xref: /linux/drivers/cpuidle/cpuidle-pseries.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  cpuidle-pseries - idle state cpuidle driver.
4  *  Adapted from drivers/idle/intel_idle.c and
5  *  drivers/acpi/processor_idle.c
6  *
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/moduleparam.h>
13 #include <linux/cpuidle.h>
14 #include <linux/cpu.h>
15 #include <linux/notifier.h>
16 
17 #include <asm/paca.h>
18 #include <asm/reg.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/runlatch.h>
22 #include <asm/idle.h>
23 #include <asm/plpar_wrappers.h>
24 #include <asm/rtas.h>
25 #include <asm/time.h>
26 
27 static struct cpuidle_driver pseries_idle_driver = {
28 	.name             = "pseries_idle",
29 	.owner            = THIS_MODULE,
30 };
31 
32 static int max_idle_state __read_mostly;
33 static struct cpuidle_state *cpuidle_state_table __read_mostly;
34 static u64 snooze_timeout __read_mostly;
35 static bool snooze_timeout_en __read_mostly;
36 
37 static __cpuidle
38 int snooze_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv,
39 		int index)
40 {
41 	u64 snooze_exit_time;
42 
43 	set_thread_flag(TIF_POLLING_NRFLAG);
44 
45 	pseries_idle_prolog();
46 	raw_local_irq_enable();
47 	snooze_exit_time = get_tb() + snooze_timeout;
48 	dev->poll_time_limit = false;
49 
50 	while (!need_resched()) {
51 		HMT_low();
52 		HMT_very_low();
53 		if (likely(snooze_timeout_en) && get_tb() > snooze_exit_time) {
54 			/*
55 			 * Task has not woken up but we are exiting the polling
56 			 * loop anyway. Require a barrier after polling is
57 			 * cleared to order subsequent test of need_resched().
58 			 */
59 			dev->poll_time_limit = true;
60 			clear_thread_flag(TIF_POLLING_NRFLAG);
61 			smp_mb();
62 			break;
63 		}
64 	}
65 
66 	HMT_medium();
67 	clear_thread_flag(TIF_POLLING_NRFLAG);
68 
69 	raw_local_irq_disable();
70 
71 	pseries_idle_epilog();
72 
73 	return index;
74 }
75 
76 static __cpuidle void check_and_cede_processor(void)
77 {
78 	/*
79 	 * Ensure our interrupt state is properly tracked,
80 	 * also checks if no interrupt has occurred while we
81 	 * were soft-disabled
82 	 */
83 	if (prep_irq_for_idle()) {
84 		cede_processor();
85 #ifdef CONFIG_TRACE_IRQFLAGS
86 		/* Ensure that H_CEDE returns with IRQs on */
87 		if (WARN_ON(!(mfmsr() & MSR_EE)))
88 			__hard_irq_enable();
89 #endif
90 	}
91 }
92 
93 /*
94  * XCEDE: Extended CEDE states discovered through the
95  *        "ibm,get-systems-parameter" RTAS call with the token
96  *        CEDE_LATENCY_TOKEN
97  */
98 
99 /*
100  * Section 7.3.16 System Parameters Option of PAPR version 2.8.1 has a
101  * table with all the parameters to ibm,get-system-parameters.
102  * CEDE_LATENCY_TOKEN corresponds to the token value for Cede Latency
103  * Settings Information.
104  */
105 #define CEDE_LATENCY_TOKEN	45
106 
107 /*
108  * If the platform supports the cede latency settings information system
109  * parameter it must provide the following information in the NULL terminated
110  * parameter string:
111  *
112  * a. The first byte is the length “N” of each cede latency setting record minus
113  *    one (zero indicates a length of 1 byte).
114  *
115  * b. For each supported cede latency setting a cede latency setting record
116  *    consisting of the first “N” bytes as per the following table.
117  *
118  *    -----------------------------
119  *    | Field           | Field   |
120  *    | Name            | Length  |
121  *    -----------------------------
122  *    | Cede Latency    | 1 Byte  |
123  *    | Specifier Value |         |
124  *    -----------------------------
125  *    | Maximum wakeup  |         |
126  *    | latency in      | 8 Bytes |
127  *    | tb-ticks        |         |
128  *    -----------------------------
129  *    | Responsive to   |         |
130  *    | external        | 1 Byte  |
131  *    | interrupts      |         |
132  *    -----------------------------
133  *
134  * This version has cede latency record size = 10.
