xref: /linux/drivers/cpufreq/tegra194-cpufreq.c (revision 5e0266f0e5f57617472d5aac4013f58a3ef264ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved
4  */
5 
6 #include <linux/cpu.h>
7 #include <linux/cpufreq.h>
8 #include <linux/delay.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_platform.h>
13 #include <linux/platform_device.h>
14 #include <linux/slab.h>
15 
16 #include <asm/smp_plat.h>
17 
18 #include <soc/tegra/bpmp.h>
19 #include <soc/tegra/bpmp-abi.h>
20 
21 #define KHZ                     1000
22 #define REF_CLK_MHZ             408 /* 408 MHz */
23 #define US_DELAY                500
24 #define CPUFREQ_TBL_STEP_HZ     (50 * KHZ * KHZ)
25 #define MAX_CNT                 ~0U
26 
27 #define NDIV_MASK              0x1FF
28 
29 #define CORE_OFFSET(cpu)			(cpu * 8)
30 #define CMU_CLKS_BASE				0x2000
31 #define SCRATCH_FREQ_CORE_REG(data, cpu)	(data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu))
32 
33 #define MMCRAB_CLUSTER_BASE(cl)			(0x30000 + (cl * 0x10000))
34 #define CLUSTER_ACTMON_BASE(data, cl) \
35 			(data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base))
36 #define CORE_ACTMON_CNTR_REG(data, cl, cpu)	(CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu))
37 
38 /* cpufreq transisition latency */
39 #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
40 
41 struct tegra_cpu_ctr {
42 	u32 cpu;
43 	u32 coreclk_cnt, last_coreclk_cnt;
44 	u32 refclk_cnt, last_refclk_cnt;
45 };
46 
47 struct read_counters_work {
48 	struct work_struct work;
49 	struct tegra_cpu_ctr c;
50 };
51 
52 struct tegra_cpufreq_ops {
53 	void (*read_counters)(struct tegra_cpu_ctr *c);
54 	void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv);
55 	void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid);
56 	int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv);
57 };
58 
59 struct tegra_cpufreq_soc {
60 	struct tegra_cpufreq_ops *ops;
61 	int maxcpus_per_cluster;
62 	unsigned int num_clusters;
63 	phys_addr_t actmon_cntr_base;
64 };
65 
66 struct tegra194_cpufreq_data {
67 	void __iomem *regs;
68 	struct cpufreq_frequency_table **tables;
69 	const struct tegra_cpufreq_soc *soc;
70 };
71 
72 static struct workqueue_struct *read_counters_wq;
73 
74 static void tegra_get_cpu_mpidr(void *mpidr)
75 {
76 	*((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
77 }
78 
79 static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
80 {
81 	u64 mpidr;
82 
83 	smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
84 
85 	if (cpuid)
86 		*cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
87 	if (clusterid)
88 		*clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2);
89 }
90 
91 static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
92 {
93 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
94 	void __iomem *freq_core_reg;
95 	u64 mpidr_id;
96 
97 	/* use physical id to get address of per core frequency register */
98 	mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
99 	freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
100 
101 	*ndiv = readl(freq_core_reg) & NDIV_MASK;
102 
103 	return 0;
104 }
105 
106 static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
107 {
108 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
109 	void __iomem *freq_core_reg;
110 	u32 cpu, cpuid, clusterid;
111 	u64 mpidr_id;
112 
113 	for_each_cpu_and(cpu, policy->cpus, cpu_online_mask) {
114 		data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
115 
116 		/* use physical id to get address of per core frequency register */
117 		mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
118 		freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
119 
120 		writel(ndiv, freq_core_reg);
121 	}
122 }
123 
124 /*
125  * This register provides access to two counter values with a single
126  * 64-bit read. The counter values are used to determine the average
127  * actual frequency a core has run at over a period of time.
