xref: /linux/drivers/cpuidle/cpuidle-big_little.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * Copyright (c) 2013 ARM/Linaro
3  *
4  * Authors: Daniel Lezcano <daniel.lezcano@linaro.org>
5  *          Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6  *          Nicolas Pitre <nicolas.pitre@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * Maintainer: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
13  * Maintainer: Daniel Lezcano <daniel.lezcano@linaro.org>
14  */
15 #include <linux/cpuidle.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 
20 #include <asm/cpu.h>
21 #include <asm/cputype.h>
22 #include <asm/cpuidle.h>
23 #include <asm/mcpm.h>
24 #include <asm/smp_plat.h>
25 #include <asm/suspend.h>
26 
27 static int bl_enter_powerdown(struct cpuidle_device *dev,
28 			      struct cpuidle_driver *drv, int idx);
29 
30 /*
31  * NB: Owing to current menu governor behaviour big and LITTLE
32  * index 1 states have to define exit_latency and target_residency for
33  * cluster state since, when all CPUs in a cluster hit it, the cluster
34  * can be shutdown. This means that when a single CPU enters this state
35  * the exit_latency and target_residency values are somewhat overkill.
36  * There is no notion of cluster states in the menu governor, so CPUs
37  * have to define CPU states where possibly the cluster will be shutdown
38  * depending on the state of other CPUs. idle states entry and exit happen
39  * at random times; however the cluster state provides target_residency
40  * values as if all CPUs in a cluster enter the state at once; this is
41  * somewhat optimistic and behaviour should be fixed either in the governor
42  * or in the MCPM back-ends.
43  * To make this driver 100% generic the number of states and the exit_latency
44  * target_residency values must be obtained from device tree bindings.
45  *
46  * exit_latency: refers to the TC2 vexpress test chip and depends on the
47  * current cluster operating point. It is the time it takes to get the CPU
48  * up and running when the CPU is powered up on cluster wake-up from shutdown.
49  * Current values for big and LITTLE clusters are provided for clusters
50  * running at default operating points.
51  *
52  * target_residency: it is the minimum amount of time the cluster has
53  * to be down to break even in terms of power consumption. cluster
54  * shutdown has inherent dynamic power costs (L2 writebacks to DRAM
55  * being the main factor) that depend on the current operating points.
56  * The current values for both clusters are provided for a CPU whose half
57  * of L2 lines are dirty and require cleaning to DRAM, and takes into
58  * account leakage static power values related to the vexpress TC2 testchip.
59  */
60 static struct cpuidle_driver bl_idle_little_driver = {
61 	.name = "little_idle",
62 	.owner = THIS_MODULE,
63 	.states[0] = ARM_CPUIDLE_WFI_STATE,
64 	.states[1] = {
65 		.enter			= bl_enter_powerdown,
66 		.exit_latency		= 700,
67 		.target_residency	= 2500,
68 		.flags			= CPUIDLE_FLAG_TIME_VALID |
69 					  CPUIDLE_FLAG_TIMER_STOP,
70 		.name			= "C1",
71 		.desc			= "ARM little-cluster power down",
72 	},
73 	.state_count = 2,
74 };
75 
76 static struct cpuidle_driver bl_idle_big_driver = {
77 	.name = "big_idle",
78 	.owner = THIS_MODULE,
79 	.states[0] = ARM_CPUIDLE_WFI_STATE,
80 	.states[1] = {
81 		.enter			= bl_enter_powerdown,
82 		.exit_latency		= 500,
83 		.target_residency	= 2000,
84 		.flags			= CPUIDLE_FLAG_TIME_VALID |
85 					  CPUIDLE_FLAG_TIMER_STOP,
86 		.name			= "C1",
87 		.desc			= "ARM big-cluster power down",
88 	},
89 	.state_count = 2,
90 };
91 
92 /*
93  * notrace prevents trace shims from getting inserted where they
94  * should not. Global jumps and ldrex/strex must not be inserted
95  * in power down sequences where caches and MMU may be turned off.
