1 /* 2 * POWERNV cpufreq driver for the IBM POWER processors 3 * 4 * (C) Copyright IBM 2014 5 * 6 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 */ 19 20 #define pr_fmt(fmt) "powernv-cpufreq: " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/sysfs.h> 24 #include <linux/cpumask.h> 25 #include <linux/module.h> 26 #include <linux/cpufreq.h> 27 #include <linux/smp.h> 28 #include <linux/of.h> 29 #include <linux/reboot.h> 30 #include <linux/slab.h> 31 #include <linux/cpu.h> 32 #include <trace/events/power.h> 33 34 #include <asm/cputhreads.h> 35 #include <asm/firmware.h> 36 #include <asm/reg.h> 37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */ 38 #include <asm/opal.h> 39 #include <linux/timer.h> 40 41 #define POWERNV_MAX_PSTATES 256 42 #define PMSR_PSAFE_ENABLE (1UL << 30) 43 #define PMSR_SPR_EM_DISABLE (1UL << 31) 44 #define PMSR_MAX(x) ((x >> 32) & 0xFF) 45 46 #define MAX_RAMP_DOWN_TIME 5120 47 /* 48 * On an idle system we want the global pstate to ramp-down from max value to 49 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and 50 * then ramp-down rapidly later on. 51 * 52 * This gives a percentage rampdown for time elapsed in milliseconds. 53 * ramp_down_percentage = ((ms * ms) >> 18) 54 * ~= 3.8 * (sec * sec) 55 * 56 * At 0 ms ramp_down_percent = 0 57 * At 5120 ms ramp_down_percent = 100 58 */ 59 #define ramp_down_percent(time) ((time * time) >> 18) 60 61 /* Interval after which the timer is queued to bring down global pstate */ 62 #define GPSTATE_TIMER_INTERVAL 2000 63 64 /** 65 * struct global_pstate_info - Per policy data structure to maintain history of 66 * global pstates 67 * @highest_lpstate: The local pstate from which we are ramping down 68 * @elapsed_time: Time in ms spent in ramping down from 69 * highest_lpstate 70 * @last_sampled_time: Time from boot in ms when global pstates were 71 * last set 72 * @last_lpstate,last_gpstate: Last set values for local and global pstates 73 * @timer: Is used for ramping down if cpu goes idle for 74 * a long time with global pstate held high 75 * @gpstate_lock: A spinlock to maintain synchronization between 76 * routines called by the timer handler and 77 * governer's target_index calls 78 */ 79 struct global_pstate_info { 80 int highest_lpstate; 81 unsigned int elapsed_time; 82 unsigned int last_sampled_time; 83 int last_lpstate; 84 int last_gpstate; 85 spinlock_t gpstate_lock; 86 struct timer_list timer; 87 }; 88 89 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1]; 90 static bool rebooting, throttled, occ_reset; 91 92 static const char * const throttle_reason[] = { 93 "No throttling", 94 "Power Cap", 95 "Processor Over Temperature", 96 "Power Supply Failure", 97 "Over Current", 98 "OCC Reset" 99 }; 100 101 enum throttle_reason_type { 102 NO_THROTTLE = 0, 103 POWERCAP, 104 CPU_OVERTEMP, 105 POWER_SUPPLY_FAILURE, 106 OVERCURRENT, 107 OCC_RESET_THROTTLE, 108 OCC_MAX_REASON 109 }; 110 111 static struct chip { 112 unsigned int id; 113 bool throttled; 114 bool restore; 115 u8 throttle_reason; 116 cpumask_t mask; 117 struct work_struct throttle; 118 int throttle_turbo; 119 int throttle_sub_turbo; 120 int reason[OCC_MAX_REASON]; 121 } *chips; 122 123 static int nr_chips; 124 static DEFINE_PER_CPU(struct chip *, chip_info); 125 126 /* 127 * Note: The set of pstates consists of contiguous integers, the 128 * smallest of which is indicated by powernv_pstate_info.min, the 129 * largest of which is indicated by powernv_pstate_info.max. 130 * 131 * The nominal pstate is the highest non-turbo pstate in this 132 * platform. This is indicated by powernv_pstate_info.nominal. 