1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * coupled.c - helper functions to enter the same idle state on multiple cpus 4 * 5 * Copyright (c) 2011 Google, Inc. 6 * 7 * Author: Colin Cross <ccross@android.com> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/cpu.h> 12 #include <linux/cpuidle.h> 13 #include <linux/mutex.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/spinlock.h> 17 18 #include "cpuidle.h" 19 20 /** 21 * DOC: Coupled cpuidle states 22 * 23 * On some ARM SMP SoCs (OMAP4460, Tegra 2, and probably more), the 24 * cpus cannot be independently powered down, either due to 25 * sequencing restrictions (on Tegra 2, cpu 0 must be the last to 26 * power down), or due to HW bugs (on OMAP4460, a cpu powering up 27 * will corrupt the gic state unless the other cpu runs a work 28 * around). Each cpu has a power state that it can enter without 29 * coordinating with the other cpu (usually Wait For Interrupt, or 30 * WFI), and one or more "coupled" power states that affect blocks 31 * shared between the cpus (L2 cache, interrupt controller, and 32 * sometimes the whole SoC). Entering a coupled power state must 33 * be tightly controlled on both cpus. 34 * 35 * This file implements a solution, where each cpu will wait in the 36 * WFI state until all cpus are ready to enter a coupled state, at 37 * which point the coupled state function will be called on all 38 * cpus at approximately the same time. 39 * 40 * Once all cpus are ready to enter idle, they are woken by an smp 41 * cross call. At this point, there is a chance that one of the 42 * cpus will find work to do, and choose not to enter idle. A 43 * final pass is needed to guarantee that all cpus will call the 44 * power state enter function at the same time. During this pass, 45 * each cpu will increment the ready counter, and continue once the 46 * ready counter matches the number of online coupled cpus. If any 47 * cpu exits idle, the other cpus will decrement their counter and 48 * retry. 49 * 50 * requested_state stores the deepest coupled idle state each cpu 51 * is ready for. It is assumed that the states are indexed from 52 * shallowest (highest power, lowest exit latency) to deepest 53 * (lowest power, highest exit latency). The requested_state 54 * variable is not locked. It is only written from the cpu that 55 * it stores (or by the on/offlining cpu if that cpu is offline), 56 * and only read after all the cpus are ready for the coupled idle 57 * state are no longer updating it. 58 * 59 * Three atomic counters are used. alive_count tracks the number 60 * of cpus in the coupled set that are currently or soon will be 61 * online. waiting_count tracks the number of cpus that are in 62 * the waiting loop, in the ready loop, or in the coupled idle state. 63 * ready_count tracks the number of cpus that are in the ready loop 64 * or in the coupled idle state. 65 * 66 * To use coupled cpuidle states, a cpuidle driver must: 67 * 68 * Set struct cpuidle_device.coupled_cpus to the mask of all 69 * coupled cpus, usually the same as cpu_possible_mask if all cpus 70 * are part of the same cluster. The coupled_cpus mask must be 71 * set in the struct cpuidle_device for each cpu. 72 * 73 * Set struct cpuidle_device.safe_state to a state that is not a 74 * coupled state. This is usually WFI. 75 * 76 * Set CPUIDLE_FLAG_COUPLED in struct cpuidle_state.flags for each 77 * state that affects multiple cpus. 78 * 79 * Provide a struct cpuidle_state.enter function for each state 80 * that affects multiple cpus. This function is guaranteed to be 81 * called on all cpus at approximately the same time. The driver 82 * should ensure that the cpus all abort together if any cpu tries 83 * to abort once the function is called. The function should return 84 * with interrupts still disabled. 