96  */
97 static int notrace bl_powerdown_finisher(unsigned long arg)
98 {
99 	/* MCPM works with HW CPU identifiers */
100 	unsigned int mpidr = read_cpuid_mpidr();
101 	unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
102 	unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
103 
104 	mcpm_set_entry_vector(cpu, cluster, cpu_resume);
105 
106 	/*
107 	 * Residency value passed to mcpm_cpu_suspend back-end
108 	 * has to be given clear semantics. Set to 0 as a
109 	 * temporary value.
110 	 */
111 	mcpm_cpu_suspend(0);
112 
113 	/* return value != 0 means failure */
114 	return 1;
115 }
116 
117 /**
118  * bl_enter_powerdown - Programs CPU to enter the specified state
119  * @dev: cpuidle device
120  * @drv: The target state to be programmed
121  * @idx: state index
122  *
123  * Called from the CPUidle framework to program the device to the
124  * specified target state selected by the governor.
125  */
126 static int bl_enter_powerdown(struct cpuidle_device *dev,
127 				struct cpuidle_driver *drv, int idx)
128 {
129 	cpu_pm_enter();
130 
131 	cpu_suspend(0, bl_powerdown_finisher);
132 
133 	/* signals the MCPM core that CPU is out of low power state */
134 	mcpm_cpu_powered_up();
135 
136 	cpu_pm_exit();
137 
138 	return idx;
139 }
140 
141 static int __init bl_idle_driver_init(struct cpuidle_driver *drv, int part_id)
142 {
143 	struct cpumask *cpumask;
144 	int cpu;
145 
146 	cpumask = kzalloc(cpumask_size(), GFP_KERNEL);
147 	if (!cpumask)
148 		return -ENOMEM;
149 
150 	for_each_possible_cpu(cpu)
151 		if (smp_cpuid_part(cpu) == part_id)
152 			cpumask_set_cpu(cpu, cpumask);
153 
154 	drv->cpumask = cpumask;
155 
156 	return 0;
157 }
158 
159 static const struct of_device_id compatible_machine_match[] = {
160 	{ .compatible = "arm,vexpress,v2p-ca15_a7" },
161 	{ .compatible = "samsung,exynos5420" },
162 	{},
163 };
164 
165 static int __init bl_idle_init(void)
166 {
167 	int ret;
168 	struct device_node *root = of_find_node_by_path("/");
169 
170 	if (!root)
171 		return -ENODEV;
172 
173 	/*
174 	 * Initialize the driver just for a compliant set of machines
175 	 */
176 	if (!of_match_node(compatible_machine_match, root))
177 		return -ENODEV;
178 	/*
179 	 * For now the differentiation between little and big cores
180 	 * is based on the part number. A7 cores are considered little
181 	 * cores, A15 are considered big cores. This distinction may
182 	 * evolve in the future with a more generic matching approach.
183 	 */
184 	ret = bl_idle_driver_init(&bl_idle_little_driver,
185 				  ARM_CPU_PART_CORTEX_A7);
186 	if (ret)
187 		return ret;
188 
189 	ret = bl_idle_driver_init(&bl_idle_big_driver, ARM_CPU_PART_CORTEX_A15);
190 	if (ret)
191 		goto out_uninit_little;
192 
193 	ret = cpuidle_register(&bl_idle_little_driver, NULL);
194 	if (ret)
195 		goto out_uninit_big;
196 
197 	ret = cpuidle_register(&bl_idle_big_driver, NULL);
198 	if (ret)
199 		goto out_unregister_little;
200 
201 	return 0;
202 
203 out_unregister_little:
204 	cpuidle_unregister(&bl_idle_little_driver);
205 out_uninit_big:
206 	kfree(bl_idle_big_driver.cpumask);
207 out_uninit_little:
208 	kfree(bl_idle_little_driver.cpumask);
209 
210 	return ret;
211 }
212 device_initcall(bl_idle_init);
213