1 /* 2 * POWERNV cpufreq driver for the IBM POWER processors 3 * 4 * (C) Copyright IBM 2014 5 * 6 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 */ 19 20 #define pr_fmt(fmt) "powernv-cpufreq: " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/sysfs.h> 24 #include <linux/cpumask.h> 25 #include <linux/module.h> 26 #include <linux/cpufreq.h> 27 #include <linux/smp.h> 28 #include <linux/of.h> 29 #include <linux/reboot.h> 30 #include <linux/slab.h> 31 #include <linux/cpu.h> 32 #include <linux/hashtable.h> 33 #include <trace/events/power.h> 34 35 #include <asm/cputhreads.h> 36 #include <asm/firmware.h> 37 #include <asm/reg.h> 38 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */ 39 #include <asm/opal.h> 40 #include <linux/timer.h> 41 42 #define POWERNV_MAX_PSTATES_ORDER 8 43 #define POWERNV_MAX_PSTATES (1UL << (POWERNV_MAX_PSTATES_ORDER)) 44 #define PMSR_PSAFE_ENABLE (1UL << 30) 45 #define PMSR_SPR_EM_DISABLE (1UL << 31) 46 #define MAX_PSTATE_SHIFT 32 47 #define LPSTATE_SHIFT 48 48 #define GPSTATE_SHIFT 56 49 50 #define MAX_RAMP_DOWN_TIME 5120 51 /* 52 * On an idle system we want the global pstate to ramp-down from max value to 53 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and 54 * then ramp-down rapidly later on. 55 * 56 * This gives a percentage rampdown for time elapsed in milliseconds. 57 * ramp_down_percentage = ((ms * ms) >> 18) 58 * ~= 3.8 * (sec * sec) 59 * 60 * At 0 ms ramp_down_percent = 0 61 * At 5120 ms ramp_down_percent = 100 62 */ 63 #define ramp_down_percent(time) ((time * time) >> 18) 64 65 /* Interval after which the timer is queued to bring down global pstate */ 66 #define GPSTATE_TIMER_INTERVAL 2000 67 68 /** 69 * struct global_pstate_info - Per policy data structure to maintain history of 70 * global pstates 71 * @highest_lpstate_idx: The local pstate index from which we are 72 * ramping down 73 * @elapsed_time: Time in ms spent in ramping down from 74 * highest_lpstate_idx 75 * @last_sampled_time: Time from boot in ms when global pstates were 76 * last set 77 * @last_lpstate_idx, Last set value of local pstate and global 78 * last_gpstate_idx pstate in terms of cpufreq table index 79 * @timer: Is used for ramping down if cpu goes idle for 80 * a long time with global pstate held high 81 * @gpstate_lock: A spinlock to maintain synchronization between 82 * routines called by the timer handler and 83 * governer's target_index calls 84 */ 85 struct global_pstate_info { 86 int highest_lpstate_idx; 87 unsigned int elapsed_time; 88 unsigned int last_sampled_time; 89 int last_lpstate_idx; 90 int last_gpstate_idx; 91 spinlock_t gpstate_lock; 92 struct timer_list timer; 93 struct cpufreq_policy *policy; 94 }; 95 96 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1]; 97 98 DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER); 99 /** 100 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap 101 * indexed by a function of pstate id. 102 * 103 * @pstate_id: pstate id for this entry. 104 * 105 * @cpufreq_table_idx: Index into the powernv_freqs 106 * cpufreq_frequency_table for frequency 107 * corresponding to pstate_id. 108 * 109 * @hentry: hlist_node that hooks this entry into the pstate_revmap 110 * hashtable 111 */ 112 struct pstate_idx_revmap_data { 113 u8 pstate_id; 114 unsigned int cpufreq_table_idx; 115 struct hlist_node hentry; 116 }; 117 118 static bool rebooting, throttled, occ_reset; 119 120 static const char * const throttle_reason[] = { 121 "No throttling", 122 "Power Cap", 123 "Processor Over Temperature", 124 "Power Supply Failure", 125 "Over Current", 126 "OCC Reset" 127 }; 128 129 enum throttle_reason_type { 130 NO_THROTTLE = 0, 131 POWERCAP, 132 CPU_OVERTEMP, 133 POWER_SUPPLY_FAILURE, 134 OVERCURRENT, 135 OCC_RESET_THROTTLE, 136 OCC_MAX_REASON 137 }; 138 139 static struct chip { 140 unsigned int id; 141 bool throttled; 142 bool restore; 143 u8 throttle_reason; 144 cpumask_t mask; 145 struct work_struct throttle; 146 int throttle_turbo; 147 int throttle_sub_turbo; 148 int reason[OCC_MAX_REASON]; 149 } *chips; 150 151 static int nr_chips; 152 static DEFINE_PER_CPU(struct chip *, chip_info); 153 154 /* 155 * Note: 156 * The set of pstates consists of contiguous integers. 