128  *     [63:32] PLLP counter: Counts at fixed frequency (408 MHz)
129  *     [31:0] Core clock counter: Counts on every core clock cycle
130  */
131 static void tegra234_read_counters(struct tegra_cpu_ctr *c)
132 {
133 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
134 	void __iomem *actmon_reg;
135 	u32 cpuid, clusterid;
136 	u64 val;
137 
138 	data->soc->ops->get_cpu_cluster_id(c->cpu, &cpuid, &clusterid);
139 	actmon_reg = CORE_ACTMON_CNTR_REG(data, clusterid, cpuid);
140 
141 	val = readq(actmon_reg);
142 	c->last_refclk_cnt = upper_32_bits(val);
143 	c->last_coreclk_cnt = lower_32_bits(val);
144 	udelay(US_DELAY);
145 	val = readq(actmon_reg);
146 	c->refclk_cnt = upper_32_bits(val);
147 	c->coreclk_cnt = lower_32_bits(val);
148 }
149 
150 static struct tegra_cpufreq_ops tegra234_cpufreq_ops = {
151 	.read_counters = tegra234_read_counters,
152 	.get_cpu_cluster_id = tegra234_get_cpu_cluster_id,
153 	.get_cpu_ndiv = tegra234_get_cpu_ndiv,
154 	.set_cpu_ndiv = tegra234_set_cpu_ndiv,
155 };
156 
157 static const struct tegra_cpufreq_soc tegra234_cpufreq_soc = {
158 	.ops = &tegra234_cpufreq_ops,
159 	.actmon_cntr_base = 0x9000,
160 	.maxcpus_per_cluster = 4,
161 	.num_clusters = 3,
162 };
163 
164 static const struct tegra_cpufreq_soc tegra239_cpufreq_soc = {
165 	.ops = &tegra234_cpufreq_ops,
166 	.actmon_cntr_base = 0x4000,
167 	.maxcpus_per_cluster = 8,
168 	.num_clusters = 1,
169 };
170 
171 static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
172 {
173 	u64 mpidr;
174 
175 	smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
176 
177 	if (cpuid)
178 		*cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
179 	if (clusterid)
180 		*clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
181 }
182 
183 /*
184  * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
185  * The register provides frequency feedback information to
186  * determine the average actual frequency a core has run at over
187  * a period of time.
188  *	[31:0] PLLP counter: Counts at fixed frequency (408 MHz)
189  *	[63:32] Core clock counter: counts on every core clock cycle
190  *			where the core is architecturally clocking
191  */
192 static u64 read_freq_feedback(void)
193 {
194 	u64 val = 0;
195 
196 	asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
197 
198 	return val;
199 }
200 
201 static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
202 				   *nltbl, u16 ndiv)
203 {
204 	return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
205 }
206 
207 static void tegra194_read_counters(struct tegra_cpu_ctr *c)
208 {
209 	u64 val;
210 
211 	val = read_freq_feedback();
212 	c->last_refclk_cnt = lower_32_bits(val);
213 	c->last_coreclk_cnt = upper_32_bits(val);
214 	udelay(US_DELAY);
215 	val = read_freq_feedback();
216 	c->refclk_cnt = lower_32_bits(val);
217 	c->coreclk_cnt = upper_32_bits(val);
218 }
219 
220 static void tegra_read_counters(struct work_struct *work)
221 {
222 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
223 	struct read_counters_work *read_counters_work;
224 	struct tegra_cpu_ctr *c;
225 
226 	/*
227 	 * ref_clk_counter(32 bit counter) runs on constant clk,
228 	 * pll_p(408MHz).
229 	 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
230 	 *              = 10526880 usec = 10.527 sec to overflow
231 	 *
232 	 * Like wise core_clk_counter(32 bit counter) runs on core clock.
233 	 * It's synchronized to crab_clk (cpu_crab_clk) which runs at
234 	 * freq of cluster. Assuming max cluster clock ~2000MHz,
235 	 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
236 	 *              = ~2.147 sec to overflow
237 	 */
238 	read_counters_work = container_of(work, struct read_counters_work,
239 					  work);
240 	c = &read_counters_work->c;
241 
242 	data->soc->ops->read_counters(c);
243 }
244 
245 /*
246  * Return instantaneous cpu speed
247  * Instantaneous freq is calculated as -
248  * -Takes sample on every query of getting the freq.
