xref: /linux/drivers/cpufreq/powernv-cpufreq.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * POWERNV cpufreq driver for the IBM POWER processors
4  *
5  * (C) Copyright IBM 2014
6  *
7  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8  */
9 
10 #define pr_fmt(fmt)	"powernv-cpufreq: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/sysfs.h>
14 #include <linux/cpumask.h>
15 #include <linux/module.h>
16 #include <linux/cpufreq.h>
17 #include <linux/smp.h>
18 #include <linux/of.h>
19 #include <linux/reboot.h>
20 #include <linux/slab.h>
21 #include <linux/string_choices.h>
22 #include <linux/cpu.h>
23 #include <linux/hashtable.h>
24 #include <trace/events/power.h>
25 
26 #include <asm/cputhreads.h>
27 #include <asm/firmware.h>
28 #include <asm/reg.h>
29 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
30 #include <asm/opal.h>
31 #include <linux/timer.h>
32 
33 #define POWERNV_MAX_PSTATES_ORDER  8
34 #define POWERNV_MAX_PSTATES	(1UL << (POWERNV_MAX_PSTATES_ORDER))
35 #define PMSR_PSAFE_ENABLE	(1UL << 30)
36 #define PMSR_SPR_EM_DISABLE	(1UL << 31)
37 #define MAX_PSTATE_SHIFT	32
38 #define LPSTATE_SHIFT		48
39 #define GPSTATE_SHIFT		56
40 #define MAX_NR_CHIPS		32
41 
42 #define MAX_RAMP_DOWN_TIME				5120
43 /*
44  * On an idle system we want the global pstate to ramp-down from max value to
45  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
46  * then ramp-down rapidly later on.
47  *
48  * This gives a percentage rampdown for time elapsed in milliseconds.
49  * ramp_down_percentage = ((ms * ms) >> 18)
50  *			~= 3.8 * (sec * sec)
51  *
52  * At 0 ms	ramp_down_percent = 0
53  * At 5120 ms	ramp_down_percent = 100
54  */
55 #define ramp_down_percent(time)		((time * time) >> 18)
56 
57 /* Interval after which the timer is queued to bring down global pstate */
58 #define GPSTATE_TIMER_INTERVAL				2000
59 
60 /**
61  * struct global_pstate_info -	Per policy data structure to maintain history of
62  *				global pstates
63  * @highest_lpstate_idx:	The local pstate index from which we are
64  *				ramping down
65  * @elapsed_time:		Time in ms spent in ramping down from
66  *				highest_lpstate_idx
67  * @last_sampled_time:		Time from boot in ms when global pstates were
68  *				last set
69  * @last_lpstate_idx:		Last set value of local pstate and global
70  * @last_gpstate_idx:		pstate in terms of cpufreq table index
71  * @timer:			Is used for ramping down if cpu goes idle for
72  *				a long time with global pstate held high
73  * @gpstate_lock:		A spinlock to maintain synchronization between
74  *				routines called by the timer handler and
75  *				governer's target_index calls
76  * @policy:			Associated CPUFreq policy
77  */
78 struct global_pstate_info {
79 	int highest_lpstate_idx;
80 	unsigned int elapsed_time;
81 	unsigned int last_sampled_time;
82 	int last_lpstate_idx;
83 	int last_gpstate_idx;
84 	spinlock_t gpstate_lock;
85 	struct timer_list timer;
86 	struct cpufreq_policy *policy;
87 };
88 
89 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
90 
91 static DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
92 /**
93  * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
94  *				  indexed by a function of pstate id.
95  *
96  * @pstate_id: pstate id for this entry.
97  *
98  * @cpufreq_table_idx: Index into the powernv_freqs
99  *		       cpufreq_frequency_table for frequency
100  *		       corresponding to pstate_id.
101  *
102  * @hentry: hlist_node that hooks this entry into the pstate_revmap
103  *	    hashtable
104  */
105 struct pstate_idx_revmap_data {
106 	u8 pstate_id;
107 	unsigned int cpufreq_table_idx;
108 	struct hlist_node hentry;
109 };
110 
111 static bool rebooting, throttled, occ_reset;
112 
113 static const char * const throttle_reason[] = {
114 	"No throttling",
115 	"Power Cap",
116 	"Processor Over Temperature",
117 	"Power Supply Failure",
118 	"Over Current",
119 	"OCC Reset"
120 };
121 
122 enum throttle_reason_type {
123 	NO_THROTTLE = 0,
124 	POWERCAP,
125 	CPU_OVERTEMP,
126 	POWER_SUPPLY_FAILURE,
127 	OVERCURRENT,
128 	OCC_RESET_THROTTLE,
129 	OCC_MAX_REASON
130 };
131 
132 static struct chip {
133 	unsigned int id;
134 	bool throttled;
135 	bool restore;
136 	u8 throttle_reason;
137 	cpumask_t mask;
138 	struct work_struct throttle;
139 	int throttle_turbo;
140 	int throttle_sub_turbo;
141 	int reason[OCC_MAX_REASON];
142 } *chips;
143 
144 static int nr_chips;
145 static DEFINE_PER_CPU(struct chip *, chip_info);
146 
147 /*
148  * Note:
149  * The set of pstates consists of contiguous integers.