157 * powernv_pstate_info stores the index of the frequency table for 158 * max, min and nominal frequencies. It also stores number of 159 * available frequencies. 160 * 161 * powernv_pstate_info.nominal indicates the index to the highest 162 * non-turbo frequency. 163 */ 164 static struct powernv_pstate_info { 165 unsigned int min; 166 unsigned int max; 167 unsigned int nominal; 168 unsigned int nr_pstates; 169 bool wof_enabled; 170 } powernv_pstate_info; 171 172 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift) 173 { 174 return ((pmsr_val >> shift) & 0xFF); 175 } 176 177 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT) 178 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT) 179 #define extract_max_pstate(x) extract_pstate(x, MAX_PSTATE_SHIFT) 180 181 /* Use following functions for conversions between pstate_id and index */ 182 183 /** 184 * idx_to_pstate : Returns the pstate id corresponding to the 185 * frequency in the cpufreq frequency table 186 * powernv_freqs indexed by @i. 187 * 188 * If @i is out of bound, this will return the pstate 189 * corresponding to the nominal frequency. 190 */ 191 static inline u8 idx_to_pstate(unsigned int i) 192 { 193 if (unlikely(i >= powernv_pstate_info.nr_pstates)) { 194 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i); 195 return powernv_freqs[powernv_pstate_info.nominal].driver_data; 196 } 197 198 return powernv_freqs[i].driver_data; 199 } 200 201 /** 202 * pstate_to_idx : Returns the index in the cpufreq frequencytable 203 * powernv_freqs for the frequency whose corresponding 204 * pstate id is @pstate. 205 * 206 * If no frequency corresponding to @pstate is found, 207 * this will return the index of the nominal 208 * frequency. 209 */ 210 static unsigned int pstate_to_idx(u8 pstate) 211 { 212 unsigned int key = pstate % POWERNV_MAX_PSTATES; 213 struct pstate_idx_revmap_data *revmap_data; 214 215 hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) { 216 if (revmap_data->pstate_id == pstate) 217 return revmap_data->cpufreq_table_idx; 218 } 219 220 pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate); 221 return powernv_pstate_info.nominal; 222 } 223 224 static inline void reset_gpstates(struct cpufreq_policy *policy) 225 { 226 struct global_pstate_info *gpstates = policy->driver_data; 227 228 gpstates->highest_lpstate_idx = 0; 229 gpstates->elapsed_time = 0; 230 gpstates->last_sampled_time = 0; 231 gpstates->last_lpstate_idx = 0; 232 gpstates->last_gpstate_idx = 0; 233 } 234 235 /* 236 * Initialize the freq table based on data obtained 237 * from the firmware passed via device-tree 238 */ 239 static int init_powernv_pstates(void) 240 { 241 struct device_node *power_mgt; 242 int i, nr_pstates = 0; 243 const __be32 *pstate_ids, *pstate_freqs; 244 u32 len_ids, len_freqs; 245 u32 pstate_min, pstate_max, pstate_nominal; 246 u32 pstate_turbo, pstate_ultra_turbo; 247 248 power_mgt = of_find_node_by_path("/ibm,opal/power-mgt"); 249 if (!power_mgt) { 250 pr_warn("power-mgt node not found\n"); 251 return -ENODEV; 252 } 253 254 if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) { 255 pr_warn("ibm,pstate-min node not found\n"); 256 goto out; 257 } 258 259 if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) { 260 pr_warn("ibm,pstate-max node not found\n"); 261 goto out; 262 } 263 264 if (of_property_read_u32(power_mgt, "ibm,pstate-nominal", 265 &pstate_nominal)) { 266 pr_warn("ibm,pstate-nominal not found\n"); 267 goto out; 268 } 269 270 if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo", 271 &pstate_ultra_turbo)) { 272 powernv_pstate_info.wof_enabled = false; 273 goto next; 274 } 275 276 if (of_property_read_u32(power_mgt, "ibm,pstate-turbo", 277 &pstate_turbo)) { 278 powernv_pstate_info.wof_enabled = false; 279 goto next; 280 } 281 282 if (pstate_turbo == pstate_ultra_turbo) 283 powernv_pstate_info.wof_enabled = false; 284 else 285 powernv_pstate_info.wof_enabled = true; 286 287 next: 288 pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min, 289 pstate_nominal, pstate_max); 290 pr_info("Workload Optimized Frequency is %s in the platform\n", 