xref: /linux/drivers/cpufreq/qcom-cpufreq-hw.c (revision 51a8f9d7f587290944d6fc733d1f897091c63159)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/bitfield.h>
7 #include <linux/clk-provider.h>
8 #include <linux/cpufreq.h>
9 #include <linux/init.h>
10 #include <linux/interconnect.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/pm_opp.h>
17 #include <linux/pm_qos.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/units.h>
21 
22 #define LUT_MAX_ENTRIES			40U
23 #define LUT_SRC				GENMASK(31, 30)
24 #define LUT_L_VAL			GENMASK(7, 0)
25 #define LUT_CORE_COUNT			GENMASK(18, 16)
26 #define LUT_VOLT			GENMASK(11, 0)
27 #define CLK_HW_DIV			2
28 #define LUT_TURBO_IND			1
29 
30 #define GT_IRQ_STATUS			BIT(2)
31 
32 struct qcom_cpufreq_soc_data {
33 	u32 reg_enable;
34 	u32 reg_domain_state;
35 	u32 reg_dcvs_ctrl;
36 	u32 reg_freq_lut;
37 	u32 reg_volt_lut;
38 	u32 reg_intr_clr;
39 	u32 reg_current_vote;
40 	u32 reg_perf_state;
41 	u8 lut_row_size;
42 };
43 
44 struct qcom_cpufreq_data {
45 	void __iomem *base;
46 	struct resource *res;
47 
48 	/*
49 	 * Mutex to synchronize between de-init sequence and re-starting LMh
50 	 * polling/interrupts
51 	 */
52 	struct mutex throttle_lock;
53 	int throttle_irq;
54 	char irq_name[15];
55 	bool cancel_throttle;
56 	struct delayed_work throttle_work;
57 	struct cpufreq_policy *policy;
58 	struct clk_hw cpu_clk;
59 
60 	bool per_core_dcvs;
61 
62 	struct freq_qos_request throttle_freq_req;
63 };
64 
65 static struct {
66 	struct qcom_cpufreq_data *data;
67 	const struct qcom_cpufreq_soc_data *soc_data;
68 } qcom_cpufreq;
69 
70 static unsigned long cpu_hw_rate, xo_rate;
71 static bool icc_scaling_enabled;
72 
73 static int qcom_cpufreq_set_bw(struct cpufreq_policy *policy,
74 			       unsigned long freq_khz)
75 {
76 	unsigned long freq_hz = freq_khz * 1000;
77 	struct dev_pm_opp *opp;
78 	struct device *dev;
79 	int ret;
80 
81 	dev = get_cpu_device(policy->cpu);
82 	if (!dev)
83 		return -ENODEV;
84 
85 	opp = dev_pm_opp_find_freq_exact(dev, freq_hz, true);
86 	if (IS_ERR(opp))
87 		return PTR_ERR(opp);
88 
89 	ret = dev_pm_opp_set_opp(dev, opp);
90 	dev_pm_opp_put(opp);
91 	return ret;
92 }
93 
94 static int qcom_cpufreq_update_opp(struct device *cpu_dev,
95 				   unsigned long freq_khz,
96 				   unsigned long volt)
97 {
98 	unsigned long freq_hz = freq_khz * 1000;
99 	int ret;
100 
101 	/* Skip voltage update if the opp table is not available */
102 	if (!icc_scaling_enabled)
103 		return dev_pm_opp_add(cpu_dev, freq_hz, volt);
104 
105 	ret = dev_pm_opp_adjust_voltage(cpu_dev, freq_hz, volt, volt, volt);
106 	if (ret) {
107 		dev_err(cpu_dev, "Voltage update failed freq=%ld\n", freq_khz);
108 		return ret;
109 	}
110 
111 	return dev_pm_opp_enable(cpu_dev, freq_hz);
112 }
113 
114 static int qcom_cpufreq_hw_target_index(struct cpufreq_policy *policy,
115 					unsigned int index)
116 {
117 	struct qcom_cpufreq_data *data = policy->driver_data;
118 	const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data;
119 	unsigned long freq = policy->freq_table[index].frequency;
120 	unsigned int i;
121 
122 	writel_relaxed(index, data->base + soc_data->reg_perf_state);
123 
124 	if (data->per_core_dcvs)
125 		for (i = 1; i < cpumask_weight(policy->related_cpus); i++)
126 			writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4);
127 
128 	if (icc_scaling_enabled)
129 		qcom_cpufreq_set_bw(policy, freq);
130 
131 	return 0;
132 }
133 
134 static unsigned long qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data)
135 {
136 	unsigned int lval;