150  * powernv_pstate_info stores the index of the frequency table for
151  * max, min and nominal frequencies. It also stores number of
152  * available frequencies.
153  *
154  * powernv_pstate_info.nominal indicates the index to the highest
155  * non-turbo frequency.
156  */
157 static struct powernv_pstate_info {
158 	unsigned int min;
159 	unsigned int max;
160 	unsigned int nominal;
161 	unsigned int nr_pstates;
162 	bool wof_enabled;
163 } powernv_pstate_info;
164 
165 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
166 {
167 	return ((pmsr_val >> shift) & 0xFF);
168 }
169 
170 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
171 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
172 #define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
173 
174 /* Use following functions for conversions between pstate_id and index */
175 
176 /*
177  * idx_to_pstate : Returns the pstate id corresponding to the
178  *		   frequency in the cpufreq frequency table
179  *		   powernv_freqs indexed by @i.
180  *
181  *		   If @i is out of bound, this will return the pstate
182  *		   corresponding to the nominal frequency.
183  */
184 static inline u8 idx_to_pstate(unsigned int i)
185 {
186 	if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
187 		pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
188 		return powernv_freqs[powernv_pstate_info.nominal].driver_data;
189 	}
190 
191 	return powernv_freqs[i].driver_data;
192 }
193 
194 /*
195  * pstate_to_idx : Returns the index in the cpufreq frequencytable
196  *		   powernv_freqs for the frequency whose corresponding
197  *		   pstate id is @pstate.
198  *
199  *		   If no frequency corresponding to @pstate is found,
200  *		   this will return the index of the nominal
201  *		   frequency.
202  */
203 static unsigned int pstate_to_idx(u8 pstate)
204 {
205 	unsigned int key = pstate % POWERNV_MAX_PSTATES;
206 	struct pstate_idx_revmap_data *revmap_data;
207 
208 	hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
209 		if (revmap_data->pstate_id == pstate)
210 			return revmap_data->cpufreq_table_idx;
211 	}
212 
213 	pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
214 	return powernv_pstate_info.nominal;
215 }
216 
217 static inline void reset_gpstates(struct cpufreq_policy *policy)
218 {
219 	struct global_pstate_info *gpstates = policy->driver_data;
220 
221 	gpstates->highest_lpstate_idx = 0;
222 	gpstates->elapsed_time = 0;
223 	gpstates->last_sampled_time = 0;
224 	gpstates->last_lpstate_idx = 0;
225 	gpstates->last_gpstate_idx = 0;
226 }
227 
228 /*
229  * Initialize the freq table based on data obtained
230  * from the firmware passed via device-tree
231  */
232 static int init_powernv_pstates(void)
233 {
234 	struct device_node *power_mgt;
235 	int i, nr_pstates = 0;
236 	const __be32 *pstate_ids, *pstate_freqs;
237 	u32 len_ids, len_freqs;
238 	u32 pstate_min, pstate_max, pstate_nominal;
239 	u32 pstate_turbo, pstate_ultra_turbo;
240 	int rc = -ENODEV;
241 
242 	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
243 	if (!power_mgt) {
244 		pr_warn("power-mgt node not found\n");
245 		return -ENODEV;
246 	}
247 
248 	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
249 		pr_warn("ibm,pstate-min node not found\n");
250 		goto out;
251 	}
252 
253 	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
254 		pr_warn("ibm,pstate-max node not found\n");
255 		goto out;
256 	}
257 
258 	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
259 				 &pstate_nominal)) {
260 		pr_warn("ibm,pstate-nominal not found\n");
261 		goto out;
262 	}
263 
264 	if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
265 				 &pstate_ultra_turbo)) {
266 		powernv_pstate_info.wof_enabled = false;
267 		goto next;
268 	}
269 
270 	if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
271 				 &pstate_turbo)) {
272 		powernv_pstate_info.wof_enabled = false;
273 		goto next;
274 	}
275 
276 	if (pstate_turbo == pstate_ultra_turbo)
277 		powernv_pstate_info.wof_enabled = false;
278 	else
279 		powernv_pstate_info.wof_enabled = true;
280 
281 next:
282 	pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
283 		pstate_nominal, pstate_max);
284 	pr_info("Workload Optimized Frequency is %s in the platform\n",
285 		str_enabled_disabled(powernv_pstate_info.wof_enabled));
286 
287 	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
288 	if (!pstate_ids) {
289 		pr_warn("ibm,pstate-ids not found\n");
290 		goto out;
291 	}
292 
293 	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
294 				      &len_freqs);
295 	if (!pstate_freqs) {
296 		pr_warn("ibm,pstate-frequencies-mhz not found\n");
297 		goto out;
298 	}
299 
300 	if (len_ids != len_freqs) {
301 		pr_warn("Entries in ibm,pstate-ids and "
302 			"ibm,pstate-frequencies-mhz does not match\n");