135  *
136  * The structure xcede_latency_payload represents a) and b) with
137  * xcede_latency_record representing the table in b).
138  *
139  * xcede_latency_parameter is what gets returned by
140  * ibm,get-systems-parameter RTAS call when made with
141  * CEDE_LATENCY_TOKEN.
142  *
143  * These structures are only used to represent the data obtained by the RTAS
144  * call. The data is in big-endian.
145  */
146 struct xcede_latency_record {
147 	u8	hint;
148 	__be64	latency_ticks;
149 	u8	wake_on_irqs;
150 } __packed;
151 
152 // Make space for 16 records, which "should be enough".
153 struct xcede_latency_payload {
154 	u8     record_size;
155 	struct xcede_latency_record records[16];
156 } __packed;
157 
158 struct xcede_latency_parameter {
159 	__be16  payload_size;
160 	struct xcede_latency_payload payload;
161 	u8 null_char;
162 } __packed;
163 
164 static unsigned int nr_xcede_records;
165 static struct xcede_latency_parameter xcede_latency_parameter __initdata;
166 
167 static int __init parse_cede_parameters(void)
168 {
169 	struct xcede_latency_payload *payload;
170 	u32 total_xcede_records_size;
171 	u8 xcede_record_size;
172 	u16 payload_size;
173 	int ret, i;
174 
175 	ret = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
176 			NULL, CEDE_LATENCY_TOKEN, __pa(&xcede_latency_parameter),
177 			sizeof(xcede_latency_parameter));
178 	if (ret) {
179 		pr_err("xcede: Error parsing CEDE_LATENCY_TOKEN\n");
180 		return ret;
181 	}
182 
183 	payload_size = be16_to_cpu(xcede_latency_parameter.payload_size);
184 	payload = &xcede_latency_parameter.payload;
185 
186 	xcede_record_size = payload->record_size + 1;
187 
188 	if (xcede_record_size != sizeof(struct xcede_latency_record)) {
189 		pr_err("xcede: Expected record-size %lu. Observed size %u.\n",
190 		       sizeof(struct xcede_latency_record), xcede_record_size);
191 		return -EINVAL;
192 	}
193 
194 	pr_info("xcede: xcede_record_size = %d\n", xcede_record_size);
195 
196 	/*
197 	 * Since the payload_size includes the last NULL byte and the
198 	 * xcede_record_size, the remaining bytes correspond to array of all
199 	 * cede_latency settings.
200 	 */
201 	total_xcede_records_size = payload_size - 2;
202 	nr_xcede_records = total_xcede_records_size / xcede_record_size;
203 
204 	for (i = 0; i < nr_xcede_records; i++) {
205 		struct xcede_latency_record *record = &payload->records[i];
206 		u64 latency_ticks = be64_to_cpu(record->latency_ticks);
207 		u8 wake_on_irqs = record->wake_on_irqs;
208 		u8 hint = record->hint;
209 
210 		pr_info("xcede: Record %d : hint = %u, latency = 0x%llx tb ticks, Wake-on-irq = %u\n",
211 			i, hint, latency_ticks, wake_on_irqs);
212 	}
213 
214 	return 0;
215 }
216 
217 #define NR_DEDICATED_STATES	2 /* snooze, CEDE */
218 static u8 cede_latency_hint[NR_DEDICATED_STATES];
219 
220 static __cpuidle
221 int dedicated_cede_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv,
222 			int index)
223 {
224 	u8 old_latency_hint;
225 
226 	pseries_idle_prolog();
227 	get_lppaca()->donate_dedicated_cpu = 1;
228 	old_latency_hint = get_lppaca()->cede_latency_hint;
229 	get_lppaca()->cede_latency_hint = cede_latency_hint[index];
230 
231 	HMT_medium();
232 	check_and_cede_processor();
233 
234 	raw_local_irq_disable();
235 	get_lppaca()->donate_dedicated_cpu = 0;
236 	get_lppaca()->cede_latency_hint = old_latency_hint;
237 
238 	pseries_idle_epilog();
239 
240 	return index;
241 }
242 
243 static __cpuidle
244 int shared_cede_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv,
245 		     int index)
246 {
247 
248 	pseries_idle_prolog();
249 
250 	/*
251 	 * Yield the processor to the hypervisor.  We return if
252 	 * an external interrupt occurs (which are driven prior
253 	 * to returning here) or if a prod occurs from another
254 	 * processor. When returning here, external interrupts
255 	 * are enabled.