137 
138 	if (qcom_cpufreq.soc_data->reg_current_vote)
139 		lval = readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_current_vote) & 0x3ff;
140 	else
141 		lval = readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_domain_state) & 0xff;
142 
143 	return lval * xo_rate;
144 }
145 
146 /* Get the frequency requested by the cpufreq core for the CPU */
147 static unsigned int qcom_cpufreq_get_freq(unsigned int cpu)
148 {
149 	struct qcom_cpufreq_data *data;
150 	const struct qcom_cpufreq_soc_data *soc_data;
151 	struct cpufreq_policy *policy;
152 	unsigned int index;
153 
154 	policy = cpufreq_cpu_get_raw(cpu);
155 	if (!policy)
156 		return 0;
157 
158 	data = policy->driver_data;
159 	soc_data = qcom_cpufreq.soc_data;
160 
161 	index = readl_relaxed(data->base + soc_data->reg_perf_state);
162 	index = min(index, LUT_MAX_ENTRIES - 1);
163 
164 	return policy->freq_table[index].frequency;
165 }
166 
167 static unsigned int qcom_cpufreq_hw_get(unsigned int cpu)
168 {
169 	struct qcom_cpufreq_data *data;
170 	struct cpufreq_policy *policy;
171 
172 	policy = cpufreq_cpu_get_raw(cpu);
173 	if (!policy)
174 		return 0;
175 
176 	data = policy->driver_data;
177 
178 	if (data->throttle_irq >= 0)
179 		return qcom_lmh_get_throttle_freq(data) / HZ_PER_KHZ;
180 
181 	return qcom_cpufreq_get_freq(cpu);
182 }
183 
184 static unsigned int qcom_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
185 						unsigned int target_freq)
186 {
187 	struct qcom_cpufreq_data *data = policy->driver_data;
188 	const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data;
189 	unsigned int index;
190 	unsigned int i;
191 
192 	index = policy->cached_resolved_idx;
193 	writel_relaxed(index, data->base + soc_data->reg_perf_state);
194 
195 	if (data->per_core_dcvs)
196 		for (i = 1; i < cpumask_weight(policy->related_cpus); i++)
197 			writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4);
198 
199 	return policy->freq_table[index].frequency;
200 }
201 
202 static int qcom_cpufreq_hw_read_lut(struct device *cpu_dev,
203 				    struct cpufreq_policy *policy)
204 {
205 	u32 data, src, lval, i, core_count, prev_freq = 0, freq;
206 	u32 volt;
207 	struct cpufreq_frequency_table	*table;
208 	struct dev_pm_opp *opp;
209 	unsigned long rate;
210 	int ret;
211 	struct qcom_cpufreq_data *drv_data = policy->driver_data;
212 	const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data;
213 
214 	table = kcalloc(LUT_MAX_ENTRIES + 1, sizeof(*table), GFP_KERNEL);
215 	if (!table)
216 		return -ENOMEM;
217 
218 	ret = dev_pm_opp_of_add_table(cpu_dev);
219 	if (!ret) {
220 		/* Disable all opps and cross-validate against LUT later */
221 		icc_scaling_enabled = true;
222 		for (rate = 0; ; rate++) {
223 			opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
224 			if (IS_ERR(opp))
225 				break;
226 
227 			dev_pm_opp_put(opp);
228 			dev_pm_opp_disable(cpu_dev, rate);
229 		}
230 	} else if (ret != -ENODEV) {
231 		dev_err(cpu_dev, "Invalid opp table in device tree\n");
232 		kfree(table);
233 		return ret;
234 	} else {
235 		policy->fast_switch_possible = true;
236 		icc_scaling_enabled = false;
237 	}
238 
239 	for (i = 0; i < LUT_MAX_ENTRIES; i++) {
240 		data = readl_relaxed(drv_data->base + soc_data->reg_freq_lut +
241 				      i * soc_data->lut_row_size);
242 		src = FIELD_GET(LUT_SRC, data);
243 		lval = FIELD_GET(LUT_L_VAL, data);
244 		core_count = FIELD_GET(LUT_CORE_COUNT, data);
245 
246 		data = readl_relaxed(drv_data->base + soc_data->reg_volt_lut +
247 				      i * soc_data->lut_row_size);