303 	}
304 
305 	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
306 	if (!nr_pstates) {
307 		pr_warn("No PStates found\n");
308 		goto out;
309 	}
310 
311 	powernv_pstate_info.nr_pstates = nr_pstates;
312 	pr_debug("NR PStates %d\n", nr_pstates);
313 
314 	for (i = 0; i < nr_pstates; i++) {
315 		u32 id = be32_to_cpu(pstate_ids[i]);
316 		u32 freq = be32_to_cpu(pstate_freqs[i]);
317 		struct pstate_idx_revmap_data *revmap_data;
318 		unsigned int key;
319 
320 		pr_debug("PState id %d freq %d MHz\n", id, freq);
321 		powernv_freqs[i].frequency = freq * 1000; /* kHz */
322 		powernv_freqs[i].driver_data = id & 0xFF;
323 
324 		revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
325 		if (!revmap_data) {
326 			rc = -ENOMEM;
327 			goto out;
328 		}
329 
330 		revmap_data->pstate_id = id & 0xFF;
331 		revmap_data->cpufreq_table_idx = i;
332 		key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
333 		hash_add(pstate_revmap, &revmap_data->hentry, key);
334 
335 		if (id == pstate_max)
336 			powernv_pstate_info.max = i;
337 		if (id == pstate_nominal)
338 			powernv_pstate_info.nominal = i;
339 		if (id == pstate_min)
340 			powernv_pstate_info.min = i;
341 
342 		if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
343 			int j;
344 
345 			for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
346 				powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
347 		}
348 	}
349 
350 	/* End of list marker entry */
351 	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
352 
353 	of_node_put(power_mgt);
354 	return 0;
355 out:
356 	of_node_put(power_mgt);
357 	return rc;
358 }
359 
360 /* Returns the CPU frequency corresponding to the pstate_id. */
361 static unsigned int pstate_id_to_freq(u8 pstate_id)
362 {
363 	int i;
364 
365 	i = pstate_to_idx(pstate_id);
366 	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
367 		pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
368 			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
369 		i = powernv_pstate_info.nominal;
370 	}
371 
372 	return powernv_freqs[i].frequency;
373 }
374 
375 /*
376  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
377  * the firmware
378  */
379 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
380 					char *buf)
381 {
382 	return sprintf(buf, "%u\n",
383 		powernv_freqs[powernv_pstate_info.nominal].frequency);
384 }
385 
386 static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
387 	__ATTR_RO(cpuinfo_nominal_freq);
388 
389 #define SCALING_BOOST_FREQS_ATTR_INDEX		2
390 
391 static struct freq_attr *powernv_cpu_freq_attr[] = {
392 	&cpufreq_freq_attr_scaling_available_freqs,
393 	&cpufreq_freq_attr_cpuinfo_nominal_freq,
394 	&cpufreq_freq_attr_scaling_boost_freqs,
395 	NULL,
396 };
397 
398 #define throttle_attr(name, member)					\
399 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
400 {									\
401 	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
402 									\
403 	return sprintf(buf, "%u\n", chip->member);			\
404 }									\
405 									\
406 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
407 
408 throttle_attr(unthrottle, reason[NO_THROTTLE]);
409 throttle_attr(powercap, reason[POWERCAP]);
410 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
411 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
412 throttle_attr(overcurrent, reason[OVERCURRENT]);
413 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
414 throttle_attr(turbo_stat, throttle_turbo);
415 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
416 
417 static struct attribute *throttle_attrs[] = {
418 	&throttle_attr_unthrottle.attr,
419 	&throttle_attr_powercap.attr,
420 	&throttle_attr_overtemp.attr,
421 	&throttle_attr_supply_fault.attr,
422 	&throttle_attr_overcurrent.attr,
423 	&throttle_attr_occ_reset.attr,
424 	&throttle_attr_turbo_stat.attr,
425 	&throttle_attr_sub_turbo_stat.attr,
426 	NULL,
427 };
428 
429 static const struct attribute_group throttle_attr_grp = {
430 	.name	= "throttle_stats",
431 	.attrs	= throttle_attrs,
432 };
433 
434 /* Helper routines */
435 
436 /* Access helpers to power mgt SPR */
437 
438 static inline unsigned long get_pmspr(unsigned long sprn)
439 {
440 	switch (sprn) {
441 	case SPRN_PMCR:
442 		return mfspr(SPRN_PMCR);
443 
444 	case SPRN_PMICR:
445 		return mfspr(SPRN_PMICR);
446 
447 	case SPRN_PMSR:
448 		return mfspr(SPRN_PMSR);
449 	}
450 	BUG();
451 }
452 
453 static inline void set_pmspr(unsigned long sprn, unsigned long val)
454 {
455 	switch (sprn) {
456 	case SPRN_PMCR:
457 		mtspr(SPRN_PMCR, val);
458 		return;
459 
460 	case SPRN_PMICR:
461 		mtspr(SPRN_PMICR, val);
462 		return;
463 	}
464 	BUG();
465 }
466 
467 /*
468  * Use objects of this type to query/update
469  * pstates on a remote CPU via smp_call_function.