249  *	- Read core and ref clock counters;
250  *	- Delay for X us
251  *	- Read above cycle counters again
252  *	- Calculates freq by subtracting current and previous counters
253  *	  divided by the delay time or eqv. of ref_clk_counter in delta time
254  *	- Return Kcycles/second, freq in KHz
255  *
256  *	delta time period = x sec
257  *			  = delta ref_clk_counter / (408 * 10^6) sec
258  *	freq in Hz = cycles/sec
259  *		   = (delta cycles / x sec
260  *		   = (delta cycles * 408 * 10^6) / delta ref_clk_counter
261  *	in KHz	   = (delta cycles * 408 * 10^3) / delta ref_clk_counter
262  *
263  * @cpu - logical cpu whose freq to be updated
264  * Returns freq in KHz on success, 0 if cpu is offline
265  */
266 static unsigned int tegra194_calculate_speed(u32 cpu)
267 {
268 	struct read_counters_work read_counters_work;
269 	struct tegra_cpu_ctr c;
270 	u32 delta_refcnt;
271 	u32 delta_ccnt;
272 	u32 rate_mhz;
273 
274 	/*
275 	 * udelay() is required to reconstruct cpu frequency over an
276 	 * observation window. Using workqueue to call udelay() with
277 	 * interrupts enabled.
278 	 */
279 	read_counters_work.c.cpu = cpu;
280 	INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
281 	queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
282 	flush_work(&read_counters_work.work);
283 	c = read_counters_work.c;
284 
285 	if (c.coreclk_cnt < c.last_coreclk_cnt)
286 		delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
287 	else
288 		delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
289 	if (!delta_ccnt)
290 		return 0;
291 
292 	/* ref clock is 32 bits */
293 	if (c.refclk_cnt < c.last_refclk_cnt)
294 		delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
295 	else
296 		delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
297 	if (!delta_refcnt) {
298 		pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
299 		return 0;
300 	}
301 	rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
302 
303 	return (rate_mhz * KHZ); /* in KHz */
304 }
305 
306 static void tegra194_get_cpu_ndiv_sysreg(void *ndiv)
307 {
308 	u64 ndiv_val;
309 
310 	asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : );
311 
312 	*(u64 *)ndiv = ndiv_val;
313 }
314 
315 static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
316 {
317 	return smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true);
318 }
319 
320 static void tegra194_set_cpu_ndiv_sysreg(void *data)
321 {
322 	u64 ndiv_val = *(u64 *)data;
323 
324 	asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
325 }
326 
327 static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
328 {
329 	on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true);
330 }
331 
332 static unsigned int tegra194_get_speed(u32 cpu)
333 {
334 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
335 	struct cpufreq_frequency_table *pos;
336 	u32 cpuid, clusterid;
337 	unsigned int rate;
338 	u64 ndiv;
339 	int ret;
340 
341 	data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
342 
343 	/* reconstruct actual cpu freq using counters */
344 	rate = tegra194_calculate_speed(cpu);
345 
346 	/* get last written ndiv value */
347 	ret = data->soc->ops->get_cpu_ndiv(cpu, cpuid, clusterid, &ndiv);
348 	if (WARN_ON_ONCE(ret))
349 		return rate;
350 
351 	/*
352 	 * If the reconstructed frequency has acceptable delta from
353 	 * the last written value, then return freq corresponding
354 	 * to the last written ndiv value from freq_table. This is
355 	 * done to return consistent value.