291 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled"); 292 293 pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids); 294 if (!pstate_ids) { 295 pr_warn("ibm,pstate-ids not found\n"); 296 goto out; 297 } 298 299 pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz", 300 &len_freqs); 301 if (!pstate_freqs) { 302 pr_warn("ibm,pstate-frequencies-mhz not found\n"); 303 goto out; 304 } 305 306 if (len_ids != len_freqs) { 307 pr_warn("Entries in ibm,pstate-ids and " 308 "ibm,pstate-frequencies-mhz does not match\n"); 309 } 310 311 nr_pstates = min(len_ids, len_freqs) / sizeof(u32); 312 if (!nr_pstates) { 313 pr_warn("No PStates found\n"); 314 goto out; 315 } 316 317 powernv_pstate_info.nr_pstates = nr_pstates; 318 pr_debug("NR PStates %d\n", nr_pstates); 319 320 for (i = 0; i < nr_pstates; i++) { 321 u32 id = be32_to_cpu(pstate_ids[i]); 322 u32 freq = be32_to_cpu(pstate_freqs[i]); 323 struct pstate_idx_revmap_data *revmap_data; 324 unsigned int key; 325 326 pr_debug("PState id %d freq %d MHz\n", id, freq); 327 powernv_freqs[i].frequency = freq * 1000; /* kHz */ 328 powernv_freqs[i].driver_data = id & 0xFF; 329 330 revmap_data = (struct pstate_idx_revmap_data *) 331 kmalloc(sizeof(*revmap_data), GFP_KERNEL); 332 333 revmap_data->pstate_id = id & 0xFF; 334 revmap_data->cpufreq_table_idx = i; 335 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES; 336 hash_add(pstate_revmap, &revmap_data->hentry, key); 337 338 if (id == pstate_max) 339 powernv_pstate_info.max = i; 340 if (id == pstate_nominal) 341 powernv_pstate_info.nominal = i; 342 if (id == pstate_min) 343 powernv_pstate_info.min = i; 344 345 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) { 346 int j; 347 348 for (j = i - 1; j >= (int)powernv_pstate_info.max; j--) 349 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ; 350 } 351 } 352 353 /* End of list marker entry */ 354 powernv_freqs[i].frequency = CPUFREQ_TABLE_END; 355 356 of_node_put(power_mgt); 357 return 0; 358 out: 359 of_node_put(power_mgt); 360 return -ENODEV; 361 } 362 363 /* Returns the CPU frequency corresponding to the pstate_id. */ 364 static unsigned int pstate_id_to_freq(u8 pstate_id) 365 { 366 int i; 367 368 i = pstate_to_idx(pstate_id); 369 if (i >= powernv_pstate_info.nr_pstates || i < 0) { 370 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n", 371 pstate_id, idx_to_pstate(powernv_pstate_info.nominal)); 372 i = powernv_pstate_info.nominal; 373 } 374 375 return powernv_freqs[i].frequency; 376 } 377 378 /* 379 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by 380 * the firmware 381 */ 382 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy, 383 char *buf) 384 { 385 return sprintf(buf, "%u\n", 386 powernv_freqs[powernv_pstate_info.nominal].frequency); 387 } 388 389 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq = 390 __ATTR_RO(cpuinfo_nominal_freq); 391 392 #define SCALING_BOOST_FREQS_ATTR_INDEX 2 393 394 static struct freq_attr *powernv_cpu_freq_attr[] = { 395 &cpufreq_freq_attr_scaling_available_freqs, 396 &cpufreq_freq_attr_cpuinfo_nominal_freq, 397 &cpufreq_freq_attr_scaling_boost_freqs, 398 NULL, 399 }; 400 401 #define throttle_attr(name, member) \ 402 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \ 403 { \ 404 struct chip *chip = per_cpu(chip_info, policy->cpu); \ 405 \ 406 return sprintf(buf, "%u\n", chip->member); \ 407 } \ 408 \ 409 static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \ 410 411 throttle_attr(unthrottle, reason[NO_THROTTLE]); 412 throttle_attr(powercap, reason[POWERCAP]); 413 throttle_attr(overtemp, reason[CPU_OVERTEMP]); 414 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]); 415 throttle_attr(overcurrent, reason[OVERCURRENT]); 416 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]); 417 throttle_attr(turbo_stat, throttle_turbo); 418 throttle_attr(sub_turbo_stat, throttle_sub_turbo); 419 420 static struct attribute *throttle_attrs[] = { 421 &throttle_attr_unthrottle.attr, 422 &throttle_attr_powercap.attr, 423 &throttle_attr_overtemp.attr, 424 &throttle_attr_supply_fault.attr, 425 &throttle_attr_overcurrent.attr, 426 &throttle_attr_occ_reset.attr, 427 &throttle_attr_turbo_stat.attr, 428 &throttle_attr_sub_turbo_stat.attr, 429 NULL, 430 }; 431 432 static const struct attribute_group throttle_attr_grp = { 433 .name = "throttle_stats", 434 .attrs = throttle_attrs, 435 }; 436 437 /* Helper routines */ 438 439 /* Access helpers to power mgt SPR */ 440 441 static inline unsigned long get_pmspr(unsigned long sprn) 442 { 443 switch (sprn) { 444 case SPRN_PMCR: 445 return mfspr(SPRN_PMCR); 446 447 case SPRN_PMICR: 448 return mfspr(SPRN_PMICR); 449 450 case SPRN_PMSR: 451 return mfspr(SPRN_PMSR); 452 } 453 BUG(); 454 } 455 456 static inline void set_pmspr(unsigned long sprn, unsigned long val) 457 { 458 switch (sprn) { 459 case SPRN_PMCR: 460 mtspr(SPRN_PMCR, val); 461 return; 462 463 case SPRN_PMICR: 464 mtspr(SPRN_PMICR, val); 465 return; 466 } 467 BUG(); 468 } 469 470 /* 471 * Use objects of this type to query/update 472 * pstates on a remote CPU via smp_call_function. 473 */ 474 struct powernv_smp_call_data { 475 unsigned int freq; 476 u8 pstate_id; 477 u8 gpstate_id; 478 }; 479 480 /* 481 * powernv_read_cpu_freq: Reads the current frequency on this CPU. 482 * 483 * Called via smp_call_function. 484 * 485 * Note: The caller of the smp_call_function should pass an argument of 486 * the type 'struct powernv_smp_call_data *' along with this function. 487 * 488 * The current frequency on this CPU will be returned via 489 * ((struct powernv_smp_call_data *)arg)->freq; 490 */ 491 static void powernv_read_cpu_freq(void *arg) 492 { 493 unsigned long pmspr_val; 494 struct powernv_smp_call_data *freq_data = arg; 495 496 pmspr_val = get_pmspr(SPRN_PMSR); 497 freq_data->pstate_id = extract_local_pstate(pmspr_val); 498 freq_data->freq = pstate_id_to_freq(freq_data->pstate_id); 499 500 pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n", 501 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id, 502 freq_data->freq); 503 } 504 505 /* 506 * powernv_cpufreq_get: Returns the CPU frequency as reported by the 507 * firmware for CPU 'cpu'. This value is reported through the sysfs 508 * file cpuinfo_cur_freq. 509 */ 510 static unsigned int powernv_cpufreq_get(unsigned int cpu) 511 { 512 struct powernv_smp_call_data freq_data; 513 514 smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq, 515 &freq_data, 1); 516 517 return freq_data.freq; 518 } 519 520 /* 521 * set_pstate: Sets the pstate on this CPU. 522 * 523 * This is called via an smp_call_function. 524 * 525 * The caller must ensure that freq_data is of the type 526 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set 527 * on this CPU should be present in freq_data->pstate_id. 528 */ 529 static void set_pstate(void *data) 530 { 531 unsigned long val; 532 struct powernv_smp_call_data *freq_data = data; 533 unsigned long pstate_ul = freq_data->pstate_id; 534 unsigned long gpstate_ul = freq_data->gpstate_id; 535 536 val = get_pmspr(SPRN_PMCR); 537 val = val & 0x0000FFFFFFFFFFFFULL; 538 539 pstate_ul = pstate_ul & 0xFF; 540 gpstate_ul = gpstate_ul & 0xFF; 541 542 /* Set both global(bits 56..63) and local(bits 48..55) PStates */ 543 val = val | (gpstate_ul << 56) | (pstate_ul << 48); 544 545 pr_debug("Setting cpu %d pmcr to %016lX\n", 546 raw_smp_processor_id(), val); 547 set_pmspr(SPRN_PMCR, val); 548 } 549 550 /* 551 * get_nominal_index: Returns the index corresponding to the nominal 552 * pstate in the cpufreq table 553 */ 554 static inline unsigned int get_nominal_index(void) 555 { 556 return powernv_pstate_info.nominal; 557 } 558 559 static void powernv_cpufreq_throttle_check(void *data) 560 { 561 struct chip *chip; 562 unsigned int cpu = smp_processor_id(); 563 unsigned long pmsr; 564 u8 pmsr_pmax; 565 unsigned int pmsr_pmax_idx; 566 567 pmsr = get_pmspr(SPRN_PMSR); 568 chip = this_cpu_read(chip_info); 569 570 /* Check for Pmax Capping */ 571 pmsr_pmax = extract_max_pstate(pmsr); 572 pmsr_pmax_idx = pstate_to_idx(pmsr_pmax); 573 if (pmsr_pmax_idx != powernv_pstate_info.max) { 574 if (chip->throttled) 575 goto next; 576 chip->throttled = true; 577 if (pmsr_pmax_idx > powernv_pstate_info.nominal) { 578 pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n", 579 cpu, chip->id, pmsr_pmax, 