1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/bitfield.h> 7 #include <linux/clk-provider.h> 8 #include <linux/cpufreq.h> 9 #include <linux/init.h> 10 #include <linux/interconnect.h> 11 #include <linux/interrupt.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/platform_device.h> 16 #include <linux/pm_opp.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/units.h> 20 21 #define LUT_MAX_ENTRIES 40U 22 #define LUT_SRC GENMASK(31, 30) 23 #define LUT_L_VAL GENMASK(7, 0) 24 #define LUT_CORE_COUNT GENMASK(18, 16) 25 #define LUT_VOLT GENMASK(11, 0) 26 #define CLK_HW_DIV 2 27 #define LUT_TURBO_IND 1 28 29 #define GT_IRQ_STATUS BIT(2) 30 31 #define MAX_FREQ_DOMAINS 4 32 33 struct qcom_cpufreq_soc_data { 34 u32 reg_enable; 35 u32 reg_domain_state; 36 u32 reg_dcvs_ctrl; 37 u32 reg_freq_lut; 38 u32 reg_volt_lut; 39 u32 reg_intr_clr; 40 u32 reg_current_vote; 41 u32 reg_perf_state; 42 u8 lut_row_size; 43 }; 44 45 struct qcom_cpufreq_data { 46 void __iomem *base; 47 48 /* 49 * Mutex to synchronize between de-init sequence and re-starting LMh 50 * polling/interrupts 51 */ 52 struct mutex throttle_lock; 53 int throttle_irq; 54 char irq_name[15]; 55 bool cancel_throttle; 56 struct delayed_work throttle_work; 57 struct cpufreq_policy *policy; 58 struct clk_hw cpu_clk; 59 60 bool per_core_dcvs; 61 }; 62 63 static struct { 64 struct qcom_cpufreq_data *data; 65 const struct qcom_cpufreq_soc_data *soc_data; 66 } qcom_cpufreq; 67 68 static unsigned long cpu_hw_rate, xo_rate; 69 static bool icc_scaling_enabled; 70 71 static int qcom_cpufreq_set_bw(struct cpufreq_policy *policy, 72 unsigned long freq_khz) 73 { 74 unsigned long freq_hz = freq_khz * 1000; 75 struct dev_pm_opp *opp; 76 struct device *dev; 77 int ret; 78 79 dev = get_cpu_device(policy->cpu); 80 if (!dev) 81 return -ENODEV; 82 83 opp = dev_pm_opp_find_freq_exact(dev, freq_hz, true); 84 if (IS_ERR(opp)) 85 return PTR_ERR(opp); 86 87 ret = dev_pm_opp_set_opp(dev, opp); 88 dev_pm_opp_put(opp); 89 return ret; 90 } 91 92 static int qcom_cpufreq_update_opp(struct device *cpu_dev, 93 unsigned long freq_khz, 94 unsigned long volt) 95 { 96 unsigned long freq_hz = freq_khz * 1000; 97 int ret; 98 99 /* Skip voltage update if the opp table is not available */ 100 if (!icc_scaling_enabled) 101 return dev_pm_opp_add(cpu_dev, freq_hz, volt); 102 103 ret = dev_pm_opp_adjust_voltage(cpu_dev, freq_hz, volt, volt, volt); 104 if (ret) { 105 dev_err(cpu_dev, "Voltage update failed freq=%ld\n", freq_khz); 106 return ret; 107 } 108 109 return dev_pm_opp_enable(cpu_dev, freq_hz); 110 } 111 112 static int qcom_cpufreq_hw_target_index(struct cpufreq_policy *policy, 113 unsigned int index) 114 { 115 struct qcom_cpufreq_data *data = policy->driver_data; 116 const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data; 117 unsigned long freq = policy->freq_table[index].frequency; 118 unsigned int i; 119 120 writel_relaxed(index, data->base + soc_data->reg_perf_state); 121 122 if (data->per_core_dcvs) 123 for (i = 1; i < cpumask_weight(policy->related_cpus); i++) 124 writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4); 