133 */ 134 static struct powernv_pstate_info { 135 int min; 136 int max; 137 int nominal; 138 int nr_pstates; 139 } powernv_pstate_info; 140 141 static inline void reset_gpstates(struct cpufreq_policy *policy) 142 { 143 struct global_pstate_info *gpstates = policy->driver_data; 144 145 gpstates->highest_lpstate = 0; 146 gpstates->elapsed_time = 0; 147 gpstates->last_sampled_time = 0; 148 gpstates->last_lpstate = 0; 149 gpstates->last_gpstate = 0; 150 } 151 152 /* 153 * Initialize the freq table based on data obtained 154 * from the firmware passed via device-tree 155 */ 156 static int init_powernv_pstates(void) 157 { 158 struct device_node *power_mgt; 159 int i, pstate_min, pstate_max, pstate_nominal, nr_pstates = 0; 160 const __be32 *pstate_ids, *pstate_freqs; 161 u32 len_ids, len_freqs; 162 163 power_mgt = of_find_node_by_path("/ibm,opal/power-mgt"); 164 if (!power_mgt) { 165 pr_warn("power-mgt node not found\n"); 166 return -ENODEV; 167 } 168 169 if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) { 170 pr_warn("ibm,pstate-min node not found\n"); 171 return -ENODEV; 172 } 173 174 if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) { 175 pr_warn("ibm,pstate-max node not found\n"); 176 return -ENODEV; 177 } 178 179 if (of_property_read_u32(power_mgt, "ibm,pstate-nominal", 180 &pstate_nominal)) { 181 pr_warn("ibm,pstate-nominal not found\n"); 182 return -ENODEV; 183 } 184 pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min, 185 pstate_nominal, pstate_max); 186 187 pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids); 188 if (!pstate_ids) { 189 pr_warn("ibm,pstate-ids not found\n"); 190 return -ENODEV; 191 } 192 193 pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz", 194 &len_freqs); 195 if (!pstate_freqs) { 196 pr_warn("ibm,pstate-frequencies-mhz not found\n"); 197 return -ENODEV; 198 } 199 200 if (len_ids != len_freqs) { 201 pr_warn("Entries in ibm,pstate-ids and " 202 "ibm,pstate-frequencies-mhz does not match\n"); 203 } 204 205 nr_pstates = min(len_ids, len_freqs) / sizeof(u32); 206 if (!nr_pstates) { 207 pr_warn("No PStates found\n"); 208 return -ENODEV; 209 } 210 211 pr_debug("NR PStates %d\n", nr_pstates); 212 for (i = 0; i < nr_pstates; i++) { 213 u32 id = be32_to_cpu(pstate_ids[i]); 214 u32 freq = be32_to_cpu(pstate_freqs[i]); 215 216 pr_debug("PState id %d freq %d MHz\n", id, freq); 217 powernv_freqs[i].frequency = freq * 1000; /* kHz */ 218 powernv_freqs[i].driver_data = id; 219 } 220 /* End of list marker entry */ 221 powernv_freqs[i].frequency = CPUFREQ_TABLE_END; 222 223 powernv_pstate_info.min = pstate_min; 224 powernv_pstate_info.max = pstate_max; 225 powernv_pstate_info.nominal = pstate_nominal; 226 powernv_pstate_info.nr_pstates = nr_pstates; 227 228 return 0; 229 } 230 231 /* Returns the CPU frequency corresponding to the pstate_id. */ 232 static unsigned int pstate_id_to_freq(int pstate_id) 233 { 234 int i; 235 236 i = powernv_pstate_info.max - pstate_id; 237 if (i >= powernv_pstate_info.nr_pstates || i < 0) { 238 pr_warn("PState id %d outside of PState table, " 239 "reporting nominal id %d instead\n", 240 pstate_id, powernv_pstate_info.nominal); 241 i = powernv_pstate_info.max - powernv_pstate_info.nominal; 242 } 243 244 return