470  */
471 struct powernv_smp_call_data {
472 	unsigned int freq;
473 	u8 pstate_id;
474 	u8 gpstate_id;
475 };
476 
477 /*
478  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
479  *
480  * Called via smp_call_function.
481  *
482  * Note: The caller of the smp_call_function should pass an argument of
483  * the type 'struct powernv_smp_call_data *' along with this function.
484  *
485  * The current frequency on this CPU will be returned via
486  * ((struct powernv_smp_call_data *)arg)->freq;
487  */
488 static void powernv_read_cpu_freq(void *arg)
489 {
490 	unsigned long pmspr_val;
491 	struct powernv_smp_call_data *freq_data = arg;
492 
493 	pmspr_val = get_pmspr(SPRN_PMSR);
494 	freq_data->pstate_id = extract_local_pstate(pmspr_val);
495 	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
496 
497 	pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
498 		 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
499 		 freq_data->freq);
500 }
501 
502 /*
503  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
504  * firmware for CPU 'cpu'. This value is reported through the sysfs
505  * file cpuinfo_cur_freq.
506  */
507 static unsigned int powernv_cpufreq_get(unsigned int cpu)
508 {
509 	struct powernv_smp_call_data freq_data;
510 
511 	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
512 			&freq_data, 1);
513 
514 	return freq_data.freq;
515 }
516 
517 /*
518  * set_pstate: Sets the pstate on this CPU.
519  *
520  * This is called via an smp_call_function.
521  *
522  * The caller must ensure that freq_data is of the type
523  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
524  * on this CPU should be present in freq_data->pstate_id.
525  */
526 static void set_pstate(void *data)
527 {
528 	unsigned long val;
529 	struct powernv_smp_call_data *freq_data = data;
530 	unsigned long pstate_ul = freq_data->pstate_id;
531 	unsigned long gpstate_ul = freq_data->gpstate_id;
532 
533 	val = get_pmspr(SPRN_PMCR);
534 	val = val & 0x0000FFFFFFFFFFFFULL;
535 
536 	pstate_ul = pstate_ul & 0xFF;
537 	gpstate_ul = gpstate_ul & 0xFF;
538 
539 	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
540 	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
541 
542 	pr_debug("Setting cpu %d pmcr to %016lX\n",
543 			raw_smp_processor_id(), val);
544 	set_pmspr(SPRN_PMCR, val);
545 }
546 
547 /*
548  * get_nominal_index: Returns the index corresponding to the nominal
549  * pstate in the cpufreq table
550  */
551 static inline unsigned int get_nominal_index(void)
552 {
553 	return powernv_pstate_info.nominal;
554 }
555 
556 static void powernv_cpufreq_throttle_check(void *data)
557 {
558 	struct chip *chip;
559 	unsigned int cpu = smp_processor_id();
560 	unsigned long pmsr;
561 	u8 pmsr_pmax;
562 	unsigned int pmsr_pmax_idx;
563 
564 	pmsr = get_pmspr(SPRN_PMSR);
565 	chip = this_cpu_read(chip_info);
566 
567 	/* Check for Pmax Capping */
568 	pmsr_pmax = extract_max_pstate(pmsr);
569 	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
570 	if (pmsr_pmax_idx != powernv_pstate_info.max) {
571 		if (chip->throttled)
572 			goto next;
573 		chip->throttled = true;
574 		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
575 			pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
576 				     cpu, chip->id, pmsr_pmax,
577 				     idx_to_pstate(powernv_pstate_info.nominal));
578 			chip->throttle_sub_turbo++;
579 		} else {
580 			chip->throttle_turbo++;
581 		}
582 		trace_powernv_throttle(chip->id,
583 				      throttle_reason[chip->throttle_reason],
584 				      pmsr_pmax);
585 	} else if (chip->throttled) {
586 		chip->throttled = false;
587 		trace_powernv_throttle(chip->id,
588 				      throttle_reason[chip->throttle_reason],
589 				      pmsr_pmax);
590 	}
591 
592 	/* Check if Psafe_mode_active is set in PMSR. */
593 next:
594 	if (pmsr & PMSR_PSAFE_ENABLE) {
595 		throttled = true;
596 		pr_info("Pstate set to safe frequency\n");
597 	}
598 
599 	/* Check if SPR_EM_DISABLE is set in PMSR */
600 	if (pmsr & PMSR_SPR_EM_DISABLE) {
601 		throttled = true;
602 		pr_info("Frequency Control disabled from OS\n");
603 	}
604 
605 	if (throttled) {
606 		pr_info("PMSR = %16lx\n", pmsr);
607 		pr_warn("CPU Frequency could be throttled\n");
608 	}
609 }
610 
611 /**
612  * calc_global_pstate - Calculate global pstate
613  * @elapsed_time:		Elapsed time in milliseconds
614  * @local_pstate_idx:		New local pstate
615  * @highest_lpstate_idx:	pstate from which its ramping down
616  *
617  * Finds the appropriate global pstate based on the pstate from which its
618  * ramping down and the time elapsed in ramping down. It follows a quadratic
619  * equation which ensures that it reaches ramping down to pmin in 5sec.