125 126 if (icc_scaling_enabled) 127 qcom_cpufreq_set_bw(policy, freq); 128 129 return 0; 130 } 131 132 static unsigned long qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data) 133 { 134 unsigned int lval; 135 136 if (qcom_cpufreq.soc_data->reg_current_vote) 137 lval = readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_current_vote) & 0x3ff; 138 else 139 lval = readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_domain_state) & 0xff; 140 141 return lval * xo_rate; 142 } 143 144 /* Get the frequency requested by the cpufreq core for the CPU */ 145 static unsigned int qcom_cpufreq_get_freq(unsigned int cpu) 146 { 147 struct qcom_cpufreq_data *data; 148 const struct qcom_cpufreq_soc_data *soc_data; 149 struct cpufreq_policy *policy; 150 unsigned int index; 151 152 policy = cpufreq_cpu_get_raw(cpu); 153 if (!policy) 154 return 0; 155 156 data = policy->driver_data; 157 soc_data = qcom_cpufreq.soc_data; 158 159 index = readl_relaxed(data->base + soc_data->reg_perf_state); 160 index = min(index, LUT_MAX_ENTRIES - 1); 161 162 return policy->freq_table[index].frequency; 163 } 164 165 static unsigned int qcom_cpufreq_hw_get(unsigned int cpu) 166 { 167 struct qcom_cpufreq_data *data; 168 struct cpufreq_policy *policy; 169 170 policy = cpufreq_cpu_get_raw(cpu); 171 if (!policy) 172 return 0; 173 174 data = policy->driver_data; 175 176 if (data->throttle_irq >= 0) 177 return qcom_lmh_get_throttle_freq(data) / HZ_PER_KHZ; 178 179 return qcom_cpufreq_get_freq(cpu); 180 } 181 182 static unsigned int qcom_cpufreq_hw_fast_switch(struct cpufreq_policy *policy, 183 unsigned int target_freq) 184 { 185 struct qcom_cpufreq_data *data = policy->driver_data; 186 const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data; 187 unsigned int index; 188 unsigned int i; 189 190 index = policy->cached_resolved_idx; 191 writel_relaxed(index, data->base + soc_data->reg_perf_state); 192 193 if (data->per_core_dcvs) 194 for (i = 1; i < cpumask_weight(policy->related_cpus); i++) 195 writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4); 196 197 return policy->freq_table[index].frequency; 198 } 199 200 static int qcom_cpufreq_hw_read_lut(struct device *cpu_dev, 201 struct cpufreq_policy *policy) 202 { 203 u32 data, src, lval, i, core_count, prev_freq = 0, freq; 204 u32 volt; 205 struct cpufreq_frequency_table *table; 206 struct dev_pm_opp *opp; 207 unsigned long rate; 208 int ret; 209 struct qcom_cpufreq_data *drv_data = policy->driver_data; 210 const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data; 211 212 table = kcalloc(LUT_MAX_ENTRIES + 1, sizeof(*table), GFP_KERNEL); 213 if (!table) 214 return -ENOMEM; 215 216 ret = dev_pm_opp_of_add_table(cpu_dev); 217 if (!ret) { 218 /* Disable all opps and cross-validate against LUT later */ 219 icc_scaling_enabled = true; 220 for (rate = 0; ; rate++) { 221 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate); 222 if (IS_ERR(opp)) 223 break; 224 225 dev_pm_opp_put(opp); 226 dev_pm_opp_disable(cpu_dev, rate); 227 } 228 } else if (ret != -ENODEV) { 229 