356 	 */
357 	cpufreq_for_each_valid_entry(pos, data->tables[clusterid]) {
358 		if (pos->driver_data != ndiv)
359 			continue;
360 
361 		if (abs(pos->frequency - rate) > 115200) {
362 			pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n",
363 				cpu, rate, pos->frequency, ndiv);
364 		} else {
365 			rate = pos->frequency;
366 		}
367 		break;
368 	}
369 	return rate;
370 }
371 
372 static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
373 {
374 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
375 	int maxcpus_per_cluster = data->soc->maxcpus_per_cluster;
376 	u32 start_cpu, cpu;
377 	u32 clusterid;
378 
379 	data->soc->ops->get_cpu_cluster_id(policy->cpu, NULL, &clusterid);
380 
381 	if (clusterid >= data->soc->num_clusters || !data->tables[clusterid])
382 		return -EINVAL;
383 
384 	start_cpu = rounddown(policy->cpu, maxcpus_per_cluster);
385 	/* set same policy for all cpus in a cluster */
386 	for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) {
387 		if (cpu_possible(cpu))
388 			cpumask_set_cpu(cpu, policy->cpus);
389 	}
390 	policy->freq_table = data->tables[clusterid];
391 	policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
392 
393 	return 0;
394 }
395 
396 static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
397 				       unsigned int index)
398 {
399 	struct cpufreq_frequency_table *tbl = policy->freq_table + index;
400 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
401 
402 	/*
403 	 * Each core writes frequency in per core register. Then both cores
404 	 * in a cluster run at same frequency which is the maximum frequency
405 	 * request out of the values requested by both cores in that cluster.
406 	 */
407 	data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data);
408 
409 	return 0;
410 }
411 
412 static struct cpufreq_driver tegra194_cpufreq_driver = {
413 	.name = "tegra194",
414 	.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
415 		 CPUFREQ_IS_COOLING_DEV,
416 	.verify = cpufreq_generic_frequency_table_verify,
417 	.target_index = tegra194_cpufreq_set_target,
418 	.get = tegra194_get_speed,
419 	.init = tegra194_cpufreq_init,
420 	.attr = cpufreq_generic_attr,
421 };
422 
423 static struct tegra_cpufreq_ops tegra194_cpufreq_ops = {
424 	.read_counters = tegra194_read_counters,
425 	.get_cpu_cluster_id = tegra194_get_cpu_cluster_id,
426 	.get_cpu_ndiv = tegra194_get_cpu_ndiv,
427 	.set_cpu_ndiv = tegra194_set_cpu_ndiv,
428 };
429 
430 static const struct tegra_cpufreq_soc tegra194_cpufreq_soc = {
431 	.ops = &tegra194_cpufreq_ops,
432 	.maxcpus_per_cluster = 2,
433 	.num_clusters = 4,
434 };
435 
436 static void tegra194_cpufreq_free_resources(void)
437 {
438 	destroy_workqueue(read_counters_wq);
439 }
440 
441 static struct cpufreq_frequency_table *
442 init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
443 		unsigned int cluster_id)
444 {
445 	struct cpufreq_frequency_table *freq_table;
446 	struct mrq_cpu_ndiv_limits_response resp;
447 	unsigned int num_freqs, ndiv, delta_ndiv;
448 	struct mrq_cpu_ndiv_limits_request req;
449 	struct tegra_bpmp_message msg;
450 	u16 freq_table_step_size;
451 	int err, index;
452 
453 	memset(&req, 0, sizeof(req));
454 	req.cluster_id = cluster_id;
455 
456 	memset(&msg, 0, sizeof(msg));
457 	msg.mrq = MRQ_CPU_NDIV_LIMITS;
458 	msg.tx.data = &req;
459 	msg.tx.size = sizeof(req);
460 	msg.rx.data = &resp;
461 	msg.rx.size = sizeof(resp);
462 
463 	err = tegra_bpmp_transfer(bpmp, &msg);
464 	if (err)
465 		return ERR_PTR(err);
466 	if (msg.rx.ret == -BPMP_EINVAL) {
467 		/* Cluster not available */
468 		return NULL;
469 	}
470 	if (msg.rx.ret)
471 		return ERR_PTR(-EINVAL);
472 
473 	/*
474 	 * Make sure frequency table step is a multiple of mdiv to match
475 	 * vhint table granularity.