powernv_freqs[i].frequency; 245 } 246 247 /* 248 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by 249 * the firmware 250 */ 251 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy, 252 char *buf) 253 { 254 return sprintf(buf, "%u\n", 255 pstate_id_to_freq(powernv_pstate_info.nominal)); 256 } 257 258 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq = 259 __ATTR_RO(cpuinfo_nominal_freq); 260 261 static struct freq_attr *powernv_cpu_freq_attr[] = { 262 &cpufreq_freq_attr_scaling_available_freqs, 263 &cpufreq_freq_attr_cpuinfo_nominal_freq, 264 NULL, 265 }; 266 267 #define throttle_attr(name, member) \ 268 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \ 269 { \ 270 struct chip *chip = per_cpu(chip_info, policy->cpu); \ 271 \ 272 return sprintf(buf, "%u\n", chip->member); \ 273 } \ 274 \ 275 static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \ 276 277 throttle_attr(unthrottle, reason[NO_THROTTLE]); 278 throttle_attr(powercap, reason[POWERCAP]); 279 throttle_attr(overtemp, reason[CPU_OVERTEMP]); 280 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]); 281 throttle_attr(overcurrent, reason[OVERCURRENT]); 282 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]); 283 throttle_attr(turbo_stat, throttle_turbo); 284 throttle_attr(sub_turbo_stat, throttle_sub_turbo); 285 286 static struct attribute *throttle_attrs[] = { 287 &throttle_attr_unthrottle.attr, 288 &throttle_attr_powercap.attr, 289 &throttle_attr_overtemp.attr, 290 &throttle_attr_supply_fault.attr, 291 &throttle_attr_overcurrent.attr, 292 &throttle_attr_occ_reset.attr, 293 &throttle_attr_turbo_stat.attr, 294 &throttle_attr_sub_turbo_stat.attr, 295 NULL, 296 }; 297 298 static const struct attribute_group throttle_attr_grp = { 299 .name = "throttle_stats", 300 .attrs = throttle_attrs, 301 }; 302 303 /* Helper routines */ 304 305 /* Access helpers to power mgt SPR */ 306 307 static inline unsigned long get_pmspr(unsigned long sprn) 308 { 309 switch (sprn) { 310 case SPRN_PMCR: 311 return mfspr(SPRN_PMCR); 312 313 case SPRN_PMICR: 314 return mfspr(SPRN_PMICR); 315 316 case SPRN_PMSR: 317 return mfspr(SPRN_PMSR); 318 } 319 BUG(); 320 } 321 322 static inline void set_pmspr(unsigned long sprn, unsigned long val) 323 { 324 switch (sprn) { 325 case SPRN_PMCR: 326 mtspr(SPRN_PMCR, val); 327 return; 328 329 case SPRN_PMICR: 330 mtspr(SPRN_PMICR, val); 331 return; 332 } 333 BUG(); 334 } 335 336 /* 337 * Use objects of this type to query/update 338 * pstates on a remote CPU via smp_call_function. 339 */ 340 struct powernv_smp_call_data { 341 unsigned int freq; 342 int pstate_id; 343 int gpstate_id; 344 }; 345 346 /* 347 * powernv_read_cpu_freq: Reads the current frequency on this CPU. 348 * 349 * Called via smp_call_function. 350 * 351 * Note: The caller of the smp_call_function should pass an argument of 352 * the type 'struct powernv_smp_call_data *' along with this function. 353 * 354 * The current frequency on this CPU will be returned via 355 * ((struct powernv_smp_call_data *)arg)->freq; 356 */ 357 static void powernv_read_cpu_freq(void *arg) 358 { 359 unsigned long pmspr_val; 360 s8 local_pstate_id; 361 struct powernv_smp_call_data *freq_data = arg; 362 363 pmspr_val = get_pmspr(SPRN_PMSR); 364 365 /* 366 * The local pstate id corresponds bits 48..55 in the PMSR. 367 * Note: Watch out for the sign! 368 */ 369 local_pstate_id = (pmspr_val >> 48) & 0xFF; 370 freq_data->pstate_id = local_pstate_id; 