85 */ 86 87 /** 88 * struct cpuidle_coupled - data for set of cpus that share a coupled idle state 89 * @coupled_cpus: mask of cpus that are part of the coupled set 90 * @requested_state: array of requested states for cpus in the coupled set 91 * @ready_waiting_counts: combined count of cpus in ready or waiting loops 92 * @abort_barrier: synchronisation point for abort cases 93 * @online_count: count of cpus that are online 94 * @refcnt: reference count of cpuidle devices that are using this struct 95 * @prevent: flag to prevent coupled idle while a cpu is hotplugging 96 */ 97 struct cpuidle_coupled { 98 cpumask_t coupled_cpus; 99 int requested_state[NR_CPUS]; 100 atomic_t ready_waiting_counts; 101 atomic_t abort_barrier; 102 int online_count; 103 int refcnt; 104 int prevent; 105 }; 106 107 #define WAITING_BITS 16 108 #define MAX_WAITING_CPUS (1 << WAITING_BITS) 109 #define WAITING_MASK (MAX_WAITING_CPUS - 1) 110 #define READY_MASK (~WAITING_MASK) 111 112 #define CPUIDLE_COUPLED_NOT_IDLE (-1) 113 114 static DEFINE_PER_CPU(call_single_data_t, cpuidle_coupled_poke_cb); 115 116 /* 117 * The cpuidle_coupled_poke_pending mask is used to avoid calling 118 * __smp_call_function_single with the per cpu call_single_data_t struct already 119 * in use. This prevents a deadlock where two cpus are waiting for each others 120 * call_single_data_t struct to be available 121 */ 122 static cpumask_t cpuidle_coupled_poke_pending; 123 124 /* 125 * The cpuidle_coupled_poked mask is used to ensure that each cpu has been poked 126 * once to minimize entering the ready loop with a poke pending, which would 127 * require aborting and retrying. 128 */ 129 static cpumask_t cpuidle_coupled_poked; 130 131 /** 132 * cpuidle_coupled_parallel_barrier - synchronize all online coupled cpus 133 * @dev: cpuidle_device of the calling cpu 134 * @a: atomic variable to hold the barrier 135 * 136 * No caller to this function will return from this function until all online 137 * cpus in the same coupled group have called this function. Once any caller 138 * has returned from this function, the barrier is immediately available for 139 * reuse. 140 * 141 * The atomic variable must be initialized to 0 before any cpu calls 142 * this function, will be reset to 0 before any cpu returns from this function. 143 * 144 * Must only be called from within a coupled idle state handler 145 * (state.enter when state.flags has CPUIDLE_FLAG_COUPLED set). 146 * 147 * Provides full smp barrier semantics before and after calling. 148 */ 149 void cpuidle_coupled_parallel_barrier(struct cpuidle_device *dev, atomic_t *a) 150 { 151 int n = dev->coupled->online_count; 152 153 smp_mb__before_atomic(); 154 atomic_inc(a); 155 156 while (atomic_read(a) < n) 157 cpu_relax(); 158 159 if (atomic_inc_return(a) == n * 2) { 160 atomic_set(a, 0); 161 return; 162 } 163 164 while (atomic_read(a) > n) 165 cpu_relax(); 166 } 167 168 /** 169 * cpuidle_state_is_coupled - check if a state is part of a coupled set 170 * @drv: struct cpuidle_driver for the platform 171 * @state: index of the target state in drv->states 172 * 173 * Returns true if the target state is coupled with cpus besides this one 174 */ 175 bool cpuidle_state_is_coupled(struct cpuidle_driver *drv, int state) 176 { 177 return drv->states[state].flags & CPUIDLE_FLAG_COUPLED; 178 } 179 180 /** 181 * cpuidle_coupled_state_verify - check if the coupled states are correctly set. 182 * @drv: struct cpuidle_driver for the platform 183 * 184 * Returns 0 for valid state values, a negative error code otherwise: 185 * * -EINVAL if any coupled state(safe_state_index) is wrongly set. 186 */ 187 int cpuidle_coupled_state_verify(struct cpuidle_driver *drv) 188 { 189 int i; 190 191 for (i = drv->state_count - 1; i >= 0; i--) { 192 if (cpuidle_state_is_coupled(drv, i) && 193 (drv->safe_state_index == i || 194 drv->safe_state_index < 0 || 195 drv->safe_state_index >= drv->state_count)) 196 return -EINVAL; 197 } 198 199 return 0; 200 } 201 202 /** 203 * cpuidle_coupled_set_ready - mark a cpu as ready 204 * @coupled: the struct coupled that contains the current cpu 205 */ 