476 	 */
477 	freq_table_step_size = resp.mdiv *
478 			DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
479 
480 	dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
481 		cluster_id, freq_table_step_size);
482 
483 	delta_ndiv = resp.ndiv_max - resp.ndiv_min;
484 
485 	if (unlikely(delta_ndiv == 0)) {
486 		num_freqs = 1;
487 	} else {
488 		/* We store both ndiv_min and ndiv_max hence the +1 */
489 		num_freqs = delta_ndiv / freq_table_step_size + 1;
490 	}
491 
492 	num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
493 
494 	freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
495 				  sizeof(*freq_table), GFP_KERNEL);
496 	if (!freq_table)
497 		return ERR_PTR(-ENOMEM);
498 
499 	for (index = 0, ndiv = resp.ndiv_min;
500 			ndiv < resp.ndiv_max;
501 			index++, ndiv += freq_table_step_size) {
502 		freq_table[index].driver_data = ndiv;
503 		freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
504 	}
505 
506 	freq_table[index].driver_data = resp.ndiv_max;
507 	freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
508 	freq_table[index].frequency = CPUFREQ_TABLE_END;
509 
510 	return freq_table;
511 }
512 
513 static int tegra194_cpufreq_probe(struct platform_device *pdev)
514 {
515 	const struct tegra_cpufreq_soc *soc;
516 	struct tegra194_cpufreq_data *data;
517 	struct tegra_bpmp *bpmp;
518 	int err, i;
519 
520 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
521 	if (!data)
522 		return -ENOMEM;
523 
524 	soc = of_device_get_match_data(&pdev->dev);
525 
526 	if (soc->ops && soc->maxcpus_per_cluster && soc->num_clusters) {
527 		data->soc = soc;
528 	} else {
529 		dev_err(&pdev->dev, "soc data missing\n");
530 		return -EINVAL;
531 	}
532 
533 	data->tables = devm_kcalloc(&pdev->dev, data->soc->num_clusters,
534 				    sizeof(*data->tables), GFP_KERNEL);
535 	if (!data->tables)
536 		return -ENOMEM;
537 
538 	if (soc->actmon_cntr_base) {
539 		/* mmio registers are used for frequency request and re-construction */
540 		data->regs = devm_platform_ioremap_resource(pdev, 0);
541 		if (IS_ERR(data->regs))
542 			return PTR_ERR(data->regs);
543 	}
544 
545 	platform_set_drvdata(pdev, data);
546 
547 	bpmp = tegra_bpmp_get(&pdev->dev);
548 	if (IS_ERR(bpmp))
549 		return PTR_ERR(bpmp);
550 
551 	read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
552 	if (!read_counters_wq) {
553 		dev_err(&pdev->dev, "fail to create_workqueue\n");
554 		err = -EINVAL;
555 		goto put_bpmp;
556 	}
557 
558 	for (i = 0; i < data->soc->num_clusters; i++) {
559 		data->tables[i] = init_freq_table(pdev, bpmp, i);
560 		if (IS_ERR(data->tables[i])) {
561 			err = PTR_ERR(data->tables[i]);
562 			goto err_free_res;
563 		}
564 	}
565 
566 	tegra194_cpufreq_driver.driver_data = data;
567 
568 	err = cpufreq_register_driver(&tegra194_cpufreq_driver);
569 	if (!err)
570 		goto put_bpmp;
571 
572 err_free_res:
573 	tegra194_cpufreq_free_resources();
574 put_bpmp:
575 	tegra_bpmp_put(bpmp);
576 	return err;
577 }
578 
579 static int tegra194_cpufreq_remove(struct platform_device *pdev)
580 {
581 	cpufreq_unregister_driver(&tegra194_cpufreq_driver);
582 	tegra194_cpufreq_free_resources();
583 
584 	return 0;
585 }
586 
587 static const struct of_device_id tegra194_cpufreq_of_match[] = {
588 	{ .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc },
589 	{ .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc },
590 	{ .compatible = "nvidia,tegra239-ccplex-cluster", .data = &tegra239_cpufreq_soc },
591 	{ /* sentinel */ }
592 };
593 MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
594 
595 static struct platform_driver tegra194_ccplex_driver = {
596 	.driver = {
597 		.name = "tegra194-cpufreq",
598 		.of_match_table = tegra194_cpufreq_of_match,
599 	},
600 	.probe = tegra194_cpufreq_probe,
601 	.remove = tegra194_cpufreq_remove,
602 };
603 module_platform_driver(tegra194_ccplex_driver);
604 
605 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
606 MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
607 MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
608 MODULE_LICENSE("GPL v2");
609