 286 */ 287 static struct cpuidle_state shared_states[] = { 288 { /* Snooze */ 289 .name = "snooze", 290 .desc = "snooze", 291 .exit_latency = 0, 292 .target_residency = 0, 293 .enter = &snooze_loop, 294 .flags = CPUIDLE_FLAG_POLLING }, 295 { /* Shared Cede */ 296 .name = "Shared Cede", 297 .desc = "Shared Cede", 298 .exit_latency = 10, 299 .target_residency = 100, 300 .enter = &shared_cede_loop }, 301 }; 302 303 static int pseries_cpuidle_cpu_online(unsigned int cpu) 304 { 305 struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu); 306 307 if (dev && cpuidle_get_driver()) { 308 cpuidle_pause_and_lock(); 309 cpuidle_enable_device(dev); 310 cpuidle_resume_and_unlock(); 311 } 312 return 0; 313 } 314 315 static int pseries_cpuidle_cpu_dead(unsigned int cpu) 316 { 317 struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu); 318 319 if (dev && cpuidle_get_driver()) { 320 cpuidle_pause_and_lock(); 321 cpuidle_disable_device(dev); 322 cpuidle_resume_and_unlock(); 323 } 324 return 0; 325 } 326 327 /* 328 * pseries_cpuidle_driver_init() 329 */ 330 static int pseries_cpuidle_driver_init(void) 331 { 332 int idle_state; 333 struct cpuidle_driver *drv = &pseries_idle_driver; 334 335 drv->state_count = 0; 336 337 for (idle_state = 0; idle_state < max_idle_state; ++idle_state) { 338 /* Is the state not enabled? */ 339 if (cpuidle_state_table[idle_state].enter == NULL) 340 continue; 341 342 drv->states[drv->state_count] = /* structure copy */ 343 cpuidle_state_table[idle_state]; 344 345 drv->state_count += 1; 346 } 347 348 return 0; 349 } 350 351 static void __init fixup_cede0_latency(void) 352 { 353 struct xcede_latency_payload *payload; 354 u64 min_xcede_latency_us = UINT_MAX; 355 int i; 356 357 if (parse_cede_parameters()) 358 return; 359 360 pr_info("cpuidle: Skipping the %d Extended CEDE idle states\n", 361 nr_xcede_records); 362 363 payload = &xcede_latency_parameter.payload; 364 365 /* 366 * The CEDE idle state maps to CEDE(0). While the hypervisor 367 * does not advertise CEDE(0) exit latency values, it does 368 * advertise the latency values of the extended CEDE states. 369 * We use the lowest advertised exit latency value as a proxy 370 * for the exit latency of CEDE(0). 371 */ 372 for (i = 0; i < nr_xcede_records; i++) { 373 struct xcede_latency_record *record = &payload->records[i]; 374 u8 hint = record->hint; 375 u64 latency_tb = be64_to_cpu(record->latency_ticks); 376 u64 latency_us = DIV_ROUND_UP_ULL(tb_to_ns(latency_tb), NSEC_PER_USEC); 377 378 /* 379 * We expect the exit latency of an extended CEDE 380 * state to be non-zero, it to since it takes at least 381 * a few nanoseconds to wakeup the idle CPU and 382 * dispatch the virtual processor into the Linux 383 * Guest. 384 * 385 * So we consider only non-zero value for performing 386 * the fixup of CEDE(0) latency. 387 */ 388 if (latency_us == 0) { 389 pr_warn("cpuidle: Skipping xcede record %d [hint=%d]. Exit latency = 0us\n", 390 i, hint); 391 continue; 392 } 393 394 if (latency_us < min_xcede_latency_us) 395 min_xcede_latency_us = latency_us; 396 } 397 398 if (min_xcede_latency_us != UINT_MAX) { 399 dedicated_states[1].exit_latency = min_xcede_latency_us; 400 dedicated_states[1].target_residency = 10 * (min_xcede_latency_us); 401 pr_info("cpuidle: Fixed up CEDE exit latency to %llu us\n", 402 min_xcede_latency_us); 403 } 404 405 } 406 407 /* 408 * pseries_idle_probe() 409 * Choose state table for shared versus dedicated partition 410 */ 411 static int __init pseries_idle_probe(void) 412 { 413 414 if (cpuidle_disable != IDLE_NO_OVERRIDE) 415 return -ENODEV; 416 417 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 418 if (lppaca_shared_proc()) { 419 cpuidle_state_table = shared_states; 420 max_idle_state = ARRAY_SIZE(shared_states); 421 } else { 422 /* 423 * Use firmware provided latency values 424 * starting with POWER10 platforms. In the 425 * case that we are running on a POWER10 426 * platform but in an earlier compat mode, we 427 * can still use the firmware provided values. 428 * 429 * However, on platforms prior to POWER10, we 430 * cannot rely on the accuracy of the firmware 431 * provided latency values. On such platforms, 432 * go with the conservative default estimate 433 * of 10us. 434 */ 435 if (cpu_has_feature(CPU_FTR_ARCH_31) || pvr_version_is(PVR_POWER10)) 436 fixup_cede0_latency(); 437 cpuidle_state_table = dedicated_states; 438 max_idle_state = NR_DEDICATED_STATES; 439 } 440 } else 441 return -ENODEV; 442 443 if (max_idle_state > 1) { 444 snooze_timeout_en = true; 445 snooze_timeout = cpuidle_state_table[1].target_residency * 446 tb_ticks_per_usec; 447 } 448 return 0; 449 } 450 451 static int __init pseries_processor_idle_init(void) 452 { 453 int retval; 454 455 retval = pseries_idle_probe(); 456 if (retval) 457 return retval; 458 459 pseries_cpuidle_driver_init(); 460 retval = cpuidle_register(&pseries_idle_driver, NULL); 461 if (retval) { 462 printk(KERN_DEBUG "Registration of pseries driver failed.\n"); 463 return retval; 464 } 465 466 retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 467 "cpuidle/pseries:online", 468 pseries_cpuidle_cpu_online, NULL); 469 WARN_ON(retval < 0); 470 retval = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_DEAD, 471 "cpuidle/pseries:DEAD", NULL, 472 pseries_cpuidle_cpu_dead); 473 WARN_ON(retval < 0); 474 printk(KERN_DEBUG "pseries_idle_driver registered\n"); 475 return 0; 476 } 477 478 device_initcall(pseries_processor_idle_init); 479