206 static inline void cpuidle_coupled_set_ready(struct cpuidle_coupled *coupled) 207 { 208 atomic_add(MAX_WAITING_CPUS, &coupled->ready_waiting_counts); 209 } 210 211 /** 212 * cpuidle_coupled_set_not_ready - mark a cpu as not ready 213 * @coupled: the struct coupled that contains the current cpu 214 * 215 * Decrements the ready counter, unless the ready (and thus the waiting) counter 216 * is equal to the number of online cpus. Prevents a race where one cpu 217 * decrements the waiting counter and then re-increments it just before another 218 * cpu has decremented its ready counter, leading to the ready counter going 219 * down from the number of online cpus without going through the coupled idle 220 * state. 221 * 222 * Returns 0 if the counter was decremented successfully, -EINVAL if the ready 223 * counter was equal to the number of online cpus. 224 */ 225 static 226 inline int cpuidle_coupled_set_not_ready(struct cpuidle_coupled *coupled) 227 { 228 int all; 229 int ret; 230 231 all = coupled->online_count | (coupled->online_count << WAITING_BITS); 232 ret = atomic_add_unless(&coupled->ready_waiting_counts, 233 -MAX_WAITING_CPUS, all); 234 235 return ret ? 0 : -EINVAL; 236 } 237 238 /** 239 * cpuidle_coupled_no_cpus_ready - check if no cpus in a coupled set are ready 240 * @coupled: the struct coupled that contains the current cpu 241 * 242 * Returns true if all of the cpus in a coupled set are out of the ready loop. 243 */ 244 static inline int cpuidle_coupled_no_cpus_ready(struct cpuidle_coupled *coupled) 245 { 246 int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS; 247 return r == 0; 248 } 249 250 /** 251 * cpuidle_coupled_cpus_ready - check if all cpus in a coupled set are ready 252 * @coupled: the struct coupled that contains the current cpu 253 * 254 * Returns true if all cpus coupled to this target state are in the ready loop 255 */ 256 static inline bool cpuidle_coupled_cpus_ready(struct cpuidle_coupled *coupled) 257 { 258 int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS; 259 return r == coupled->online_count; 260 } 261 262 /** 263 * cpuidle_coupled_cpus_waiting - check if all cpus in a coupled set are waiting 264 * @coupled: the struct coupled that contains the current cpu 265 * 266 * Returns true if all cpus coupled to this target state are in the wait loop 267 */ 268 static inline bool cpuidle_coupled_cpus_waiting(struct cpuidle_coupled *coupled) 269 { 270 int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK; 271 return w == coupled->online_count; 272 } 273 274 /** 275 * cpuidle_coupled_no_cpus_waiting - check if no cpus in coupled set are waiting 276 * @coupled: the struct coupled that contains the current cpu 277 * 278 * Returns true if all of the cpus in a coupled set are out of the waiting loop. 279 */ 280 static inline int cpuidle_coupled_no_cpus_waiting(struct cpuidle_coupled *coupled) 281 { 282 int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK; 283 return w == 0; 284 } 285 286 /** 287 * cpuidle_coupled_get_state - determine the deepest idle state 288 * @dev: struct cpuidle_device for this cpu 289 * @coupled: the struct coupled that contains the current cpu 290 * 291 * Returns the deepest idle state that all coupled cpus can enter 292 */ 293 static inline int cpuidle_coupled_get_state(struct cpuidle_device *dev, 294 struct cpuidle_coupled *coupled) 295 { 296 int i; 297 int state = INT_MAX; 298 299 /* 300 * Read barrier ensures that read of requested_state is ordered after 301 * reads of ready_count. Matches the write barriers 302 * cpuidle_set_state_waiting. 303 */ 304 smp_rmb(); 305 306 for_each_cpu(i, &coupled->coupled_cpus) 307 if (cpu_online(i) && coupled->requested_state[i] < state) 308 state = coupled->requested_state[i]; 309 310 return state; 311 } 312 313 static void cpuidle_coupled_handle_poke(void *info) 314 { 315 int cpu = (unsigned long)info; 316 cpumask_set_cpu(cpu, &cpuidle_coupled_poked); 317 cpumask_clear_cpu(cpu, &cpuidle_coupled_poke_pending); 318 } 319 320 /** 321 * cpuidle_coupled_poke - wake up a cpu that may be waiting 322 * @cpu: target cpu 323 * 324 * Ensures that the target cpu exits it's waiting idle state (if it is in it) 325 * and will see updates to waiting_count before it re-enters it's waiting idle 326 * state. 