371 freq_data->freq = pstate_id_to_freq(freq_data->pstate_id); 372 373 pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n", 374 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id, 375 freq_data->freq); 376 } 377 378 /* 379 * powernv_cpufreq_get: Returns the CPU frequency as reported by the 380 * firmware for CPU 'cpu'. This value is reported through the sysfs 381 * file cpuinfo_cur_freq. 382 */ 383 static unsigned int powernv_cpufreq_get(unsigned int cpu) 384 { 385 struct powernv_smp_call_data freq_data; 386 387 smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq, 388 &freq_data, 1); 389 390 return freq_data.freq; 391 } 392 393 /* 394 * set_pstate: Sets the pstate on this CPU. 395 * 396 * This is called via an smp_call_function. 397 * 398 * The caller must ensure that freq_data is of the type 399 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set 400 * on this CPU should be present in freq_data->pstate_id. 401 */ 402 static void set_pstate(void *data) 403 { 404 unsigned long val; 405 struct powernv_smp_call_data *freq_data = data; 406 unsigned long pstate_ul = freq_data->pstate_id; 407 unsigned long gpstate_ul = freq_data->gpstate_id; 408 409 val = get_pmspr(SPRN_PMCR); 410 val = val & 0x0000FFFFFFFFFFFFULL; 411 412 pstate_ul = pstate_ul & 0xFF; 413 gpstate_ul = gpstate_ul & 0xFF; 414 415 /* Set both global(bits 56..63) and local(bits 48..55) PStates */ 416 val = val | (gpstate_ul << 56) | (pstate_ul << 48); 417 418 pr_debug("Setting cpu %d pmcr to %016lX\n", 419 raw_smp_processor_id(), val); 420 set_pmspr(SPRN_PMCR, val); 421 } 422 423 /* 424 * get_nominal_index: Returns the index corresponding to the nominal 425 * pstate in the cpufreq table 426 */ 427 static inline unsigned int get_nominal_index(void) 428 { 429 return powernv_pstate_info.max - powernv_pstate_info.nominal; 430 } 431 432 static void powernv_cpufreq_throttle_check(void *data) 433 { 434 struct chip *chip; 435 unsigned int cpu = smp_processor_id(); 436 unsigned long pmsr; 437 int pmsr_pmax; 438 439 pmsr = get_pmspr(SPRN_PMSR); 440 chip = this_cpu_read(chip_info); 441 442 /* Check for Pmax Capping */ 443 pmsr_pmax = (s8)PMSR_MAX(pmsr); 444 if (pmsr_pmax != powernv_pstate_info.max) { 445 if (chip->throttled) 446 goto next; 447 chip->throttled = true; 448 if (pmsr_pmax < powernv_pstate_info.nominal) { 449 pr_warn_once("CPU %d on Chip %u has Pmax reduced below nominal frequency (%d < %d)\n", 450 cpu, chip->id, pmsr_pmax, 451 powernv_pstate_info.nominal); 452 chip->throttle_sub_turbo++; 453 } else { 454 chip->throttle_turbo++; 455 } 456 trace_powernv_throttle(chip->id, 457 throttle_reason[chip->throttle_reason], 458 pmsr_pmax); 459 } else if (chip->throttled) { 460 chip->throttled = false; 461 trace_powernv_throttle(chip->id, 462 throttle_reason[chip->throttle_reason], 463 pmsr_pmax); 464 } 465 466 /* Check if Psafe_mode_active is set in PMSR. */ 467 next: 468 if (pmsr & PMSR_PSAFE_ENABLE) { 469 throttled = true; 470 pr_info("Pstate set to safe frequency\n"); 471 } 472 473 /* Check if SPR_EM_DISABLE is set in PMSR */ 474 if (pmsr & PMSR_SPR_EM_DISABLE) { 475 throttled = true; 476 pr_info("Frequency Control disabled from OS\n"); 477 } 478 479 if (throttled) { 480 pr_info("PMSR = %16lx\n", pmsr); 481 pr_warn("CPU Frequency could be throttled\n"); 482 } 483 } 484 485 /** 486 * calc_global_pstate - Calculate global pstate 487 * @elapsed_time: Elapsed time in milliseconds 488 * @local_pstate: New local pstate 489 * @highest_lpstate: pstate from which its ramping down 490 * 491 * Finds the appropriate global pstate based on the pstate from which its 492 * ramping down and the time elapsed in ramping down. It follows a quadratic 493 * equation which ensures that it reaches ramping down to pmin in 5sec. 494 */ 495 static inline int calc_global_pstate(unsigned int elapsed_time, 496 int highest_lpstate, int local_pstate) 497 { 498 int pstate_diff; 499 500 /* 501 * Using ramp_down_percent we get the percentage of rampdown 502 * that we are expecting to be dropping. Difference between 503 * highest_lpstate and powernv_pstate_info.min will give a absolute 504 * number of how many pstates we will drop eventually by the end of 505 * 5 seconds, then just scale it get the number pstates to be dropped. 506 */ 507 pstate_diff = ((int)ramp_down_percent(elapsed_time) * 508 (highest_lpstate - powernv_pstate_info.min)) / 100; 509 510 /* Ensure that global pstate is >= to local pstate */ 511 if (highest_lpstate - pstate_diff < local_pstate) 512 return local_pstate; 513 else 514 return highest_lpstate - pstate_diff; 515 } 516 517 static inline void queue_gpstate_timer(struct global_pstate_info *gpstates) 518 { 519 unsigned int timer_interval; 520 521 /* 522 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But 523 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time. 524 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME 525 * seconds of ramp down time. 526 */ 527 if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL) 528 > MAX_RAMP_DOWN_TIME) 529 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time; 530 else 531 timer_interval = GPSTATE_TIMER_INTERVAL; 532 533 mod_timer_pinned(&gpstates->timer, jiffies + 534 msecs_to_jiffies(timer_interval)); 535 } 536 537 /** 538 * gpstate_timer_handler 539 * 540 * @data: pointer to cpufreq_policy on which timer was queued 541 * 542 * This handler brings down the global pstate closer to the local pstate 543 * according quadratic equation. Queues a new timer if it is still not equal 544 * to local pstate 545 */ 546 void gpstate_timer_handler(unsigned long data) 547 { 548 struct cpufreq_policy *policy = (struct cpufreq_policy *)data; 549 struct global_pstate_info *gpstates = policy->driver_data; 550 int gpstate_id; 551 unsigned int time_diff = jiffies_to_msecs(jiffies) 552 - gpstates->last_sampled_time; 553 struct powernv_smp_call_data freq_data; 554 555 if (!spin_trylock(&gpstates->gpstate_lock)) 556 return; 557 558 gpstates->last_sampled_time += time_diff; 559 gpstates->elapsed_time += time_diff; 560 freq_data.pstate_id = gpstates->last_lpstate; 561 562 if ((gpstates->last_gpstate == freq_data.pstate_id) || 563 (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) { 564 gpstate_id = freq_data.pstate_id; 565 reset_gpstates(policy); 566 gpstates->highest_lpstate = freq_data.pstate_id; 567 } else { 568 gpstate_id = calc_global_pstate(gpstates->elapsed_time, 569 gpstates->highest_lpstate, 570 freq_data.pstate_id); 571 } 572 573 /* 574 * If local pstate is equal to global pstate, rampdown is over 575 * So timer is not required to be queued. 