620  */
621 static inline int calc_global_pstate(unsigned int elapsed_time,
622 				     int highest_lpstate_idx,
623 				     int local_pstate_idx)
624 {
625 	int index_diff;
626 
627 	/*
628 	 * Using ramp_down_percent we get the percentage of rampdown
629 	 * that we are expecting to be dropping. Difference between
630 	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
631 	 * number of how many pstates we will drop eventually by the end of
632 	 * 5 seconds, then just scale it get the number pstates to be dropped.
633 	 */
634 	index_diff =  ((int)ramp_down_percent(elapsed_time) *
635 			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
636 
637 	/* Ensure that global pstate is >= to local pstate */
638 	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
639 		return local_pstate_idx;
640 	else
641 		return highest_lpstate_idx + index_diff;
642 }
643 
644 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
645 {
646 	unsigned int timer_interval;
647 
648 	/*
649 	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
650 	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
651 	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
652 	 * seconds of ramp down time.
653 	 */
654 	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
655 	     > MAX_RAMP_DOWN_TIME)
656 		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
657 	else
658 		timer_interval = GPSTATE_TIMER_INTERVAL;
659 
660 	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
661 }
662 
663 /**
664  * gpstate_timer_handler
665  *
666  * @t: Timer context used to fetch global pstate info struct
667  *
668  * This handler brings down the global pstate closer to the local pstate
669  * according quadratic equation. Queues a new timer if it is still not equal
670  * to local pstate
671  */
672 static void gpstate_timer_handler(struct timer_list *t)
673 {
674 	struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
675 	struct cpufreq_policy *policy = gpstates->policy;
676 	int gpstate_idx, lpstate_idx;
677 	unsigned long val;
678 	unsigned int time_diff = jiffies_to_msecs(jiffies)
679 					- gpstates->last_sampled_time;
680 	struct powernv_smp_call_data freq_data;
681 
682 	if (!spin_trylock(&gpstates->gpstate_lock))
683 		return;
684 	/*
685 	 * If the timer has migrated to the different cpu then bring
686 	 * it back to one of the policy->cpus
687 	 */
688 	if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
689 		gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
690 		add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
691 		spin_unlock(&gpstates->gpstate_lock);
692 		return;
693 	}
694 
695 	/*
696 	 * If PMCR was last updated was using fast_switch then
697 	 * We may have wrong in gpstate->last_lpstate_idx
698 	 * value. Hence, read from PMCR to get correct data.
699 	 */
700 	val = get_pmspr(SPRN_PMCR);
701 	freq_data.gpstate_id = extract_global_pstate(val);
702 	freq_data.pstate_id = extract_local_pstate(val);
703 	if (freq_data.gpstate_id  == freq_data.pstate_id) {
704 		reset_gpstates(policy);
705 		spin_unlock(&gpstates->gpstate_lock);
706 		return;
707 	}
708 
709 	gpstates->last_sampled_time += time_diff;
710 	gpstates->elapsed_time += time_diff;
711 
712 	if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
713 		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
714 		lpstate_idx = gpstate_idx;
715 		reset_gpstates(policy);
716 		gpstates->highest_lpstate_idx = gpstate_idx;
717 	} else {
718 		lpstate_idx = pstate_to_idx(freq_data.pstate_id);
719 		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
720 						 gpstates->highest_lpstate_idx,
721 						 lpstate_idx);
722 	}
723 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
724 	gpstates->last_gpstate_idx = gpstate_idx;
725 	gpstates->last_lpstate_idx = lpstate_idx;
726 	/*
727 	 * If local pstate is equal to global pstate, rampdown is over
728 	 * So timer is not required to be queued.