248 		volt = FIELD_GET(LUT_VOLT, data) * 1000;
249 
250 		if (src)
251 			freq = xo_rate * lval / 1000;
252 		else
253 			freq = cpu_hw_rate / 1000;
254 
255 		if (freq != prev_freq && core_count != LUT_TURBO_IND) {
256 			if (!qcom_cpufreq_update_opp(cpu_dev, freq, volt)) {
257 				table[i].frequency = freq;
258 				dev_dbg(cpu_dev, "index=%d freq=%d, core_count %d\n", i,
259 				freq, core_count);
260 			} else {
261 				dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", freq);
262 				table[i].frequency = CPUFREQ_ENTRY_INVALID;
263 			}
264 
265 		} else if (core_count == LUT_TURBO_IND) {
266 			table[i].frequency = CPUFREQ_ENTRY_INVALID;
267 		}
268 
269 		/*
270 		 * Two of the same frequencies with the same core counts means
271 		 * end of table
272 		 */
273 		if (i > 0 && prev_freq == freq) {
274 			struct cpufreq_frequency_table *prev = &table[i - 1];
275 
276 			/*
277 			 * Only treat the last frequency that might be a boost
278 			 * as the boost frequency
279 			 */
280 			if (prev->frequency == CPUFREQ_ENTRY_INVALID) {
281 				if (!qcom_cpufreq_update_opp(cpu_dev, prev_freq, volt)) {
282 					prev->frequency = prev_freq;
283 					prev->flags = CPUFREQ_BOOST_FREQ;
284 				} else {
285 					dev_warn(cpu_dev, "failed to update OPP for freq=%d\n",
286 						 freq);
287 				}
288 			}
289 
290 			break;
291 		}
292 
293 		prev_freq = freq;
294 	}
295 
296 	table[i].frequency = CPUFREQ_TABLE_END;
297 	policy->freq_table = table;
298 	dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
299 
300 	return 0;
301 }
302 
303 static void qcom_get_related_cpus(int index, struct cpumask *m)
304 {
305 	struct device_node *cpu_np;
306 	struct of_phandle_args args;
307 	int cpu, ret;
308 
309 	for_each_possible_cpu(cpu) {
310 		cpu_np = of_cpu_device_node_get(cpu);
311 		if (!cpu_np)
312 			continue;
313 
314 		ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
315 						 "#freq-domain-cells", 0,
316 						 &args);
317 		of_node_put(cpu_np);
318 		if (ret < 0)
319 			continue;
320 
321 		if (index == args.args[0])
322 			cpumask_set_cpu(cpu, m);
323 	}
324 }
325 
326 static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data)
327 {
328 	struct cpufreq_policy *policy = data->policy;
329 	int cpu = cpumask_first(policy->related_cpus);
330 	struct device *dev = get_cpu_device(cpu);
331 	unsigned long freq_hz, throttled_freq;
332 	struct dev_pm_opp *opp;
333 
334 	/*
335 	 * Get the h/w throttled frequency, normalize it using the
336 	 * registered opp table and use it to calculate thermal pressure.
337 	 */
338 	freq_hz = qcom_lmh_get_throttle_freq(data);
339 
340 	opp = dev_pm_opp_find_freq_floor(dev, &freq_hz);
341 	if (IS_ERR(opp) && PTR_ERR(opp) == -ERANGE)
342 		opp = dev_pm_opp_find_freq_ceil(dev, &freq_hz);
343 
344 	if (IS_ERR(opp)) {
345 		dev_warn(dev, "Can't find the OPP for throttling: %pe!\n", opp);
346 	} else {
347 		dev_pm_opp_put(opp);
348 	}
349 
350 	throttled_freq = freq_hz / HZ_PER_KHZ;
351 
352 	freq_qos_update_request(&data->throttle_freq_req, throttled_freq);
353 
354 	/* Update thermal pressure (the boost frequencies are accepted) */
355 	arch_update_thermal_pressure(policy->related_cpus, throttled_freq);
356 
357 	/*
358 	 * In the unlikely case policy is unregistered do not enable
359 	 * polling or h/w interrupt
360 	 */
361 	mutex_lock(&data->throttle_lock);
362 	if (data->cancel_throttle)
363 		goto out;
364 
365 	/*
366 	 * If h/w throttled frequency is higher than what cpufreq has requested
367 	 * for, then stop polling and switch back to interrupt mechanism.