256 	 */
257 	check_and_cede_processor();
258 
259 	raw_local_irq_disable();
260 	pseries_idle_epilog();
261 
262 	return index;
263 }
264 
265 /*
266  * States for dedicated partition case.
267  */
268 static struct cpuidle_state dedicated_states[NR_DEDICATED_STATES] = {
269 	{ /* Snooze */
270 		.name = "snooze",
271 		.desc = "snooze",
272 		.exit_latency = 0,
273 		.target_residency = 0,
274 		.enter = &snooze_loop,
275 		.flags = CPUIDLE_FLAG_POLLING },
276 	{ /* CEDE */
277 		.name = "CEDE",
278 		.desc = "CEDE",
279 		.exit_latency = 10,
280 		.target_residency = 100,
281 		.enter = &dedicated_cede_loop },
282 };
283 
284 /*
285  * States for shared partition case.
286  */
287 static struct cpuidle_state shared_states[] = {
288 	{ /* Snooze */
289 		.name = "snooze",
290 		.desc = "snooze",
291 		.exit_latency = 0,
292 		.target_residency = 0,
293 		.enter = &snooze_loop,
294 		.flags = CPUIDLE_FLAG_POLLING },
295 	{ /* Shared Cede */
296 		.name = "Shared Cede",
297 		.desc = "Shared Cede",
298 		.exit_latency = 10,
299 		.target_residency = 100,
300 		.enter = &shared_cede_loop },
301 };
302 
303 static int pseries_cpuidle_cpu_online(unsigned int cpu)
304 {
305 	struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
306 
307 	if (dev && cpuidle_get_driver()) {
308 		cpuidle_pause_and_lock();
309 		cpuidle_enable_device(dev);
310 		cpuidle_resume_and_unlock();
311 	}
312 	return 0;
313 }
314 
315 static int pseries_cpuidle_cpu_dead(unsigned int cpu)
316 {
317 	struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
318 
319 	if (dev && cpuidle_get_driver()) {
320 		cpuidle_pause_and_lock();
321 		cpuidle_disable_device(dev);
322 		cpuidle_resume_and_unlock();
323 	}
324 	return 0;
325 }
326 
327 /*
328  * pseries_cpuidle_driver_init()
329  */
330 static int pseries_cpuidle_driver_init(void)
331 {
332 	int idle_state;
333 	struct cpuidle_driver *drv = &pseries_idle_driver;
334 
335 	drv->state_count = 0;
336 
337 	for (idle_state = 0; idle_state < max_idle_state; ++idle_state) {
338 		/* Is the state not enabled? */
339 		if (cpuidle_state_table[idle_state].enter == NULL)
340 			continue;
341 
342 		drv->states[drv->state_count] =	/* structure copy */
343 			cpuidle_state_table[idle_state];
344 
345 		drv->state_count += 1;
346 	}
347 
348 	return 0;
349 }
350 
351 static void __init fixup_cede0_latency(void)
352 {
353 	struct xcede_latency_payload *payload;
354 	u64 min_xcede_latency_us = UINT_MAX;
355 	int i;
356 
357 	if (parse_cede_parameters())
358 		return;
359 
360 	pr_info("cpuidle: Skipping the %d Extended CEDE idle states\n",
361 		nr_xcede_records);
362 
363 	payload = &xcede_latency_parameter.payload;
364 
365 	/*
366 	 * The CEDE idle state maps to CEDE(0). While the hypervisor
367 	 * does not advertise CEDE(0) exit latency values, it does
368 	 * advertise the latency values of the extended CEDE states.