729 	 */
730 	if (gpstate_idx != gpstates->last_lpstate_idx)
731 		queue_gpstate_timer(gpstates);
732 
733 	set_pstate(&freq_data);
734 	spin_unlock(&gpstates->gpstate_lock);
735 }
736 
737 /*
738  * powernv_cpufreq_target_index: Sets the frequency corresponding to
739  * the cpufreq table entry indexed by new_index on the cpus in the
740  * mask policy->cpus
741  */
742 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
743 					unsigned int new_index)
744 {
745 	struct powernv_smp_call_data freq_data;
746 	unsigned int cur_msec, gpstate_idx;
747 	struct global_pstate_info *gpstates = policy->driver_data;
748 
749 	if (unlikely(rebooting) && new_index != get_nominal_index())
750 		return 0;
751 
752 	if (!throttled) {
753 		/* we don't want to be preempted while
754 		 * checking if the CPU frequency has been throttled
755 		 */
756 		preempt_disable();
757 		powernv_cpufreq_throttle_check(NULL);
758 		preempt_enable();
759 	}
760 
761 	cur_msec = jiffies_to_msecs(get_jiffies_64());
762 
763 	freq_data.pstate_id = idx_to_pstate(new_index);
764 	if (!gpstates) {
765 		freq_data.gpstate_id = freq_data.pstate_id;
766 		goto no_gpstate;
767 	}
768 
769 	spin_lock(&gpstates->gpstate_lock);
770 
771 	if (!gpstates->last_sampled_time) {
772 		gpstate_idx = new_index;
773 		gpstates->highest_lpstate_idx = new_index;
774 		goto gpstates_done;
775 	}
776 
777 	if (gpstates->last_gpstate_idx < new_index) {
778 		gpstates->elapsed_time += cur_msec -
779 						 gpstates->last_sampled_time;
780 
781 		/*
782 		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
783 		 * we should be resetting all global pstate related data. Set it
784 		 * equal to local pstate to start fresh.
785 		 */
786 		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
787 			reset_gpstates(policy);
788 			gpstates->highest_lpstate_idx = new_index;
789 			gpstate_idx = new_index;
790 		} else {
791 		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
792 			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
793 							 gpstates->highest_lpstate_idx,
794 							 new_index);
795 		}
796 	} else {
797 		reset_gpstates(policy);
798 		gpstates->highest_lpstate_idx = new_index;
799 		gpstate_idx = new_index;
800 	}
801 
802 	/*
803 	 * If local pstate is equal to global pstate, rampdown is over
804 	 * So timer is not required to be queued.
805 	 */
806 	if (gpstate_idx != new_index)
807 		queue_gpstate_timer(gpstates);
808 	else
809 		del_timer_sync(&gpstates->timer);
810 
811 gpstates_done:
812 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
813 	gpstates->last_sampled_time = cur_msec;
814 	gpstates->last_gpstate_idx = gpstate_idx;
815 	gpstates->last_lpstate_idx = new_index;
816 
817 	spin_unlock(&gpstates->gpstate_lock);
818 
819 no_gpstate:
820 	/*
821 	 * Use smp_call_function to send IPI and execute the
822 	 * mtspr on target CPU.  We could do that without IPI
823 	 * if current CPU is within policy->cpus (core)
824 	 */
825 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
826 	return 0;
827 }
828 
829 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
830 {
831 	int base, i;
832 	struct kernfs_node *kn;
833 	struct global_pstate_info *gpstates;
834 
835 	base = cpu_first_thread_sibling(policy->cpu);
836 
837 	for (i = 0; i < threads_per_core; i++)
838 		cpumask_set_cpu(base + i, policy->cpus);
839 
840 	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
841 	if (!kn) {
842 		int ret;
843 
844 		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
845 		if (ret) {
846 			pr_info("Failed to create throttle stats directory for cpu %d\n",
847 				policy->cpu);
848 			return ret;
849 		}
850 	} else {
851 		kernfs_put(kn);
852 	}
853 
854 	policy->freq_table = powernv_freqs;
855 	policy->fast_switch_possible = true;
856 
857 	if (pvr_version_is(PVR_POWER9))
858 		return 0;
859 
860 	/* Initialise Gpstate ramp-down timer only on POWER8 */
861 	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
862 	if (!gpstates)
863 		return -ENOMEM;
864 
865 	policy->driver_data = gpstates;
866 
867 	/* initialize timer */
868 	gpstates->policy = policy;
869 	timer_setup(&gpstates->timer, gpstate_timer_handler,
870 		    TIMER_PINNED | TIMER_DEFERRABLE);