580 idx_to_pstate(powernv_pstate_info.nominal)); 581 chip->throttle_sub_turbo++; 582 } else { 583 chip->throttle_turbo++; 584 } 585 trace_powernv_throttle(chip->id, 586 throttle_reason[chip->throttle_reason], 587 pmsr_pmax); 588 } else if (chip->throttled) { 589 chip->throttled = false; 590 trace_powernv_throttle(chip->id, 591 throttle_reason[chip->throttle_reason], 592 pmsr_pmax); 593 } 594 595 /* Check if Psafe_mode_active is set in PMSR. */ 596 next: 597 if (pmsr & PMSR_PSAFE_ENABLE) { 598 throttled = true; 599 pr_info("Pstate set to safe frequency\n"); 600 } 601 602 /* Check if SPR_EM_DISABLE is set in PMSR */ 603 if (pmsr & PMSR_SPR_EM_DISABLE) { 604 throttled = true; 605 pr_info("Frequency Control disabled from OS\n"); 606 } 607 608 if (throttled) { 609 pr_info("PMSR = %16lx\n", pmsr); 610 pr_warn("CPU Frequency could be throttled\n"); 611 } 612 } 613 614 /** 615 * calc_global_pstate - Calculate global pstate 616 * @elapsed_time: Elapsed time in milliseconds 617 * @local_pstate_idx: New local pstate 618 * @highest_lpstate_idx: pstate from which its ramping down 619 * 620 * Finds the appropriate global pstate based on the pstate from which its 621 * ramping down and the time elapsed in ramping down. It follows a quadratic 622 * equation which ensures that it reaches ramping down to pmin in 5sec. 623 */ 624 static inline int calc_global_pstate(unsigned int elapsed_time, 625 int highest_lpstate_idx, 626 int local_pstate_idx) 627 { 628 int index_diff; 629 630 /* 631 * Using ramp_down_percent we get the percentage of rampdown 632 * that we are expecting to be dropping. Difference between 633 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute 634 * number of how many pstates we will drop eventually by the end of 635 * 5 seconds, then just scale it get the number pstates to be dropped. 636 */ 637 index_diff = ((int)ramp_down_percent(elapsed_time) * 638 (powernv_pstate_info.min - highest_lpstate_idx)) / 100; 639 640 /* Ensure that global pstate is >= to local pstate */ 641 if (highest_lpstate_idx + index_diff >= local_pstate_idx) 642 return local_pstate_idx; 643 else 644 return highest_lpstate_idx + index_diff; 645 } 646 647 static inline void queue_gpstate_timer(struct global_pstate_info *gpstates) 648 { 649 unsigned int timer_interval; 650 651 /* 652 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But 653 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time. 654 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME 655 * seconds of ramp down time. 656 */ 657 if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL) 658 > MAX_RAMP_DOWN_TIME) 659 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time; 660 else 661 timer_interval = GPSTATE_TIMER_INTERVAL; 662 663 mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval)); 664 } 665 666 /** 667 * gpstate_timer_handler 668 * 669 * @data: pointer to cpufreq_policy on which timer was queued 670 * 671 * This handler brings down the global pstate closer to the local pstate 672 * according quadratic equation. Queues a new timer if it is still not equal 673 * to local pstate 674 */ 675 void gpstate_timer_handler(struct timer_list *t) 676 { 677 struct global_pstate_info *gpstates = from_timer(gpstates, t, timer); 678 struct cpufreq_policy *policy = gpstates->policy; 679 int gpstate_idx, lpstate_idx; 680 unsigned long val; 681 unsigned int time_diff = jiffies_to_msecs(jiffies) 682 - gpstates->last_sampled_time; 683 struct powernv_smp_call_data freq_data; 684 685 if (!spin_trylock(&gpstates->gpstate_lock)) 686 return; 687 /* 688 * If the timer has migrated to the different cpu then bring 689 * it back to one of the policy->cpus 690 */ 691 if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) { 692 gpstates->timer.expires = jiffies + msecs_to_jiffies(1); 693 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus)); 694 spin_unlock(&gpstates->gpstate_lock); 695 return; 696 } 697 698 /* 699 * If PMCR was last updated was using fast_swtich then 700 * We may have wrong in gpstate->last_lpstate_idx 701 * value. Hence, read from PMCR to get correct data. 702 */ 703 val = get_pmspr(SPRN_PMCR); 704 freq_data.gpstate_id = extract_global_pstate(val); 705 freq_data.pstate_id = extract_local_pstate(val); 706 if (freq_data.gpstate_id == freq_data.pstate_id) { 707 reset_gpstates(policy); 708 spin_unlock(&gpstates->gpstate_lock); 709 return; 710 } 711 712 gpstates->last_sampled_time += time_diff; 713 gpstates->elapsed_time += time_diff; 714 715 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) { 716 gpstate_idx = pstate_to_idx(freq_data.pstate_id); 717 lpstate_idx = gpstate_idx; 718 reset_gpstates(policy); 719 gpstates->highest_lpstate_idx = gpstate_idx; 720 } else { 721 lpstate_idx = pstate_to_idx(freq_data.pstate_id); 722 gpstate_idx = calc_global_pstate(gpstates->elapsed_time, 723 gpstates->highest_lpstate_idx, 724 lpstate_idx); 725 } 726 freq_data.gpstate_id = idx_to_pstate(gpstate_idx); 727 gpstates->last_gpstate_idx = gpstate_idx; 728 gpstates->last_lpstate_idx = lpstate_idx; 729 /* 730 * If local pstate is equal to global pstate, rampdown is over 731 * So timer is not required to be queued. 732 */ 733 if (gpstate_idx != gpstates->last_lpstate_idx) 734 queue_gpstate_timer(gpstates); 735 736 set_pstate(&freq_data); 737 spin_unlock(&gpstates->gpstate_lock); 738 } 739 740 /* 741 * powernv_cpufreq_target_index: Sets the frequency corresponding to 742 * the cpufreq table entry indexed by new_index on the cpus in the 743 * mask policy->cpus 744 */ 745 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy, 746 unsigned int new_index) 747 { 748 struct powernv_smp_call_data freq_data; 749 unsigned int cur_msec, gpstate_idx; 750 struct global_pstate_info *gpstates = policy->driver_data; 751 752 if (unlikely(rebooting) && new_index != get_nominal_index()) 753 return 0; 754 755 if (!throttled) { 756 /* we don't want to be preempted while 757 * checking if the CPU frequency has been throttled 758 */ 759 preempt_disable(); 760 powernv_cpufreq_throttle_check(NULL); 761 preempt_enable(); 762 } 763 764 cur_msec = jiffies_to_msecs(get_jiffies_64()); 765 766 freq_data.pstate_id = idx_to_pstate(new_index); 767 if (!gpstates) { 768 freq_data.gpstate_id = freq_data.pstate_id; 769 goto no_gpstate; 770 } 771 772 spin_lock(&gpstates->gpstate_lock); 773 774 if (!gpstates->last_sampled_time) { 775 gpstate_idx = new_index; 776 gpstates->highest_lpstate_idx = new_index; 777 goto gpstates_done; 778 } 779 780 if (gpstates->last_gpstate_idx < new_index) { 781 gpstates->elapsed_time += cur_msec - 782 gpstates->last_sampled_time; 783 784 /* 785 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME 786 * we should be resetting all global pstate related data. Set it 787 * equal to local pstate to start fresh. 788 */ 789 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) { 790 reset_gpstates(policy); 791 gpstates->highest_lpstate_idx = new_index; 792 gpstate_idx = new_index; 793 } else { 794 /* Elaspsed_time is less than 5 seconds, continue to rampdown */ 795 gpstate_idx = calc_global_pstate(gpstates->elapsed_time, 796 gpstates->highest_lpstate_idx, 797 new_index); 798 } 799 } else { 800 reset_gpstates(policy); 801 gpstates->highest_lpstate_idx = new_index; 802 gpstate_idx = new_index; 803 } 804 805 /* 806 * If local pstate is equal to global pstate, rampdown is over 807 * So timer is not required to be queued. 808 */ 809 if (gpstate_idx != new_index) 810 queue_gpstate_timer(gpstates); 811 else 812 del_timer_sync(&gpstates->timer); 813 814 gpstates_done: 815 freq_data.gpstate_id = idx_to_pstate(gpstate_idx); 816 gpstates->last_sampled_time = cur_msec; 817 gpstates->last_gpstate_idx = gpstate_idx; 818 gpstates->last_lpstate_idx = new_index; 819 820 spin_unlock(&gpstates->gpstate_lock); 821 822 no_gpstate: 823 /* 824 * Use smp_call_function to send IPI and execute the 825 * mtspr on target CPU. We could do that without IPI 826 * if current CPU is within policy->cpus (core) 827 */ 828 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1); 829 return 0; 830 } 831 832 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy) 833 { 834 int base, i; 835 struct kernfs_node *kn; 836 struct global_pstate_info *gpstates; 837 838 base = cpu_first_thread_sibling(policy->cpu); 839 840 for (i = 0; i < threads_per_core; i++) 841 