xref: /linux/drivers/cpufreq/powernow-k8.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*
2  *   (c) 2003-2010 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Support : mark.langsdorf@amd.com
8  *
9  *  Based on the powernow-k7.c module written by Dave Jones.
10  *  (C) 2003 Dave Jones on behalf of SuSE Labs
11  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
12  *  (C) 2004 Pavel Machek <pavel@ucw.cz>
13  *  Licensed under the terms of the GNU GPL License version 2.
14  *  Based upon datasheets & sample CPUs kindly provided by AMD.
15  *
16  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
17  *  Dominik Brodowski, Jacob Shin, and others.
18  *  Originally developed by Paul Devriendt.
19  *  Processor information obtained from Chapter 9 (Power and Thermal Management)
20  *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21  *  Opteron Processors" available for download from www.amd.com
22  *
23  *  Tables for specific CPUs can be inferred from
24  *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h>	/* for current / set_cpus_allowed() */
36 #include <linux/io.h>
37 #include <linux/delay.h>
38 
39 #include <asm/msr.h>
40 
41 #include <linux/acpi.h>
42 #include <linux/mutex.h>
43 #include <acpi/processor.h>
44 
45 #define PFX "powernow-k8: "
46 #define VERSION "version 2.20.00"
47 #include "powernow-k8.h"
48 #include "mperf.h"
49 
50 /* serialize freq changes  */
51 static DEFINE_MUTEX(fidvid_mutex);
52 
53 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
54 
55 static int cpu_family = CPU_OPTERON;
56 
57 /* core performance boost */
58 static bool cpb_capable, cpb_enabled;
59 static struct msr __percpu *msrs;
60 
61 static struct cpufreq_driver cpufreq_amd64_driver;
62 
63 #ifndef CONFIG_SMP
64 static inline const struct cpumask *cpu_core_mask(int cpu)
65 {
66 	return cpumask_of(0);
67 }
68 #endif
69 
70 /* Return a frequency in MHz, given an input fid */
71 static u32 find_freq_from_fid(u32 fid)
72 {
73 	return 800 + (fid * 100);
74 }
75 
76 /* Return a frequency in KHz, given an input fid */
77 static u32 find_khz_freq_from_fid(u32 fid)
78 {
79 	return 1000 * find_freq_from_fid(fid);
80 }
81 
82 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
83 		u32 pstate)
84 {
85 	return data[pstate].frequency;
86 }
87 
88 /* Return the vco fid for an input fid
89  *
90  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
91  * only from corresponding high fids. This returns "high" fid corresponding to
92  * "low" one.
93  */
94 static u32 convert_fid_to_vco_fid(u32 fid)
95 {
96 	if (fid < HI_FID_TABLE_BOTTOM)
97 		return 8 + (2 * fid);
98 	else
99 		return fid;
100 }
101 
102 /*
103  * Return 1 if the pending bit is set. Unless we just instructed the processor
104  * to transition to a new state, seeing this bit set is really bad news.
105  */
106 static int pending_bit_stuck(void)
107 {
108 	u32 lo, hi;
109 
110 	if (cpu_family == CPU_HW_PSTATE)
111 		return 0;
112 
113 	rdmsr(MSR_FIDVID_STATUS, lo, hi);
114 	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
115 }
116 
117 /*
118  * Update the global current fid / vid values from the status msr.
119  * Returns 1 on error.