dev_err(cpu_dev, "Invalid opp table in device tree\n"); 230 kfree(table); 231 return ret; 232 } else { 233 policy->fast_switch_possible = true; 234 icc_scaling_enabled = false; 235 } 236 237 for (i = 0; i < LUT_MAX_ENTRIES; i++) { 238 data = readl_relaxed(drv_data->base + soc_data->reg_freq_lut + 239 i * soc_data->lut_row_size); 240 src = FIELD_GET(LUT_SRC, data); 241 lval = FIELD_GET(LUT_L_VAL, data); 242 core_count = FIELD_GET(LUT_CORE_COUNT, data); 243 244 data = readl_relaxed(drv_data->base + soc_data->reg_volt_lut + 245 i * soc_data->lut_row_size); 246 volt = FIELD_GET(LUT_VOLT, data) * 1000; 247 248 if (src) 249 freq = xo_rate * lval / 1000; 250 else 251 freq = cpu_hw_rate / 1000; 252 253 if (freq != prev_freq && core_count != LUT_TURBO_IND) { 254 if (!qcom_cpufreq_update_opp(cpu_dev, freq, volt)) { 255 table[i].frequency = freq; 256 dev_dbg(cpu_dev, "index=%d freq=%d, core_count %d\n", i, 257 freq, core_count); 258 } else { 259 dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", freq); 260 table[i].frequency = CPUFREQ_ENTRY_INVALID; 261 } 262 263 } else if (core_count == LUT_TURBO_IND) { 264 table[i].frequency = CPUFREQ_ENTRY_INVALID; 265 } 266 267 /* 268 * Two of the same frequencies with the same core counts means 269 * end of table 270 */ 271 if (i > 0 && prev_freq == freq) { 272 struct cpufreq_frequency_table *prev = &table[i - 1]; 273 274 /* 275 * Only treat the last frequency that might be a boost 276 * as the boost frequency 277 */ 278 if (prev->frequency == CPUFREQ_ENTRY_INVALID) { 279 if (!qcom_cpufreq_update_opp(cpu_dev, prev_freq, volt)) { 280 prev->frequency = prev_freq; 281 prev->flags = CPUFREQ_BOOST_FREQ; 282 } else { 283 dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", 284 freq); 285 } 286 } 287 288 break; 289 } 290 291 prev_freq = freq; 292 } 293 294 table[i].frequency = CPUFREQ_TABLE_END; 295 policy->freq_table = table; 296 dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus); 297 298 return 0; 299 } 300 301 static void qcom_get_related_cpus(int index, struct cpumask *m) 302 { 303 struct device_node *cpu_np; 304 struct of_phandle_args args; 305 int cpu, ret; 306 307 for_each_possible_cpu(cpu) { 308 cpu_np = of_cpu_device_node_get(cpu); 309 if (!cpu_np) 310 continue; 311 312 ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain", 313 "#freq-domain-cells", 0, 314 &args); 315 of_node_put(cpu_np); 316 if (ret < 0) 317 continue; 318 319 if (index == args.args[0]) 320 cpumask_set_cpu(cpu, m); 321 } 322 } 323 324 static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data) 325 { 326 struct cpufreq_policy *policy = data->policy; 327 int cpu = cpumask_first(policy->related_cpus); 328 struct device *dev = get_cpu_device(cpu); 329 unsigned long freq_hz, throttled_freq; 330 struct dev_pm_opp *opp; 331 332 /* 333 * Get the h/w throttled frequency, normalize it using the 334 * registered opp table and use it to calculate thermal pressure. 335 */ 336 freq_hz = qcom_lmh_get_throttle_freq(data); 337 338 opp = dev_pm_opp_find_freq_floor(dev, &freq_hz); 339 if (IS_ERR(opp) && PTR_ERR(opp) == -ERANGE) 340 opp = dev_pm_opp_find_freq_ceil(dev, &freq_hz); 341 342 if (IS_ERR(opp)) { 343 dev_warn(dev, "Can't find the OPP for throttling: %pe!