369 	 * We use the lowest advertised exit latency value as a proxy
370 	 * for the exit latency of CEDE(0).
371 	 */
372 	for (i = 0; i < nr_xcede_records; i++) {
373 		struct xcede_latency_record *record = &payload->records[i];
374 		u8 hint = record->hint;
375 		u64 latency_tb = be64_to_cpu(record->latency_ticks);
376 		u64 latency_us = DIV_ROUND_UP_ULL(tb_to_ns(latency_tb), NSEC_PER_USEC);
377 
378 		/*
379 		 * We expect the exit latency of an extended CEDE
380 		 * state to be non-zero, it to since it takes at least
381 		 * a few nanoseconds to wakeup the idle CPU and
382 		 * dispatch the virtual processor into the Linux
383 		 * Guest.
384 		 *
385 		 * So we consider only non-zero value for performing
386 		 * the fixup of CEDE(0) latency.
387 		 */
388 		if (latency_us == 0) {
389 			pr_warn("cpuidle: Skipping xcede record %d [hint=%d]. Exit latency = 0us\n",
390 				i, hint);
391 			continue;
392 		}
393 
394 		if (latency_us < min_xcede_latency_us)
395 			min_xcede_latency_us = latency_us;
396 	}
397 
398 	if (min_xcede_latency_us != UINT_MAX) {
399 		dedicated_states[1].exit_latency = min_xcede_latency_us;
400 		dedicated_states[1].target_residency = 10 * (min_xcede_latency_us);
401 		pr_info("cpuidle: Fixed up CEDE exit latency to %llu us\n",
402 			min_xcede_latency_us);
403 	}
404 
405 }
406 
407 /*
408  * pseries_idle_probe()
409  * Choose state table for shared versus dedicated partition
410  */
411 static int __init pseries_idle_probe(void)
412 {
413 
414 	if (cpuidle_disable != IDLE_NO_OVERRIDE)
415 		return -ENODEV;
416 
417 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
418 		if (lppaca_shared_proc()) {
419 			cpuidle_state_table = shared_states;
420 			max_idle_state = ARRAY_SIZE(shared_states);
421 		} else {
422 			/*
423 			 * Use firmware provided latency values
424 			 * starting with POWER10 platforms. In the
425 			 * case that we are running on a POWER10
426 			 * platform but in an earlier compat mode, we
427 			 * can still use the firmware provided values.
428 			 *
429 			 * However, on platforms prior to POWER10, we
430 			 * cannot rely on the accuracy of the firmware
431 			 * provided latency values. On such platforms,
432 			 * go with the conservative default estimate
433 			 * of 10us.
434 			 */
435 			if (cpu_has_feature(CPU_FTR_ARCH_31) || pvr_version_is(PVR_POWER10))
436 				fixup_cede0_latency();
437 			cpuidle_state_table = dedicated_states;
438 			max_idle_state = NR_DEDICATED_STATES;
439 		}
440 	} else
441 		return -ENODEV;
442 
443 	if (max_idle_state > 1) {
444 		snooze_timeout_en = true;
445 		snooze_timeout = cpuidle_state_table[1].target_residency *
446 				 tb_ticks_per_usec;
447 	}
448 	return 0;
449 }
450 
451 static int __init pseries_processor_idle_init(void)
452 {
453 	int retval;
454 
455 	retval = pseries_idle_probe();
456 	if (retval)
457 		return retval;
458 
459 	pseries_cpuidle_driver_init();
460 	retval = cpuidle_register(&pseries_idle_driver, NULL);
461 	if (retval) {
462 		printk(KERN_DEBUG "Registration of pseries driver failed.\n");
463 		return retval;
464 	}
465 
466 	retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
467 					   "cpuidle/pseries:online",
468 					   pseries_cpuidle_cpu_online, NULL);
469 	WARN_ON(retval < 0);
470 	retval = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_DEAD,
471 					   "cpuidle/pseries:DEAD", NULL,
472 					   pseries_cpuidle_cpu_dead);
473 	WARN_ON(retval < 0);
474 	printk(KERN_DEBUG "pseries_idle_driver registered\n");
475 	return 0;
476 }
477 
478 device_initcall(pseries_processor_idle_init);
479