871 	gpstates->timer.expires = jiffies +
872 				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
873 	spin_lock_init(&gpstates->gpstate_lock);
874 
875 	return 0;
876 }
877 
878 static void powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
879 {
880 	struct powernv_smp_call_data freq_data;
881 	struct global_pstate_info *gpstates = policy->driver_data;
882 
883 	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
884 	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
885 	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
886 	if (gpstates)
887 		del_timer_sync(&gpstates->timer);
888 
889 	kfree(policy->driver_data);
890 }
891 
892 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
893 				unsigned long action, void *unused)
894 {
895 	int cpu;
896 	struct cpufreq_policy *cpu_policy;
897 
898 	rebooting = true;
899 	for_each_online_cpu(cpu) {
900 		cpu_policy = cpufreq_cpu_get(cpu);
901 		if (!cpu_policy)
902 			continue;
903 		powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
904 		cpufreq_cpu_put(cpu_policy);
905 	}
906 
907 	return NOTIFY_DONE;
908 }
909 
910 static struct notifier_block powernv_cpufreq_reboot_nb = {
911 	.notifier_call = powernv_cpufreq_reboot_notifier,
912 };
913 
914 static void powernv_cpufreq_work_fn(struct work_struct *work)
915 {
916 	struct chip *chip = container_of(work, struct chip, throttle);
917 	struct cpufreq_policy *policy;
918 	unsigned int cpu;
919 	cpumask_t mask;
920 
921 	cpus_read_lock();
922 	cpumask_and(&mask, &chip->mask, cpu_online_mask);
923 	smp_call_function_any(&mask,
924 			      powernv_cpufreq_throttle_check, NULL, 0);
925 
926 	if (!chip->restore)
927 		goto out;
928 
929 	chip->restore = false;
930 	for_each_cpu(cpu, &mask) {
931 		int index;
932 
933 		policy = cpufreq_cpu_get(cpu);
934 		if (!policy)
935 			continue;
936 		index = cpufreq_table_find_index_c(policy, policy->cur, false);
937 		powernv_cpufreq_target_index(policy, index);
938 		cpumask_andnot(&mask, &mask, policy->cpus);
939 		cpufreq_cpu_put(policy);
940 	}
941 out:
942 	cpus_read_unlock();
943 }
944 
945 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
946 				   unsigned long msg_type, void *_msg)
947 {
948 	struct opal_msg *msg = _msg;
949 	struct opal_occ_msg omsg;
950 	int i;
951 
952 	if (msg_type != OPAL_MSG_OCC)
953 		return 0;
954 
955 	omsg.type = be64_to_cpu(msg->params[0]);
956 
957 	switch (omsg.type) {
958 	case OCC_RESET:
959 		occ_reset = true;
960 		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
961 		/*
962 		 * powernv_cpufreq_throttle_check() is called in
963 		 * target() callback which can detect the throttle state
964 		 * for governors like ondemand.
965 		 * But static governors will not call target() often thus
966 		 * report throttling here.
967 		 */
968 		if (!throttled) {
969 			throttled = true;
970 			pr_warn("CPU frequency is throttled for duration\n");
971 		}
972 
973 		break;
974 	case OCC_LOAD:
975 		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
976 		break;
977 	case OCC_THROTTLE:
978 		omsg.chip = be64_to_cpu(msg->params[1]);
979 		omsg.throttle_status = be64_to_cpu(msg->params[2]);
980 
981 		if (occ_reset) {
982 			occ_reset = false;
983 			throttled = false;
984 			pr_info("OCC Active, CPU frequency is no longer throttled\n");
985 
986 			for (i = 0; i < nr_chips; i++) {
987 				chips[i].restore = true;
988 				schedule_work(&chips[i].throttle);
989 			}
990 
991 			return 0;
992 		}
993 
994 		for (i = 0; i < nr_chips; i++)
995 			if (chips[i].id == omsg.chip)
996 				break;
997 
998 		if (omsg.throttle_status >= 0 &&
999 		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
1000 			chips[i].throttle_reason = omsg.throttle_status;
1001 			chips[i].reason[omsg.throttle_status]++;
1002 		}
1003 
1004 		if (!omsg.throttle_status)
1005 			chips[i].restore = true;
1006 
1007 		schedule_work(&chips[i].throttle);
1008 	}
1009 	return 0;
1010 }
1011 
1012 static struct notifier_block powernv_cpufreq_opal_nb = {
1013 	.notifier_call	= powernv_cpufreq_occ_msg,
1014 	.next		= NULL,
1015 	.priority	= 0,
1016 };
1017 
1018 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1019 					unsigned int target_freq)
1020 {
1021 	int index;
1022 	struct powernv_smp_call_data freq_data;