\n", opp); 344 } else { 345 dev_pm_opp_put(opp); 346 } 347 348 throttled_freq = freq_hz / HZ_PER_KHZ; 349 350 /* Update HW pressure (the boost frequencies are accepted) */ 351 arch_update_hw_pressure(policy->related_cpus, throttled_freq); 352 353 /* 354 * In the unlikely case policy is unregistered do not enable 355 * polling or h/w interrupt 356 */ 357 mutex_lock(&data->throttle_lock); 358 if (data->cancel_throttle) 359 goto out; 360 361 /* 362 * If h/w throttled frequency is higher than what cpufreq has requested 363 * for, then stop polling and switch back to interrupt mechanism. 364 */ 365 if (throttled_freq >= qcom_cpufreq_get_freq(cpu)) 366 enable_irq(data->throttle_irq); 367 else 368 mod_delayed_work(system_highpri_wq, &data->throttle_work, 369 msecs_to_jiffies(10)); 370 371 out: 372 mutex_unlock(&data->throttle_lock); 373 } 374 375 static void qcom_lmh_dcvs_poll(struct work_struct *work) 376 { 377 struct qcom_cpufreq_data *data; 378 379 data = container_of(work, struct qcom_cpufreq_data, throttle_work.work); 380 qcom_lmh_dcvs_notify(data); 381 } 382 383 static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data) 384 { 385 struct qcom_cpufreq_data *c_data = data; 386 387 /* Disable interrupt and enable polling */ 388 disable_irq_nosync(c_data->throttle_irq); 389 schedule_delayed_work(&c_data->throttle_work, 0); 390 391 if (qcom_cpufreq.soc_data->reg_intr_clr) 392 writel_relaxed(GT_IRQ_STATUS, 393 c_data->base + qcom_cpufreq.soc_data->reg_intr_clr); 394 395 return IRQ_HANDLED; 396 } 397 398 static const struct qcom_cpufreq_soc_data qcom_soc_data = { 399 .reg_enable = 0x0, 400 .reg_dcvs_ctrl = 0xbc, 401 .reg_freq_lut = 0x110, 402 .reg_volt_lut = 0x114, 403 .reg_current_vote = 0x704, 404 .reg_perf_state = 0x920, 405 .lut_row_size = 32, 406 }; 407 408 static const struct qcom_cpufreq_soc_data epss_soc_data = { 409 .reg_enable = 0x0, 410 .reg_domain_state = 0x20, 411 .reg_dcvs_ctrl = 0xb0, 412 .reg_freq_lut = 0x100, 413 .reg_volt_lut = 0x200, 414 .reg_intr_clr = 0x308, 415 .reg_perf_state = 0x320, 416 .lut_row_size = 4, 417 }; 418 419 static const struct of_device_id qcom_cpufreq_hw_match[] = { 420 { .compatible = "qcom,cpufreq-hw", .data = &qcom_soc_data }, 421 { .compatible = "qcom,cpufreq-epss", .data = &epss_soc_data }, 422 {} 423 }; 424 MODULE_DEVICE_TABLE(of, qcom_cpufreq_hw_match); 425 426 static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index) 427 { 428 struct qcom_cpufreq_data *data = policy->driver_data; 429 struct platform_device *pdev = cpufreq_get_driver_data(); 430 int ret; 431 432 /* 433 * Look for LMh interrupt. If no interrupt line is specified / 434 * if there is an error, allow cpufreq to be enabled as usual. 