327 * 328 * If cpuidle_coupled_poked_mask is already set for the target cpu, that cpu 329 * either has or will soon have a pending IPI that will wake it out of idle, 330 * or it is currently processing the IPI and is not in idle. 331 */ 332 static void cpuidle_coupled_poke(int cpu) 333 { 334 call_single_data_t *csd = &per_cpu(cpuidle_coupled_poke_cb, cpu); 335 336 if (!cpumask_test_and_set_cpu(cpu, &cpuidle_coupled_poke_pending)) 337 smp_call_function_single_async(cpu, csd); 338 } 339 340 /** 341 * cpuidle_coupled_poke_others - wake up all other cpus that may be waiting 342 * @this_cpu: target cpu 343 * @coupled: the struct coupled that contains the current cpu 344 * 345 * Calls cpuidle_coupled_poke on all other online cpus. 346 */ 347 static void cpuidle_coupled_poke_others(int this_cpu, 348 struct cpuidle_coupled *coupled) 349 { 350 int cpu; 351 352 for_each_cpu(cpu, &coupled->coupled_cpus) 353 if (cpu != this_cpu && cpu_online(cpu)) 354 cpuidle_coupled_poke(cpu); 355 } 356 357 /** 358 * cpuidle_coupled_set_waiting - mark this cpu as in the wait loop 359 * @cpu: target cpu 360 * @coupled: the struct coupled that contains the current cpu 361 * @next_state: the index in drv->states of the requested state for this cpu 362 * 363 * Updates the requested idle state for the specified cpuidle device. 364 * Returns the number of waiting cpus. 365 */ 366 static int cpuidle_coupled_set_waiting(int cpu, 367 struct cpuidle_coupled *coupled, int next_state) 368 { 369 coupled->requested_state[cpu] = next_state; 370 371 /* 372 * The atomic_inc_return provides a write barrier to order the write 373 * to requested_state with the later write that increments ready_count. 374 */ 375 return atomic_inc_return(&coupled->ready_waiting_counts) & WAITING_MASK; 376 } 377 378 /** 379 * cpuidle_coupled_set_not_waiting - mark this cpu as leaving the wait loop 380 * @cpu: target cpu 381 * @coupled: the struct coupled that contains the current cpu 382 * 383 * Removes the requested idle state for the specified cpuidle device. 384 */ 385 static void cpuidle_coupled_set_not_waiting(int cpu, 386 struct cpuidle_coupled *coupled) 387 { 388 /* 389 * Decrementing waiting count can race with incrementing it in 390 * cpuidle_coupled_set_waiting, but that's OK. Worst case, some 391 * cpus will increment ready_count and then spin until they 392 * notice that this cpu has cleared it's requested_state. 393 */ 394 atomic_dec(&coupled->ready_waiting_counts); 395 396 coupled->requested_state[cpu] = CPUIDLE_COUPLED_NOT_IDLE; 397 } 398 399 /** 400 * cpuidle_coupled_set_done - mark this cpu as leaving the ready loop 401 * @cpu: the current cpu 402 * @coupled: the struct coupled that contains the current cpu 403 * 404 * Marks this cpu as no longer in the ready and waiting loops. Decrements 405 * the waiting count first to prevent another cpu looping back in and seeing 406 * this cpu as waiting just before it exits idle. 407 */ 408 static void cpuidle_coupled_set_done(int cpu, struct cpuidle_coupled *coupled) 409 { 410 cpuidle_coupled_set_not_waiting(cpu, coupled); 411 atomic_sub(MAX_WAITING_CPUS, &coupled->ready_waiting_counts); 412 } 413 414 /** 415 * cpuidle_coupled_clear_pokes - spin until the poke interrupt is processed 416 * @cpu: this cpu 417 * 418 * Turns on interrupts and spins until any outstanding poke interrupts have 419 * been processed and the poke bit has been cleared. 420 * 421 * Other interrupts may also be processed while interrupts are enabled, so 422 * need_resched() must be tested after this function returns to make sure 423 * the interrupt didn't schedule work that should take the cpu out of idle. 424 * 425 * Returns 0 if no poke was pending, 1 if a poke was cleared. 