368 	 */
369 	if (throttled_freq >= qcom_cpufreq_get_freq(cpu))
370 		enable_irq(data->throttle_irq);
371 	else
372 		mod_delayed_work(system_highpri_wq, &data->throttle_work,
373 				 msecs_to_jiffies(10));
374 
375 out:
376 	mutex_unlock(&data->throttle_lock);
377 }
378 
379 static void qcom_lmh_dcvs_poll(struct work_struct *work)
380 {
381 	struct qcom_cpufreq_data *data;
382 
383 	data = container_of(work, struct qcom_cpufreq_data, throttle_work.work);
384 	qcom_lmh_dcvs_notify(data);
385 }
386 
387 static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data)
388 {
389 	struct qcom_cpufreq_data *c_data = data;
390 
391 	/* Disable interrupt and enable polling */
392 	disable_irq_nosync(c_data->throttle_irq);
393 	schedule_delayed_work(&c_data->throttle_work, 0);
394 
395 	if (qcom_cpufreq.soc_data->reg_intr_clr)
396 		writel_relaxed(GT_IRQ_STATUS,
397 			       c_data->base + qcom_cpufreq.soc_data->reg_intr_clr);
398 
399 	return IRQ_HANDLED;
400 }
401 
402 static const struct qcom_cpufreq_soc_data qcom_soc_data = {
403 	.reg_enable = 0x0,
404 	.reg_dcvs_ctrl = 0xbc,
405 	.reg_freq_lut = 0x110,
406 	.reg_volt_lut = 0x114,
407 	.reg_current_vote = 0x704,
408 	.reg_perf_state = 0x920,
409 	.lut_row_size = 32,
410 };
411 
412 static const struct qcom_cpufreq_soc_data epss_soc_data = {
413 	.reg_enable = 0x0,
414 	.reg_domain_state = 0x20,
415 	.reg_dcvs_ctrl = 0xb0,
416 	.reg_freq_lut = 0x100,
417 	.reg_volt_lut = 0x200,
418 	.reg_intr_clr = 0x308,
419 	.reg_perf_state = 0x320,
420 	.lut_row_size = 4,
421 };
422 
423 static const struct of_device_id qcom_cpufreq_hw_match[] = {
424 	{ .compatible = "qcom,cpufreq-hw", .data = &qcom_soc_data },
425 	{ .compatible = "qcom,cpufreq-epss", .data = &epss_soc_data },
426 	{}
427 };
428 MODULE_DEVICE_TABLE(of, qcom_cpufreq_hw_match);
429 
430 static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index)
431 {
432 	struct qcom_cpufreq_data *data = policy->driver_data;
433 	struct platform_device *pdev = cpufreq_get_driver_data();
434 	int ret;
435 
436 	/*
437 	 * Look for LMh interrupt. If no interrupt line is specified /
438 	 * if there is an error, allow cpufreq to be enabled as usual.