576 */ 577 if (gpstate_id != freq_data.pstate_id) 578 queue_gpstate_timer(gpstates); 579 580 freq_data.gpstate_id = gpstate_id; 581 gpstates->last_gpstate = freq_data.gpstate_id; 582 gpstates->last_lpstate = freq_data.pstate_id; 583 584 spin_unlock(&gpstates->gpstate_lock); 585 586 /* Timer may get migrated to a different cpu on cpu hot unplug */ 587 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1); 588 } 589 590 /* 591 * powernv_cpufreq_target_index: Sets the frequency corresponding to 592 * the cpufreq table entry indexed by new_index on the cpus in the 593 * mask policy->cpus 594 */ 595 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy, 596 unsigned int new_index) 597 { 598 struct powernv_smp_call_data freq_data; 599 unsigned int cur_msec, gpstate_id; 600 struct global_pstate_info *gpstates = policy->driver_data; 601 602 if (unlikely(rebooting) && new_index != get_nominal_index()) 603 return 0; 604 605 if (!throttled) 606 powernv_cpufreq_throttle_check(NULL); 607 608 cur_msec = jiffies_to_msecs(get_jiffies_64()); 609 610 spin_lock(&gpstates->gpstate_lock); 611 freq_data.pstate_id = powernv_freqs[new_index].driver_data; 612 613 if (!gpstates->last_sampled_time) { 614 gpstate_id = freq_data.pstate_id; 615 gpstates->highest_lpstate = freq_data.pstate_id; 616 goto gpstates_done; 617 } 618 619 if (gpstates->last_gpstate > freq_data.pstate_id) { 620 gpstates->elapsed_time += cur_msec - 621 gpstates->last_sampled_time; 622 623 /* 624 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME 625 * we should be resetting all global pstate related data. Set it 626 * equal to local pstate to start fresh. 627 */ 628 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) { 629 reset_gpstates(policy); 630 gpstates->highest_lpstate = freq_data.pstate_id; 631 gpstate_id = freq_data.pstate_id; 632 } else { 633 /* Elaspsed_time is less than 5 seconds, continue to rampdown */ 634 gpstate_id = calc_global_pstate(gpstates->elapsed_time, 635 gpstates->highest_lpstate, 636 freq_data.pstate_id); 637 } 638 } else { 639 reset_gpstates(policy); 640 gpstates->highest_lpstate = freq_data.pstate_id; 641 gpstate_id = freq_data.pstate_id; 642 } 643 644 /* 645 * If local pstate is equal to global pstate, rampdown is over 646 * So timer is not required to be queued. 647 */ 648 if (gpstate_id != freq_data.pstate_id) 649 queue_gpstate_timer(gpstates); 650 else 651 del_timer_sync(&gpstates->timer); 652 653 gpstates_done: 654 freq_data.gpstate_id = gpstate_id; 655 gpstates->last_sampled_time = cur_msec; 656 gpstates->last_gpstate = freq_data.gpstate_id; 657 gpstates->last_lpstate = freq_data.pstate_id; 658 659 spin_unlock(&gpstates->gpstate_lock); 660 661 /* 662 * Use smp_call_function to send IPI and execute the 663 * mtspr on target CPU. We could do that without IPI 664 * if current CPU is within policy->cpus (core) 665 */ 666 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1); 667 return 0; 668 } 669 670 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy) 671 { 672 int base, i, ret; 673 struct kernfs_node *kn; 674 struct global_pstate_info *gpstates; 675 676 base = cpu_first_thread_sibling(policy->cpu); 677 678 for (i = 0; i < threads_per_core; i++) 679 cpumask_set_cpu(base + i, policy->cpus); 680 681 kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name); 682 if (!kn) { 683 int ret; 684 685 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp); 686 if (ret) { 687 pr_info("Failed to create throttle stats directory for cpu %d\n", 688 policy->cpu); 689 return ret; 690 } 691 } else { 692 kernfs_put(kn); 693 } 694 695 gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL); 696 if (!gpstates) 697 return -ENOMEM; 698 699 policy->driver_data = gpstates; 700 701 /* initialize timer */ 702 init_timer_deferrable(&gpstates->timer); 703 gpstates->timer.data = (unsigned long)policy; 704 gpstates->timer.function = gpstate_timer_handler; 705 gpstates->timer.expires = jiffies + 706 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL); 707 spin_lock_init(&gpstates->gpstate_lock); 708 ret = cpufreq_table_validate_and_show(policy, powernv_freqs); 709 710 if (ret < 0) 711 kfree(policy->driver_data); 712 713 return ret; 714 } 715 716 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy) 717 { 718 /* timer is deleted in cpufreq_cpu_stop() */ 719 kfree(policy->driver_data); 720 721 return 0; 722 } 723 724 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb, 725 unsigned long action, void *unused) 726 { 727 int cpu; 728 struct cpufreq_policy cpu_policy; 729 730 rebooting = true; 731 for_each_online_cpu(cpu) { 732 cpufreq_get_policy(&cpu_policy, cpu); 733 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index()); 734 } 735 736 return NOTIFY_DONE; 737 } 738 739 static struct notifier_block powernv_cpufreq_reboot_nb = { 740 .notifier_call = powernv_cpufreq_reboot_notifier, 741 }; 742 743 void powernv_cpufreq_work_fn(struct work_struct *work) 744 { 745 struct chip *chip = container_of(work, struct chip, throttle); 746 unsigned int cpu; 747 cpumask_t mask; 748 749 get_online_cpus(); 750 cpumask_and(&mask, &chip->mask, cpu_online_mask); 751 smp_call_function_any(&mask, 752 powernv_cpufreq_throttle_check, NULL, 0); 753 754 if (!chip->restore) 755 goto out; 756 757 chip->restore = false; 758 for_each_cpu(cpu, &mask) { 759 int index; 760 struct cpufreq_policy policy; 761 762 cpufreq_get_policy(&policy, cpu); 763 cpufreq_frequency_table_target(&policy, policy.freq_table, 764 policy.cur, 765 CPUFREQ_RELATION_C, &index); 766 powernv_cpufreq_target_index(&policy, index); 767 cpumask_andnot(&mask, &mask, policy.cpus); 768 } 769 out: 770 put_online_cpus(); 771 } 772 773 static int powernv_cpufreq_occ_msg(struct notifier_block *nb, 774 unsigned long msg_type, void *_msg) 775 { 776 struct opal_msg *msg = _msg; 777 struct opal_occ_msg omsg; 778 int i; 779 780 if (msg_type != OPAL_MSG_OCC) 781 return 0; 782 783 omsg.type = be64_to_cpu(msg->params[0]); 784 785 switch (omsg.type) { 786 case OCC_RESET: 787 occ_reset = true; 788 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n"); 789 /* 790 * powernv_cpufreq_throttle_check() is called in 791 * target() callback which can detect the throttle state 792 * for governors like ondemand. 793 * But static governors will not call target() often thus 794 * report throttling here. 795 */ 796 if (!throttled) { 797 throttled = true; 798 pr_warn("CPU frequency is throttled for duration\n"); 799 } 800 801 break; 802 case OCC_LOAD: 803 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n"); 804 break; 805 case OCC_THROTTLE: 806 omsg.chip = be64_to_cpu(msg->params[1]); 807 omsg.throttle_status = be64_to_cpu(msg->params[2]); 808 809 if (occ_reset) { 810 occ_reset = false; 811 throttled = false; 812 pr_info("OCC Active, CPU frequency is no longer throttled\n"); 813 814 for (i = 0; i < nr_chips; i++) { 815 chips[i].restore = true; 816 schedule_work(&chips[i].throttle); 817 } 818 819 return 0; 820 } 821 822 for (i = 0; i < nr_chips; i++) 823 if (chips[i].id == omsg.chip) 824 break; 825 826 if (omsg.throttle_status >= 0 && 827 omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) { 