426 */ 427 static int cpuidle_coupled_clear_pokes(int cpu) 428 { 429 if (!cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending)) 430 return 0; 431 432 local_irq_enable(); 433 while (cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending)) 434 cpu_relax(); 435 local_irq_disable(); 436 437 return 1; 438 } 439 440 static bool cpuidle_coupled_any_pokes_pending(struct cpuidle_coupled *coupled) 441 { 442 return cpumask_first_and_and(cpu_online_mask, &coupled->coupled_cpus, 443 &cpuidle_coupled_poke_pending) < nr_cpu_ids; 444 } 445 446 /** 447 * cpuidle_enter_state_coupled - attempt to enter a state with coupled cpus 448 * @dev: struct cpuidle_device for the current cpu 449 * @drv: struct cpuidle_driver for the platform 450 * @next_state: index of the requested state in drv->states 451 * 452 * Coordinate with coupled cpus to enter the target state. This is a two 453 * stage process. In the first stage, the cpus are operating independently, 454 * and may call into cpuidle_enter_state_coupled at completely different times. 455 * To save as much power as possible, the first cpus to call this function will 456 * go to an intermediate state (the cpuidle_device's safe state), and wait for 457 * all the other cpus to call this function. Once all coupled cpus are idle, 458 * the second stage will start. Each coupled cpu will spin until all cpus have 459 * guaranteed that they will call the target_state. 460 * 461 * This function must be called with interrupts disabled. It may enable 462 * interrupts while preparing for idle, and it will always return with 463 * interrupts enabled. 464 */ 465 int cpuidle_enter_state_coupled(struct cpuidle_device *dev, 466 struct cpuidle_driver *drv, int next_state) 467 { 468 int entered_state = -1; 469 struct cpuidle_coupled *coupled = dev->coupled; 470 int w; 471 472 if (!coupled) 473 return -EINVAL; 474 475 while (coupled->prevent) { 476 cpuidle_coupled_clear_pokes(dev->cpu); 477 if (need_resched()) { 478 local_irq_enable(); 479 return entered_state; 480 } 481 entered_state = cpuidle_enter_state(dev, drv, 482 drv->safe_state_index); 483 local_irq_disable(); 484 } 485 486 /* Read barrier ensures online_count is read after prevent is cleared */ 487 smp_rmb(); 488 489 reset: 490 cpumask_clear_cpu(dev->cpu, &cpuidle_coupled_poked); 491 492 w = cpuidle_coupled_set_waiting(dev->cpu, coupled, next_state); 493 /* 494 * If this is the last cpu to enter the waiting state, poke 495 * all the other cpus out of their waiting state so they can 496 * enter a deeper state. This can race with one of the cpus 497 * exiting the waiting state due to an interrupt and 498 * decrementing waiting_count, see comment below. 499 */ 500 if (w == coupled->online_count) { 501 cpumask_set_cpu(dev->cpu, &cpuidle_coupled_poked); 502 cpuidle_coupled_poke_others(dev->cpu, coupled); 503 } 504 505 retry: 506 /* 507 * Wait for all coupled cpus to be idle, using the deepest state 508 * allowed for a single cpu. If this was not the poking cpu, wait 509 * for at least one poke before leaving to avoid a race where 510 * two cpus could arrive at the waiting loop at the same time, 511 * but the first of the two to arrive could skip the loop without 512 * processing the pokes from the last to arrive. 513 */ 514 while (!cpuidle_coupled_cpus_waiting(coupled) || 515 !cpumask_test_cpu(dev->cpu, &cpuidle_coupled_poked)) { 516 if (cpuidle_coupled_clear_pokes(dev->cpu)) 517 continue; 518 519 if (need_resched()) { 520 cpuidle_coupled_set_not_waiting(dev->cpu, coupled); 521 goto out; 522 } 523 524 if (coupled->prevent) { 525 cpuidle_coupled_set_not_waiting(dev->cpu, coupled); 526 goto out; 527 } 528 529 entered_state = cpuidle_enter_state(dev, drv, 530 drv->safe_state_index); 531 local_irq_disable(); 532 } 533 534 cpuidle_coupled_clear_pokes(dev->cpu); 535 if (need_resched()) { 536 cpuidle_coupled_set_not_waiting(dev->cpu, coupled); 537 goto out; 538 } 539 540 /* 541 * Make sure final poke status for this cpu is visible before setting 542 * cpu as ready. 