cpumask_set_cpu(base + i, policy->cpus); 842 843 kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name); 844 if (!kn) { 845 int ret; 846 847 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp); 848 if (ret) { 849 pr_info("Failed to create throttle stats directory for cpu %d\n", 850 policy->cpu); 851 return ret; 852 } 853 } else { 854 kernfs_put(kn); 855 } 856 857 policy->freq_table = powernv_freqs; 858 policy->fast_switch_possible = true; 859 860 if (pvr_version_is(PVR_POWER9)) 861 return 0; 862 863 /* Initialise Gpstate ramp-down timer only on POWER8 */ 864 gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL); 865 if (!gpstates) 866 return -ENOMEM; 867 868 policy->driver_data = gpstates; 869 870 /* initialize timer */ 871 gpstates->policy = policy; 872 timer_setup(&gpstates->timer, gpstate_timer_handler, 873 TIMER_PINNED | TIMER_DEFERRABLE); 874 gpstates->timer.expires = jiffies + 875 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL); 876 spin_lock_init(&gpstates->gpstate_lock); 877 878 return 0; 879 } 880 881 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy) 882 { 883 /* timer is deleted in cpufreq_cpu_stop() */ 884 kfree(policy->driver_data); 885 886 return 0; 887 } 888 889 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb, 890 unsigned long action, void *unused) 891 { 892 int cpu; 893 struct cpufreq_policy cpu_policy; 894 895 rebooting = true; 896 for_each_online_cpu(cpu) { 897 cpufreq_get_policy(&cpu_policy, cpu); 898 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index()); 899 } 900 901 return NOTIFY_DONE; 902 } 903 904 static struct notifier_block powernv_cpufreq_reboot_nb = { 905 .notifier_call = powernv_cpufreq_reboot_notifier, 906 }; 907 908 void powernv_cpufreq_work_fn(struct work_struct *work) 909 { 910 struct chip *chip = container_of(work, struct chip, throttle); 911 unsigned int cpu; 912 cpumask_t mask; 913 914 get_online_cpus(); 915 cpumask_and(&mask, &chip->mask, cpu_online_mask); 916 smp_call_function_any(&mask, 917 powernv_cpufreq_throttle_check, NULL, 0); 918 919 if (!chip->restore) 920 goto out; 921 922 chip->restore = false; 923 for_each_cpu(cpu, &mask) { 924 int index; 925 struct cpufreq_policy policy; 926 927 cpufreq_get_policy(&policy, cpu); 928 index = cpufreq_table_find_index_c(&policy, policy.cur); 929 powernv_cpufreq_target_index(&policy, index); 930 cpumask_andnot(&mask, &mask, policy.cpus); 931 } 932 out: 933 put_online_cpus(); 934 } 935 936 static int powernv_cpufreq_occ_msg(struct notifier_block *nb, 937 unsigned long msg_type, void *_msg) 938 { 939 struct opal_msg *msg = _msg; 940 struct opal_occ_msg omsg; 941 int i; 942 943 if (msg_type != OPAL_MSG_OCC) 944 return 0; 945 946 omsg.type = be64_to_cpu(msg->params[0]); 947 948 switch (omsg.type) { 949 case OCC_RESET: 950 occ_reset = true; 951 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n"); 952 /* 953 * powernv_cpufreq_throttle_check() is called in 954 * target() callback which can detect the throttle state 955 * for governors like ondemand. 956 * But static governors will not call target() often thus 957 * report throttling here. 958 */ 959 if (!throttled) { 960 throttled = true; 961 pr_warn("CPU frequency is throttled for duration\n"); 962 } 963 964 break; 965 case OCC_LOAD: 966 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n"); 967 break; 968 case OCC_THROTTLE: 969 omsg.chip = be64_to_cpu(msg->params[1]); 970 omsg.throttle_status = be64_to_cpu(msg->params[2]); 971 972 if (occ_reset) { 973 occ_reset = false; 974 throttled = false; 975 pr_info("OCC Active, CPU frequency is no longer throttled\n"); 976 977 for (i = 0; i < nr_chips; i++) { 978 chips[i].restore = true; 979 schedule_work(&chips[i].throttle); 980 } 981 982 return 0; 983 } 984 985 for (i = 0; i < nr_chips; i++) 986 if (chips[i].id == omsg.chip) 987 break; 988 989 if (omsg.throttle_status >= 0 && 990 omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) { 991 chips[i].throttle_reason = omsg.throttle_status; 992 chips[i].reason[omsg.throttle_status]++; 993 } 994 995 if (!omsg.throttle_status) 996 chips[i].restore = true; 997 998 schedule_work(&chips[i].throttle); 999 } 1000 return 0; 