435 */ 436 data->throttle_irq = platform_get_irq_optional(pdev, index); 437 if (data->throttle_irq == -ENXIO) 438 return 0; 439 if (data->throttle_irq < 0) 440 return data->throttle_irq; 441 442 data->cancel_throttle = false; 443 data->policy = policy; 444 445 mutex_init(&data->throttle_lock); 446 INIT_DEFERRABLE_WORK(&data->throttle_work, qcom_lmh_dcvs_poll); 447 448 snprintf(data->irq_name, sizeof(data->irq_name), "dcvsh-irq-%u", policy->cpu); 449 ret = request_threaded_irq(data->throttle_irq, NULL, qcom_lmh_dcvs_handle_irq, 450 IRQF_ONESHOT | IRQF_NO_AUTOEN, data->irq_name, data); 451 if (ret) { 452 dev_err(&pdev->dev, "Error registering %s: %d\n", data->irq_name, ret); 453 return 0; 454 } 455 456 ret = irq_set_affinity_and_hint(data->throttle_irq, policy->cpus); 457 if (ret) 458 dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n", 459 data->irq_name, data->throttle_irq); 460 461 return 0; 462 } 463 464 static int qcom_cpufreq_hw_cpu_online(struct cpufreq_policy *policy) 465 { 466 struct qcom_cpufreq_data *data = policy->driver_data; 467 struct platform_device *pdev = cpufreq_get_driver_data(); 468 int ret; 469 470 if (data->throttle_irq <= 0) 471 return 0; 472 473 mutex_lock(&data->throttle_lock); 474 data->cancel_throttle = false; 475 mutex_unlock(&data->throttle_lock); 476 477 ret = irq_set_affinity_and_hint(data->throttle_irq, policy->cpus); 478 if (ret) 479 dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n", 480 data->irq_name, data->throttle_irq); 481 482 return ret; 483 } 484 485 static int qcom_cpufreq_hw_cpu_offline(struct cpufreq_policy *policy) 486 { 487 struct qcom_cpufreq_data *data = policy->driver_data; 488 489 if (data->throttle_irq <= 0) 490 return 0; 491 492 mutex_lock(&data->throttle_lock); 493 data->cancel_throttle = true; 494 mutex_unlock(&data->throttle_lock); 495 496 cancel_delayed_work_sync(&data->throttle_work); 497 irq_set_affinity_and_hint(data->throttle_irq, NULL); 498 disable_irq_nosync(data->throttle_irq); 499 500 return 0; 501 } 502 503 static void qcom_cpufreq_hw_lmh_exit(struct qcom_cpufreq_data *data) 504 { 505 if (data->throttle_irq <= 0) 506 return; 507 508 free_irq(data->throttle_irq, data); 509 } 510 511 static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy) 512 { 513 struct platform_device *pdev = cpufreq_get_driver_data(); 514 struct device *dev = &pdev->dev; 515 struct of_phandle_args args; 516 struct device_node *cpu_np; 517 struct device *cpu_dev; 518 struct qcom_cpufreq_data *data; 519 int ret, index; 520 521 cpu_dev = get_cpu_device(policy->cpu); 522 if (!cpu_dev) { 523 pr_err("%s: failed to get cpu%d device\n", __func__, 524 policy->cpu); 525 return -ENODEV; 526 } 527 528 cpu_np = of_cpu_device_node_get(policy->cpu); 529 if (!cpu_np) 530 return -EINVAL; 531 532 ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain", 533 "#freq-domain-cells", 0, &args); 534 of_node_put(cpu_np); 535 if (ret) 536 return ret; 537 538 index = args.args[0]; 539 data = &qcom_cpufreq.data[index]; 540 541 /* HW should be in enabled state to proceed */ 542 if (!(readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_enable) & 0x1)) { 543 dev_err(dev, "Domain-%d cpufreq hardware not enabled\n", index); 544 return -ENODEV; 545 } 546 547 if (readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_dcvs_ctrl) & 0x1) 548 data->per_core_dcvs = true; 549 550 qcom_get_related_cpus(index, policy->cpus); 551 552 policy->driver_data = data; 553 policy->dvfs_possible_from_any_cpu = true; 554 555 ret = qcom_cpufreq_hw_read_lut(cpu_dev, policy); 556 if (ret) { 557 dev_err(dev, "Domain-%d failed to read LUT\n", index); 558 return ret; 559 } 560 561 ret = dev_pm_opp_get_opp_count(cpu_dev); 562 if (ret <= 0) { 563 dev_err(cpu_dev, "Failed to add OPPs\n"); 564 return -ENODEV; 565 } 566 567 if (policy_has_boost_freq(policy)) { 568 ret = cpufreq_enable_boost_support(); 569 if (ret) 570 dev_warn(cpu_dev, "failed to enable boost: %d\n", ret); 571 } 572 573 return qcom_cpufreq_hw_lmh_init(policy, index); 574 } 575 576 static int qcom_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy) 577 { 578 struct device *cpu_dev = get_cpu_device(policy->cpu); 579 struct qcom_cpufreq_data *data = policy->driver_data; 580 581 dev_pm_opp_remove_all_dynamic(cpu_dev); 582 dev_pm_opp_of_cpumask_remove_table(policy->related_cpus); 583 qcom_cpufreq_hw_lmh_exit(data); 584 kfree(policy->freq_table); 585 kfree(data); 586 587 return 0; 588 } 589 590 static void qcom_cpufreq_ready(struct cpufreq_policy *policy) 591 { 592 struct qcom_cpufreq_data *data = policy->driver_data; 593 594 if (data->throttle_irq >= 0) 595 enable_irq(data->throttle_irq); 596 } 597 598 static struct freq_attr *qcom_cpufreq_hw_attr[] = { 599 &cpufreq_freq_attr_scaling_available_freqs, 600 &cpufreq_freq_attr_scaling_boost_freqs, 601 NULL 602 }; 603 604 static struct cpufreq_driver cpufreq_qcom_hw_driver = { 605 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK | 606 CPUFREQ_HAVE_GOVERNOR_PER_POLICY | 607 CPUFREQ_IS_COOLING_DEV, 608 .verify = cpufreq_generic_frequency_table_verify, 609 .target_index = qcom_cpufreq_hw_target_index, 610 .get = qcom_cpufreq_hw_get, 611 .init = qcom_cpufreq_hw_cpu_init, 612 .exit = qcom_cpufreq_hw_cpu_exit, 613 .online = qcom_cpufreq_hw_cpu_online, 614 .offline = qcom_cpufreq_hw_cpu_offline, 615 .register_em = cpufreq_register_em_with_opp, 616 .fast_switch = qcom_cpufreq_hw_fast_switch, 617 .name = "qcom-cpufreq-hw", 618 .attr = qcom_cpufreq_hw_attr, 619 .ready = qcom_cpufreq_ready, 620 }; 621 622 static unsigned long qcom_cpufreq_hw_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) 623 { 624 struct qcom_cpufreq_data *data = container_of(hw, struct qcom_cpufreq_data, cpu_clk); 625 626 return qcom_lmh_get_throttle_freq(data); 627 } 628 629 static const struct clk_ops qcom_cpufreq_hw_clk_ops = { 630 .recalc_rate = qcom_cpufreq_hw_recalc_rate, 631 }; 632 633 static int qcom_cpufreq_hw_driver_probe(struct platform_device *pdev) 634 { 635 struct clk_hw_onecell_data *clk_data; 636 struct device *dev = &pdev->dev; 637 struct device *cpu_dev; 638 struct clk *clk; 639 int ret, i, num_domains; 640 641 clk = clk_get(dev, "xo"); 642 if (IS_ERR(clk)) 643 return PTR_ERR(clk); 644 645 xo_rate = clk_get_rate(clk); 646 clk_put(clk); 647 648 clk = clk_get(dev, "alternate"); 649 if (IS_ERR(clk)) 650 return PTR_ERR(clk); 651 652 cpu_hw_rate = clk_get_rate(clk) / CLK_HW_DIV; 653 clk_put(clk); 