543 */ 544 smp_wmb(); 545 546 /* 547 * All coupled cpus are probably idle. There is a small chance that 548 * one of the other cpus just became active. Increment the ready count, 549 * and spin until all coupled cpus have incremented the counter. Once a 550 * cpu has incremented the ready counter, it cannot abort idle and must 551 * spin until either all cpus have incremented the ready counter, or 552 * another cpu leaves idle and decrements the waiting counter. 553 */ 554 555 cpuidle_coupled_set_ready(coupled); 556 while (!cpuidle_coupled_cpus_ready(coupled)) { 557 /* Check if any other cpus bailed out of idle. */ 558 if (!cpuidle_coupled_cpus_waiting(coupled)) 559 if (!cpuidle_coupled_set_not_ready(coupled)) 560 goto retry; 561 562 cpu_relax(); 563 } 564 565 /* 566 * Make sure read of all cpus ready is done before reading pending pokes 567 */ 568 smp_rmb(); 569 570 /* 571 * There is a small chance that a cpu left and reentered idle after this 572 * cpu saw that all cpus were waiting. The cpu that reentered idle will 573 * have sent this cpu a poke, which will still be pending after the 574 * ready loop. The pending interrupt may be lost by the interrupt 575 * controller when entering the deep idle state. It's not possible to 576 * clear a pending interrupt without turning interrupts on and handling 577 * it, and it's too late to turn on interrupts here, so reset the 578 * coupled idle state of all cpus and retry. 579 */ 580 if (cpuidle_coupled_any_pokes_pending(coupled)) { 581 cpuidle_coupled_set_done(dev->cpu, coupled); 582 /* Wait for all cpus to see the pending pokes */ 583 cpuidle_coupled_parallel_barrier(dev, &coupled->abort_barrier); 584 goto reset; 585 } 586 587 /* all cpus have acked the coupled state */ 588 next_state = cpuidle_coupled_get_state(dev, coupled); 589 590 entered_state = cpuidle_enter_state(dev, drv, next_state); 591 592 cpuidle_coupled_set_done(dev->cpu, coupled); 593 594 out: 595 /* 596 * Normal cpuidle states are expected to return with irqs enabled. 597 * That leads to an inefficiency where a cpu receiving an interrupt 598 * that brings it out of idle will process that interrupt before 599 * exiting the idle enter function and decrementing ready_count. All 600 * other cpus will need to spin waiting for the cpu that is processing 601 * the interrupt. If the driver returns with interrupts disabled, 602 * all other cpus will loop back into the safe idle state instead of 603 * spinning, saving power. 604 * 605 * Calling local_irq_enable here allows coupled states to return with 606 * interrupts disabled, but won't cause problems for drivers that 607 * exit with interrupts enabled. 608 */ 609 local_irq_enable(); 610 611 /* 612 * Wait until all coupled cpus have exited idle. There is no risk that 613 * a cpu exits and re-enters the ready state because this cpu has 614 * already decremented its waiting_count. 615 */ 616 while (!cpuidle_coupled_no_cpus_ready(coupled)) 617 cpu_relax(); 618 619 return entered_state; 620 } 621 622 static void cpuidle_coupled_update_online_cpus(struct cpuidle_coupled *coupled) 623 { 624 coupled->online_count = cpumask_weight_and(cpu_online_mask, &coupled->coupled_cpus); 625 } 626 627 /** 628 * cpuidle_coupled_register_device - register a coupled cpuidle device 629 * @dev: struct cpuidle_device for the current cpu 630 * 631 * Called from cpuidle_register_device to handle coupled idle init. Finds the 632 * cpuidle_coupled struct for this set of coupled cpus, or creates one if none 633 * exists yet. 634 */ 635 int cpuidle_coupled_register_device(struct cpuidle_device *dev) 636 { 637 int cpu; 638 struct cpuidle_device *other_dev; 639 call_single_data_t *csd; 640 struct cpuidle_coupled *coupled; 641 642 if (cpumask_empty(&dev->coupled_cpus)) 643 return 0; 644 645 for_each_cpu(cpu, &dev->coupled_cpus) { 646 other_dev = per_cpu(cpuidle_devices, cpu); 647 