1001 } 1002 1003 static struct notifier_block powernv_cpufreq_opal_nb = { 1004 .notifier_call = powernv_cpufreq_occ_msg, 1005 .next = NULL, 1006 .priority = 0, 1007 }; 1008 1009 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy) 1010 { 1011 struct powernv_smp_call_data freq_data; 1012 struct global_pstate_info *gpstates = policy->driver_data; 1013 1014 freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min); 1015 freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min); 1016 smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1); 1017 if (gpstates) 1018 del_timer_sync(&gpstates->timer); 1019 } 1020 1021 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy, 1022 unsigned int target_freq) 1023 { 1024 int index; 1025 struct powernv_smp_call_data freq_data; 1026 1027 index = cpufreq_table_find_index_dl(policy, target_freq); 1028 freq_data.pstate_id = powernv_freqs[index].driver_data; 1029 freq_data.gpstate_id = powernv_freqs[index].driver_data; 1030 set_pstate(&freq_data); 1031 1032 return powernv_freqs[index].frequency; 1033 } 1034 1035 static struct cpufreq_driver powernv_cpufreq_driver = { 1036 .name = "powernv-cpufreq", 1037 .flags = CPUFREQ_CONST_LOOPS, 1038 .init = powernv_cpufreq_cpu_init, 1039 .exit = powernv_cpufreq_cpu_exit, 1040 .verify = cpufreq_generic_frequency_table_verify, 1041 .target_index = powernv_cpufreq_target_index, 1042 .fast_switch = powernv_fast_switch, 1043 .get = powernv_cpufreq_get, 1044 .stop_cpu = powernv_cpufreq_stop_cpu, 1045 .attr = powernv_cpu_freq_attr, 1046 }; 1047 1048 static int init_chip_info(void) 1049 { 1050 unsigned int chip[256]; 1051 unsigned int cpu, i; 1052 unsigned int prev_chip_id = UINT_MAX; 1053 1054 for_each_possible_cpu(cpu) { 1055 unsigned int id = cpu_to_chip_id(cpu); 1056 1057 if (prev_chip_id != id) { 1058 prev_chip_id = id; 1059 chip[nr_chips++] = id; 1060 } 1061 } 1062 1063 chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL); 1064 if (!chips) 1065 return -ENOMEM; 1066 1067 for (i = 0; i < nr_chips; i++) { 1068 chips[i].id = chip[i]; 1069 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i])); 1070 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn); 1071 for_each_cpu(cpu, &chips[i].mask) 1072 per_cpu(chip_info, cpu) = &chips[i]; 1073 } 1074 1075 return 0; 1076 } 1077 1078 static inline void clean_chip_info(void) 1079 { 1080 kfree(chips); 1081 } 1082 1083 static inline void unregister_all_notifiers(void) 1084 { 1085 opal_message_notifier_unregister(OPAL_MSG_OCC, 1086 &powernv_cpufreq_opal_nb); 1087 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb); 1088 } 1089 1090 static int __init powernv_cpufreq_init(void) 1091 { 1092 int rc = 0; 1093 1094 /* Don't probe on pseries (guest) platforms */ 1095 if (!firmware_has_feature(FW_FEATURE_OPAL)) 1096 return -ENODEV; 1097 1098 /* Discover pstates from device tree and init */ 1099 rc = init_powernv_pstates(); 1100 if (rc) 1101 goto out; 1102 1103 /* Populate chip info */ 1104 rc = init_chip_info(); 1105 if (rc) 1106 goto out; 1107 1108 register_reboot_notifier(&powernv_cpufreq_reboot_nb); 1109 opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb); 1110 1111 if (powernv_pstate_info.wof_enabled) 1112 powernv_cpufreq_driver.boost_enabled = true; 1113 else 1114 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL; 1115 1116 rc = cpufreq_register_driver(&powernv_cpufreq_driver); 1117 if (rc) { 1118 pr_info("Failed to register the cpufreq driver (%d)\n", rc); 1119 goto cleanup_notifiers; 1120 } 1121 1122 if (powernv_pstate_info.wof_enabled) 1123 cpufreq_enable_boost_support(); 1124 1125 return 0; 1126 cleanup_notifiers: 1127 unregister_all_notifiers(); 1128 clean_chip_info(); 1129 out: 1130 pr_info("Platform driver disabled. System does not support PState control\n"); 1131 return rc; 1132 } 1133 module_init(powernv_cpufreq_init); 1134 1135 static void __exit powernv_cpufreq_exit(void) 1136 { 1137 cpufreq_unregister_driver(&powernv_cpufreq_driver); 1138 unregister_all_notifiers(); 1139 clean_chip_info(); 1140 } 1141 module_exit(powernv_cpufreq_exit); 1142 1143 MODULE_LICENSE("GPL"); 1144 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>"); 1145