439 	 */
440 	data->throttle_irq = platform_get_irq_optional(pdev, index);
441 	if (data->throttle_irq == -ENXIO)
442 		return 0;
443 	if (data->throttle_irq < 0)
444 		return data->throttle_irq;
445 
446 	ret = freq_qos_add_request(&policy->constraints,
447 				   &data->throttle_freq_req, FREQ_QOS_MAX,
448 				   FREQ_QOS_MAX_DEFAULT_VALUE);
449 	if (ret < 0) {
450 		dev_err(&pdev->dev, "Failed to add freq constraint (%d)\n", ret);
451 		return ret;
452 	}
453 
454 	data->cancel_throttle = false;
455 	data->policy = policy;
456 
457 	mutex_init(&data->throttle_lock);
458 	INIT_DEFERRABLE_WORK(&data->throttle_work, qcom_lmh_dcvs_poll);
459 
460 	snprintf(data->irq_name, sizeof(data->irq_name), "dcvsh-irq-%u", policy->cpu);
461 	ret = request_threaded_irq(data->throttle_irq, NULL, qcom_lmh_dcvs_handle_irq,
462 				   IRQF_ONESHOT | IRQF_NO_AUTOEN, data->irq_name, data);
463 	if (ret) {
464 		dev_err(&pdev->dev, "Error registering %s: %d\n", data->irq_name, ret);
465 		return 0;
466 	}
467 
468 	ret = irq_set_affinity_and_hint(data->throttle_irq, policy->cpus);
469 	if (ret)
470 		dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n",
471 			data->irq_name, data->throttle_irq);
472 
473 	return 0;
474 }
475 
476 static int qcom_cpufreq_hw_cpu_online(struct cpufreq_policy *policy)
477 {
478 	struct qcom_cpufreq_data *data = policy->driver_data;
479 	struct platform_device *pdev = cpufreq_get_driver_data();
480 	int ret;
481 
482 	if (data->throttle_irq <= 0)
483 		return 0;
484 
485 	mutex_lock(&data->throttle_lock);
486 	data->cancel_throttle = false;
487 	mutex_unlock(&data->throttle_lock);
488 
489 	ret = irq_set_affinity_and_hint(data->throttle_irq, policy->cpus);
490 	if (ret)
491 		dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n",
492 			data->irq_name, data->throttle_irq);
493 
494 	return ret;
495 }
496 
497 static int qcom_cpufreq_hw_cpu_offline(struct cpufreq_policy *policy)
498 {
499 	struct qcom_cpufreq_data *data = policy->driver_data;
500 
501 	if (data->throttle_irq <= 0)
502 		return 0;
503 
504 	mutex_lock(&data->throttle_lock);
505 	data->cancel_throttle = true;
506 	mutex_unlock(&data->throttle_lock);
507 
508 	cancel_delayed_work_sync(&data->throttle_work);
509 	irq_set_affinity_and_hint(data->throttle_irq, NULL);
510 	disable_irq_nosync(data->throttle_irq);
511 
512 	return 0;
513 }
514 
515 static void qcom_cpufreq_hw_lmh_exit(struct qcom_cpufreq_data *data)
516 {
517 	if (data->throttle_irq <= 0)
518 		return;
519 
520 	freq_qos_remove_request(&data->throttle_freq_req);
521 	free_irq(data->throttle_irq, data);
522 }
523 
524 static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
525 {
526 	struct platform_device *pdev = cpufreq_get_driver_data();
527 	struct device *dev = &pdev->dev;
528 	struct of_phandle_args args;
529 	struct device_node *cpu_np;
530 	struct device *cpu_dev;
531 	struct qcom_cpufreq_data *data;
532 	int ret, index;
533 
534 	cpu_dev = get_cpu_device(policy->cpu);
535 	if (!cpu_dev) {
536 		pr_err("%s: failed to get cpu%d device\n", __func__,
537 		       policy->cpu);
538 		return -ENODEV;
539 	}
540 
541 	cpu_np = of_cpu_device_node_get(policy->cpu);
542 	if (!cpu_np)
543 		return -EINVAL;
544 
545 	ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
546 					 "#freq-domain-cells", 0, &args);
547 	of_node_put(cpu_np);
548 	if (ret)
549 		return ret;
550 
551 	index = args.args[0];
552 	data = &qcom_cpufreq.data[index];
553 
554 	/* HW should be in enabled state to proceed */
555 	if (!(readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_enable) & 0x1)) {