if (other_dev && other_dev->coupled) { 648 coupled = other_dev->coupled; 649 goto have_coupled; 650 } 651 } 652 653 /* No existing coupled info found, create a new one */ 654 coupled = kzalloc(sizeof(struct cpuidle_coupled), GFP_KERNEL); 655 if (!coupled) 656 return -ENOMEM; 657 658 coupled->coupled_cpus = dev->coupled_cpus; 659 660 have_coupled: 661 dev->coupled = coupled; 662 if (WARN_ON(!cpumask_equal(&dev->coupled_cpus, &coupled->coupled_cpus))) 663 coupled->prevent++; 664 665 cpuidle_coupled_update_online_cpus(coupled); 666 667 coupled->refcnt++; 668 669 csd = &per_cpu(cpuidle_coupled_poke_cb, dev->cpu); 670 INIT_CSD(csd, cpuidle_coupled_handle_poke, (void *)(unsigned long)dev->cpu); 671 672 return 0; 673 } 674 675 /** 676 * cpuidle_coupled_unregister_device - unregister a coupled cpuidle device 677 * @dev: struct cpuidle_device for the current cpu 678 * 679 * Called from cpuidle_unregister_device to tear down coupled idle. Removes the 680 * cpu from the coupled idle set, and frees the cpuidle_coupled_info struct if 681 * this was the last cpu in the set. 682 */ 683 void cpuidle_coupled_unregister_device(struct cpuidle_device *dev) 684 { 685 struct cpuidle_coupled *coupled = dev->coupled; 686 687 if (cpumask_empty(&dev->coupled_cpus)) 688 return; 689 690 if (--coupled->refcnt) 691 kfree(coupled); 692 dev->coupled = NULL; 693 } 694 695 /** 696 * cpuidle_coupled_prevent_idle - prevent cpus from entering a coupled state 697 * @coupled: the struct coupled that contains the cpu that is changing state 698 * 699 * Disables coupled cpuidle on a coupled set of cpus. Used to ensure that 700 * cpu_online_mask doesn't change while cpus are coordinating coupled idle. 701 */ 702 static void cpuidle_coupled_prevent_idle(struct cpuidle_coupled *coupled) 703 { 704 int cpu = get_cpu(); 705 706 /* Force all cpus out of the waiting loop. */ 707 coupled->prevent++; 708 cpuidle_coupled_poke_others(cpu, coupled); 709 put_cpu(); 710 while (!cpuidle_coupled_no_cpus_waiting(coupled)) 711 cpu_relax(); 712 } 713 714 /** 715 * cpuidle_coupled_allow_idle - allows cpus to enter a coupled state 716 * @coupled: the struct coupled that contains the cpu that is changing state 717 * 718 * Enables coupled cpuidle on a coupled set of cpus. Used to ensure that 719 * cpu_online_mask doesn't change while cpus are coordinating coupled idle. 720 */ 721 static void cpuidle_coupled_allow_idle(struct cpuidle_coupled *coupled) 722 { 723 int cpu = get_cpu(); 724 725 /* 726 * Write barrier ensures readers see the new online_count when they 727 * see prevent == 0. 728 */ 729 smp_wmb(); 730 coupled->prevent--; 731 /* Force cpus out of the prevent loop. */ 732 cpuidle_coupled_poke_others(cpu, coupled); 733 put_cpu(); 734 } 735 736 static int coupled_cpu_online(unsigned int cpu) 737 { 738 struct cpuidle_device *dev; 739 740 mutex_lock(&cpuidle_lock); 741 742 dev = per_cpu(cpuidle_devices, cpu); 743 if (dev && dev->coupled) { 744 cpuidle_coupled_update_online_cpus(dev->coupled); 745 cpuidle_coupled_allow_idle(dev->coupled); 746 } 747 748 mutex_unlock(&cpuidle_lock); 749 return 0; 750 } 751 752 static int coupled_cpu_up_prepare(unsigned int cpu) 753 { 754 struct cpuidle_device *dev; 755 756 mutex_lock(&cpuidle_lock); 757 758 dev = per_cpu(cpuidle_devices, cpu); 759 if (dev && dev->coupled) 760 cpuidle_coupled_prevent_idle(dev->coupled); 761 762 mutex_unlock(&cpuidle_lock); 763 return 0; 764 } 765 766 static int __init cpuidle_coupled_init(void) 767 { 768 int ret; 769 770 ret = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_COUPLED_PREPARE, 771 "cpuidle/coupled:prepare", 772 coupled_cpu_up_prepare, 773 coupled_cpu_online); 774 if (ret) 775 return ret; 776 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 777 "cpuidle/coupled:online", 778 coupled_cpu_online, 779 coupled_cpu_up_prepare); 780 if (ret < 0) 781 cpuhp_remove_state_nocalls(CPUHP_CPUIDLE_COUPLED_PREPARE); 782 return ret; 783 } 784 core_initcall(cpuidle_coupled_init); 785