654 655 cpufreq_qcom_hw_driver.driver_data = pdev; 656 657 /* Check for optional interconnect paths on CPU0 */ 658 cpu_dev = get_cpu_device(0); 659 if (!cpu_dev) 660 return -EPROBE_DEFER; 661 662 ret = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL); 663 if (ret) 664 return dev_err_probe(dev, ret, "Failed to find icc paths\n"); 665 666 for (num_domains = 0; num_domains < MAX_FREQ_DOMAINS; num_domains++) 667 if (!platform_get_resource(pdev, IORESOURCE_MEM, num_domains)) 668 break; 669 670 qcom_cpufreq.data = devm_kzalloc(dev, sizeof(struct qcom_cpufreq_data) * num_domains, 671 GFP_KERNEL); 672 if (!qcom_cpufreq.data) 673 return -ENOMEM; 674 675 qcom_cpufreq.soc_data = of_device_get_match_data(dev); 676 if (!qcom_cpufreq.soc_data) 677 return -ENODEV; 678 679 clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, num_domains), GFP_KERNEL); 680 if (!clk_data) 681 return -ENOMEM; 682 683 clk_data->num = num_domains; 684 685 for (i = 0; i < num_domains; i++) { 686 struct qcom_cpufreq_data *data = &qcom_cpufreq.data[i]; 687 struct clk_init_data clk_init = {}; 688 void __iomem *base; 689 690 base = devm_platform_ioremap_resource(pdev, i); 691 if (IS_ERR(base)) { 692 dev_err(dev, "Failed to map resource index %d\n", i); 693 return PTR_ERR(base); 694 } 695 696 data->base = base; 697 698 /* Register CPU clock for each frequency domain */ 699 clk_init.name = kasprintf(GFP_KERNEL, "qcom_cpufreq%d", i); 700 if (!clk_init.name) 701 return -ENOMEM; 702 703 clk_init.flags = CLK_GET_RATE_NOCACHE; 704 clk_init.ops = &qcom_cpufreq_hw_clk_ops; 705 data->cpu_clk.init = &clk_init; 706 707 ret = devm_clk_hw_register(dev, &data->cpu_clk); 708 if (ret < 0) { 709 dev_err(dev, "Failed to register clock %d: %d\n", i, ret); 710 kfree(clk_init.name); 711 return ret; 712 } 713 714 clk_data->hws[i] = &data->cpu_clk; 715 kfree(clk_init.name); 716 } 717 718 ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data); 719 if (ret < 0) { 720 dev_err(dev, "Failed to add clock provider\n"); 721 return ret; 722 } 723 724 ret = cpufreq_register_driver(&cpufreq_qcom_hw_driver); 725 if (ret) 726 dev_err(dev, "CPUFreq HW driver failed to register\n"); 727 else 728 dev_dbg(dev, "QCOM CPUFreq HW driver initialized\n"); 729 730 return ret; 731 } 732 733 static void qcom_cpufreq_hw_driver_remove(struct platform_device *pdev) 734 { 735 cpufreq_unregister_driver(&cpufreq_qcom_hw_driver); 736 } 737 738 static struct platform_driver qcom_cpufreq_hw_driver = { 739 .probe = qcom_cpufreq_hw_driver_probe, 740 .remove_new = qcom_cpufreq_hw_driver_remove, 741 .driver = { 742 .name = "qcom-cpufreq-hw", 743 .of_match_table = qcom_cpufreq_hw_match, 744 }, 745 }; 746 747 static int __init qcom_cpufreq_hw_init(void) 748 { 749 return platform_driver_register(&qcom_cpufreq_hw_driver); 750 } 751 postcore_initcall(qcom_cpufreq_hw_init); 752 753 static void __exit qcom_cpufreq_hw_exit(void) 754 { 755 platform_driver_unregister(&qcom_cpufreq_hw_driver); 756 } 757 module_exit(qcom_cpufreq_hw_exit); 758 759 MODULE_DESCRIPTION("QCOM CPUFREQ HW Driver"); 760 MODULE_LICENSE("GPL v2"); 761