1023 
1024 	index = cpufreq_table_find_index_dl(policy, target_freq, false);
1025 	freq_data.pstate_id = powernv_freqs[index].driver_data;
1026 	freq_data.gpstate_id = powernv_freqs[index].driver_data;
1027 	set_pstate(&freq_data);
1028 
1029 	return powernv_freqs[index].frequency;
1030 }
1031 
1032 static struct cpufreq_driver powernv_cpufreq_driver = {
1033 	.name		= "powernv-cpufreq",
1034 	.flags		= CPUFREQ_CONST_LOOPS,
1035 	.init		= powernv_cpufreq_cpu_init,
1036 	.exit		= powernv_cpufreq_cpu_exit,
1037 	.verify		= cpufreq_generic_frequency_table_verify,
1038 	.target_index	= powernv_cpufreq_target_index,
1039 	.fast_switch	= powernv_fast_switch,
1040 	.get		= powernv_cpufreq_get,
1041 	.attr		= powernv_cpu_freq_attr,
1042 };
1043 
1044 static int init_chip_info(void)
1045 {
1046 	unsigned int *chip;
1047 	unsigned int cpu, i;
1048 	unsigned int prev_chip_id = UINT_MAX;
1049 	cpumask_t *chip_cpu_mask;
1050 	int ret = 0;
1051 
1052 	chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1053 	if (!chip)
1054 		return -ENOMEM;
1055 
1056 	/* Allocate a chip cpu mask large enough to fit mask for all chips */
1057 	chip_cpu_mask = kcalloc(MAX_NR_CHIPS, sizeof(cpumask_t), GFP_KERNEL);
1058 	if (!chip_cpu_mask) {
1059 		ret = -ENOMEM;
1060 		goto free_and_return;
1061 	}
1062 
1063 	for_each_possible_cpu(cpu) {
1064 		unsigned int id = cpu_to_chip_id(cpu);
1065 
1066 		if (prev_chip_id != id) {
1067 			prev_chip_id = id;
1068 			chip[nr_chips++] = id;
1069 		}
1070 		cpumask_set_cpu(cpu, &chip_cpu_mask[nr_chips-1]);
1071 	}
1072 
1073 	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1074 	if (!chips) {
1075 		ret = -ENOMEM;
1076 		goto out_free_chip_cpu_mask;
1077 	}
1078 
1079 	for (i = 0; i < nr_chips; i++) {
1080 		chips[i].id = chip[i];
1081 		cpumask_copy(&chips[i].mask, &chip_cpu_mask[i]);
1082 		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1083 		for_each_cpu(cpu, &chips[i].mask)
1084 			per_cpu(chip_info, cpu) =  &chips[i];
1085 	}
1086 
1087 out_free_chip_cpu_mask:
1088 	kfree(chip_cpu_mask);
1089 free_and_return:
1090 	kfree(chip);
1091 	return ret;
1092 }
1093 
1094 static inline void clean_chip_info(void)
1095 {
1096 	int i;
1097 
1098 	/* flush any pending work items */
1099 	if (chips)
1100 		for (i = 0; i < nr_chips; i++)
1101 			cancel_work_sync(&chips[i].throttle);
1102 	kfree(chips);
1103 }
1104 
1105 static inline void unregister_all_notifiers(void)
1106 {
1107 	opal_message_notifier_unregister(OPAL_MSG_OCC,
1108 					 &powernv_cpufreq_opal_nb);
1109 	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1110 }
1111 
1112 static int __init powernv_cpufreq_init(void)
1113 {
1114 	int rc = 0;
1115 
1116 	/* Don't probe on pseries (guest) platforms */
1117 	if (!firmware_has_feature(FW_FEATURE_OPAL))
1118 		return -ENODEV;
1119 
1120 	/* Discover pstates from device tree and init */
1121 	rc = init_powernv_pstates();
1122 	if (rc)
1123 		goto out;
1124 
1125 	/* Populate chip info */
1126 	rc = init_chip_info();
1127 	if (rc)
1128 		goto out;
1129 
1130 	if (powernv_pstate_info.wof_enabled)
1131 		powernv_cpufreq_driver.boost_enabled = true;
1132 	else
1133 		powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1134 
1135 	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1136 	if (rc) {
1137 		pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1138 		goto cleanup;
1139 	}
1140 
1141 	if (powernv_pstate_info.wof_enabled)
1142 		cpufreq_enable_boost_support();
1143 
1144 	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1145 	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1146 
1147 	return 0;
1148 cleanup:
1149 	clean_chip_info();
1150 out:
1151 	pr_info("Platform driver disabled. System does not support PState control\n");
1152 	return rc;
1153 }
1154 module_init(powernv_cpufreq_init);
1155 
1156 static void __exit powernv_cpufreq_exit(void)
1157 {
1158 	cpufreq_unregister_driver(&powernv_cpufreq_driver);
1159 	unregister_all_notifiers();
1160 	clean_chip_info();
1161 }
1162 module_exit(powernv_cpufreq_exit);
1163 
1164 MODULE_DESCRIPTION("cpufreq driver for IBM/OpenPOWER powernv systems");
1165 MODULE_LICENSE("GPL");
1166 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1167