828 chips[i].throttle_reason = omsg.throttle_status; 829 chips[i].reason[omsg.throttle_status]++; 830 } 831 832 if (!omsg.throttle_status) 833 chips[i].restore = true; 834 835 schedule_work(&chips[i].throttle); 836 } 837 return 0; 838 } 839 840 static struct notifier_block powernv_cpufreq_opal_nb = { 841 .notifier_call = powernv_cpufreq_occ_msg, 842 .next = NULL, 843 .priority = 0, 844 }; 845 846 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy) 847 { 848 struct powernv_smp_call_data freq_data; 849 struct global_pstate_info *gpstates = policy->driver_data; 850 851 freq_data.pstate_id = powernv_pstate_info.min; 852 freq_data.gpstate_id = powernv_pstate_info.min; 853 smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1); 854 del_timer_sync(&gpstates->timer); 855 } 856 857 static struct cpufreq_driver powernv_cpufreq_driver = { 858 .name = "powernv-cpufreq", 859 .flags = CPUFREQ_CONST_LOOPS, 860 .init = powernv_cpufreq_cpu_init, 861 .exit = powernv_cpufreq_cpu_exit, 862 .verify = cpufreq_generic_frequency_table_verify, 863 .target_index = powernv_cpufreq_target_index, 864 .get = powernv_cpufreq_get, 865 .stop_cpu = powernv_cpufreq_stop_cpu, 866 .attr = powernv_cpu_freq_attr, 867 }; 868 869 static int init_chip_info(void) 870 { 871 unsigned int chip[256]; 872 unsigned int cpu, i; 873 unsigned int prev_chip_id = UINT_MAX; 874 875 for_each_possible_cpu(cpu) { 876 unsigned int id = cpu_to_chip_id(cpu); 877 878 if (prev_chip_id != id) { 879 prev_chip_id = id; 880 chip[nr_chips++] = id; 881 } 882 } 883 884 chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL); 885 if (!chips) 886 return -ENOMEM; 887 888 for (i = 0; i < nr_chips; i++) { 889 chips[i].id = chip[i]; 890 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i])); 891 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn); 892 for_each_cpu(cpu, &chips[i].mask) 893 per_cpu(chip_info, cpu) = &chips[i]; 894 } 895 896 return 0; 897 } 898 899 static inline void clean_chip_info(void) 900 { 901 kfree(chips); 902 } 903 904 static inline void unregister_all_notifiers(void) 905 { 906 opal_message_notifier_unregister(OPAL_MSG_OCC, 907 &powernv_cpufreq_opal_nb); 908 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb); 909 } 910 911 static int __init powernv_cpufreq_init(void) 912 { 913 int rc = 0; 914 915 /* Don't probe on pseries (guest) platforms */ 916 if (!firmware_has_feature(FW_FEATURE_OPAL)) 917 return -ENODEV; 918 919 /* Discover pstates from device tree and init */ 920 rc = init_powernv_pstates(); 921 if (rc) 922 goto out; 923 924 /* Populate chip info */ 925 rc = init_chip_info(); 926 if (rc) 927 goto out; 928 929 register_reboot_notifier(&powernv_cpufreq_reboot_nb); 930 opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb); 931 932 rc = cpufreq_register_driver(&powernv_cpufreq_driver); 933 if (!rc) 934 return 0; 935 936 pr_info("Failed to register the cpufreq driver (%d)\n", rc); 937 unregister_all_notifiers(); 938 clean_chip_info(); 939 out: 940 pr_info("Platform driver disabled. System does not support PState control\n"); 941 return rc; 942 } 943 module_init(powernv_cpufreq_init); 944 945 static void __exit powernv_cpufreq_exit(void) 946 { 947 cpufreq_unregister_driver(&powernv_cpufreq_driver); 948 unregister_all_notifiers(); 949 clean_chip_info(); 950 } 951 module_exit(powernv_cpufreq_exit); 952 953 MODULE_LICENSE("GPL"); 954 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>"); 955