556 		dev_err(dev, "Domain-%d cpufreq hardware not enabled\n", index);
557 		return -ENODEV;
558 	}
559 
560 	if (readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_dcvs_ctrl) & 0x1)
561 		data->per_core_dcvs = true;
562 
563 	qcom_get_related_cpus(index, policy->cpus);
564 
565 	policy->driver_data = data;
566 	policy->dvfs_possible_from_any_cpu = true;
567 
568 	ret = qcom_cpufreq_hw_read_lut(cpu_dev, policy);
569 	if (ret) {
570 		dev_err(dev, "Domain-%d failed to read LUT\n", index);
571 		return ret;
572 	}
573 
574 	ret = dev_pm_opp_get_opp_count(cpu_dev);
575 	if (ret <= 0) {
576 		dev_err(cpu_dev, "Failed to add OPPs\n");
577 		return -ENODEV;
578 	}
579 
580 	if (policy_has_boost_freq(policy)) {
581 		ret = cpufreq_enable_boost_support();
582 		if (ret)
583 			dev_warn(cpu_dev, "failed to enable boost: %d\n", ret);
584 	}
585 
586 	return qcom_cpufreq_hw_lmh_init(policy, index);
587 }
588 
589 static int qcom_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
590 {
591 	struct device *cpu_dev = get_cpu_device(policy->cpu);
592 	struct qcom_cpufreq_data *data = policy->driver_data;
593 	struct resource *res = data->res;
594 	void __iomem *base = data->base;
595 
596 	dev_pm_opp_remove_all_dynamic(cpu_dev);
597 	dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
598 	qcom_cpufreq_hw_lmh_exit(data);
599 	kfree(policy->freq_table);
600 	kfree(data);
601 	iounmap(base);
602 	release_mem_region(res->start, resource_size(res));
603 
604 	return 0;
605 }
606 
607 static void qcom_cpufreq_ready(struct cpufreq_policy *policy)
608 {
609 	struct qcom_cpufreq_data *data = policy->driver_data;
610 
611 	if (data->throttle_irq >= 0)
612 		enable_irq(data->throttle_irq);
613 }
614 
615 static struct freq_attr *qcom_cpufreq_hw_attr[] = {
616 	&cpufreq_freq_attr_scaling_available_freqs,
617 	&cpufreq_freq_attr_scaling_boost_freqs,
618 	NULL
619 };
620 
621 static struct cpufreq_driver cpufreq_qcom_hw_driver = {
622 	.flags		= CPUFREQ_NEED_INITIAL_FREQ_CHECK |
623 			  CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
624 			  CPUFREQ_IS_COOLING_DEV,
625 	.verify		= cpufreq_generic_frequency_table_verify,
626 	.target_index	= qcom_cpufreq_hw_target_index,
627 	.get		= qcom_cpufreq_hw_get,
628 	.init		= qcom_cpufreq_hw_cpu_init,
629 	.exit		= qcom_cpufreq_hw_cpu_exit,
630 	.online		= qcom_cpufreq_hw_cpu_online,
631 	.offline	= qcom_cpufreq_hw_cpu_offline,
632 	.register_em	= cpufreq_register_em_with_opp,
633 	.fast_switch    = qcom_cpufreq_hw_fast_switch,
634 	.name		= "qcom-cpufreq-hw",
635 	.attr		= qcom_cpufreq_hw_attr,
636 	.ready		= qcom_cpufreq_ready,
637 };
638 
639 static unsigned long qcom_cpufreq_hw_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
640 {
641 	struct qcom_cpufreq_data *data = container_of(hw, struct qcom_cpufreq_data, cpu_clk);
642 
643 	return qcom_lmh_get_throttle_freq(data);
644 }
645 
646 static const struct clk_ops qcom_cpufreq_hw_clk_ops = {
647 	.recalc_rate = qcom_cpufreq_hw_recalc_rate,
648 };
649 
650 static int qcom_cpufreq_hw_driver_probe(struct platform_device *pdev)
651 {
652 	struct clk_hw_onecell_data *clk_data;
653 	struct device *dev = &pdev->dev;
654 	struct device_node *soc_node;
655 	struct device *cpu_dev;
656 	struct clk *clk;
657 	int ret, i, num_domains, reg_sz;
658 
659 	clk = clk_get(dev, "xo");
660 	if (IS_ERR(clk))
661 		return PTR_ERR(clk);
662 
663 	xo_rate = clk_get_rate(clk);
664 	clk_put(clk);
665 
666 	clk = clk_get(dev, "alternate");
667 	if (IS_ERR(clk))
668 		return PTR_ERR(clk);
669 
670 	cpu_hw_rate = clk_get_rate(clk) / CLK_HW_DIV;
671 	clk_put(clk);
672 
673 	cpufreq_qcom_hw_driver.driver_data = pdev;
674 
675 	/* Check for optional interconnect paths on CPU0 */
676 	cpu_dev = get_cpu_device(0);
677 	if (!cpu_dev)
678 		return -EPROBE_DEFER;
679 
680 	ret = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL);
681 	if (ret)
682 		return ret;
683 
684 	/* Allocate qcom_cpufreq_data based on the available frequency domains in DT */
685 	soc_node = of_get_parent(dev->of_node);
686 	if (!soc_node)
687 		return -EINVAL;
688 
689 	ret = of_property_read_u32(soc_node, "#address-cells", &reg_sz);
690 	if (ret)
691 		goto of_exit;
692 
693 	ret = of_property_read_u32(soc_node, "#size-cells", &i);
694 	if (ret)
695 		goto of_exit;
696 
697 	reg_sz += i;
698 
699 	num_domains = of_property_count_elems_of_size(dev->of_node, "reg", sizeof(u32) * reg_sz);
700 	if (num_domains <= 0)
701 		return num_domains;
702 
703 	qcom_cpufreq.data = devm_kzalloc(dev, sizeof(struct qcom_cpufreq_data) * num_domains,
704 					 GFP_KERNEL);
705 	if (!qcom_cpufreq.data)
706 		return -ENOMEM;
707 
708 	qcom_cpufreq.soc_data = of_device_get_match_data(dev);
709 
710 	clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, num_domains), GFP_KERNEL);
711 	if (!clk_data)
712 		return -ENOMEM;
713 
714 	clk_data->num = num_domains;
715 
716 	for (i = 0; i < num_domains; i++) {
717 		struct qcom_cpufreq_data *data = &qcom_cpufreq.data[i];
718 		struct clk_init_data clk_init = {};
719 		struct resource *res;
720 		void __iomem *base;
721 
722 		base = devm_platform_get_and_ioremap_resource(pdev, i, &res);
723 		if (IS_ERR(base)) {
724 			dev_err(dev, "Failed to map resource %pR\n", res);
725 			return PTR_ERR(base);
726 		}
727 
728 		data->base = base;
729 		data->res = res;
730 
731 		/* Register CPU clock for each frequency domain */
732 		clk_init.name = kasprintf(GFP_KERNEL, "qcom_cpufreq%d", i);
733 		if (!clk_init.name)
734 			return -ENOMEM;
735 
736 		clk_init.flags = CLK_GET_RATE_NOCACHE;
737 		clk_init.ops = &qcom_cpufreq_hw_clk_ops;
738 		data->cpu_clk.init = &clk_init;
739 
740 		ret = devm_clk_hw_register(dev, &data->cpu_clk);
741 		if (ret < 0) {
742 			dev_err(dev, "Failed to register clock %d: %d\n", i, ret);
743 			kfree(clk_init.name);
744 			return ret;
745 		}
746 
747 		clk_data->hws[i] = &data->cpu_clk;
748 		kfree(clk_init.name);
749 	}
750 
751 	ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data);
752 	if (ret < 0) {
753 		dev_err(dev, "Failed to add clock provider\n");
754 		return ret;
755 	}
756 
757 	ret = cpufreq_register_driver(&cpufreq_qcom_hw_driver);
758 	if (ret)
759 		dev_err(dev, "CPUFreq HW driver failed to register\n");
760 	else
761 		dev_dbg(dev, "QCOM CPUFreq HW driver initialized\n");
762 
763 of_exit:
764 	of_node_put(soc_node);
765 
766 	return ret;
767 }
768 
769 static int qcom_cpufreq_hw_driver_remove(struct platform_device *pdev)
770 {
771 	return cpufreq_unregister_driver(&cpufreq_qcom_hw_driver);
772 }
773 
774 static struct platform_driver qcom_cpufreq_hw_driver = {
775 	.probe = qcom_cpufreq_hw_driver_probe,
776 	.remove = qcom_cpufreq_hw_driver_remove,
777 	.driver = {
778 		.name = "qcom-cpufreq-hw",
779 		.of_match_table = qcom_cpufreq_hw_match,
780 	},
781 };
782 
783 static int __init qcom_cpufreq_hw_init(void)
784 {
785 	return platform_driver_register(&qcom_cpufreq_hw_driver);
786 }
787 postcore_initcall(qcom_cpufreq_hw_init);
788 
789 static void __exit qcom_cpufreq_hw_exit(void)
790 {
791 	platform_driver_unregister(&qcom_cpufreq_hw_driver);
792 }
793 module_exit(qcom_cpufreq_hw_exit);
794 
795 MODULE_DESCRIPTION("QCOM CPUFREQ HW Driver");
796 MODULE_LICENSE("GPL v2");
797