120  */
121 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
122 {
123 	u32 lo, hi;
124 	u32 i = 0;
125 
126 	if (cpu_family == CPU_HW_PSTATE) {
127 		rdmsr(MSR_PSTATE_STATUS, lo, hi);
128 		i = lo & HW_PSTATE_MASK;
129 		data->currpstate = i;
130 
131 		/*
132 		 * a workaround for family 11h erratum 311 might cause
133 		 * an "out-of-range Pstate if the core is in Pstate-0
134 		 */
135 		if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
136 			data->currpstate = HW_PSTATE_0;
137 
138 		return 0;
139 	}
140 	do {
141 		if (i++ > 10000) {
142 			pr_debug("detected change pending stuck\n");
143 			return 1;
144 		}
145 		rdmsr(MSR_FIDVID_STATUS, lo, hi);
146 	} while (lo & MSR_S_LO_CHANGE_PENDING);
147 
148 	data->currvid = hi & MSR_S_HI_CURRENT_VID;
149 	data->currfid = lo & MSR_S_LO_CURRENT_FID;
150 
151 	return 0;
152 }
153 
154 /* the isochronous relief time */
155 static void count_off_irt(struct powernow_k8_data *data)
156 {
157 	udelay((1 << data->irt) * 10);
158 	return;
159 }
160 
161 /* the voltage stabilization time */
162 static void count_off_vst(struct powernow_k8_data *data)
163 {
164 	udelay(data->vstable * VST_UNITS_20US);
165 	return;
166 }
167 
168 /* need to init the control msr to a safe value (for each cpu) */
169 static void fidvid_msr_init(void)
170 {
171 	u32 lo, hi;
172 	u8 fid, vid;
173 
174 	rdmsr(MSR_FIDVID_STATUS, lo, hi);
175 	vid = hi & MSR_S_HI_CURRENT_VID;
176 	fid = lo & MSR_S_LO_CURRENT_FID;
177 	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
178 	hi = MSR_C_HI_STP_GNT_BENIGN;
179 	pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
180 	wrmsr(MSR_FIDVID_CTL, lo, hi);
181 }
182 
183 /* write the new fid value along with the other control fields to the msr */
184 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
185 {
186 	u32 lo;
187 	u32 savevid = data->currvid;
188 	u32 i = 0;
189 
190 	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
191 		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
192 		return 1;
193 	}
194 
195 	lo = fid;
196 	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
197 	lo |= MSR_C_LO_INIT_FID_VID;
198 
199 	pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
200 		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
201 
202 	do {
203 		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
204 		if (i++ > 100) {
205 			printk(KERN_ERR PFX
206 				"Hardware error - pending bit very stuck - "
207 				"no further pstate changes possible\n");
208 			return 1;
209 		}
210 	} while (query_current_values_with_pending_wait(data));
211 
212 	count_off_irt(data);
213 
214 	if (savevid != data->currvid) {
215 		printk(KERN_ERR PFX
216 			"vid change on fid trans, old 0x%x, new 0x%x\n",
217 			savevid, data->currvid);
218 		return 1;
219 	}
220 
221 	if (fid != data->currfid) {
222 		printk(KERN_ERR PFX
223 			"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
224 			data->currfid);
225 		return 1;
226 	}
227 
228 	return 0;
229 }
230 
231 /* Write a new vid to the hardware */
232 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
233 {
234 	u32 lo;
235 	u32 savefid = data->currfid;
236 	int i = 0;
237 
238 	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
239 		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
240 		return 1;
241 	}
242 
243 	lo = data->currfid;
244 	lo |= (vid << MSR_C_LO_VID_SHIFT);
245 	lo |= MSR_C_LO_INIT_FID_VID;
246 
247 	pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248 		vid, lo, STOP_GRANT_5NS);
249 
250 	do {
251 		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
252 		if (i++ > 100) {
253 			printk(KERN_ERR PFX "internal error - pending bit "
254 					"very stuck - no further pstate "
255 					"changes possible\n");
256 			return 1;
257 		}
258 	} while (query_current_values_with_pending_wait(data));
259 
260 	if (savefid != data->currfid) {
261 		printk(KERN_ERR PFX "fid changed on vid trans, old "
262 			"0x%x new 0x%x\n",
263 		       savefid, data->currfid);
264 		return 1;
265 	}
266 
267 	if (vid != data->currvid) {
268 		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
269 				"curr 0x%x\n",
270 				vid, data->currvid);
271 		return 1;
272 	}
273 
274 	return 0;
275 }
276 
277 /*
278  * Reduce the vid by the max of step or reqvid.
279  * Decreasing vid codes represent increasing voltages:
280  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
281  */
282 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
283 		u32 reqvid, u32 step)
284 {
285 	if ((data->currvid - reqvid) > step)
286 		reqvid = data->currvid - step;
287 
288 	if (write_new_vid(data, reqvid))
289 		return 1;
290 
291 	count_off_vst(data);
292 
293 	return 0;
294 }
295 
296 /* Change hardware pstate by single MSR write */
297 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
298 {
299 	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
300 	data->currpstate = pstate;
301 	return 0;
302 }
303 
304 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
305 static int transition_fid_vid(struct powernow_k8_data *data,
306 		u32 reqfid, u32 reqvid)
307 {
308 	if (core_voltage_pre_transition(data, reqvid, reqfid))
309 		return 1;
310 
311 	if (core_frequency_transition(data, reqfid))
312 		return 1;
313 
314 	if (core_voltage_post_transition(data, reqvid))
315 		return 1;
316 
317 	if (query_current_values_with_pending_wait(data))
318 		return 1;
319 
320 	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
321 		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
322 				"curr 0x%x 0x%x\n",
323 				smp_processor_id(),
324 				reqfid, reqvid, data->currfid, data->currvid);
325 		return 1;
326 	}
327 
328 	pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
329 		smp_processor_id(), data->currfid, data->currvid);
330 
331 	return 0;
332 }
333 
334 /* Phase 1 - core voltage transition ... setup voltage */
335 static int core_voltage_pre_transition(struct powernow_k8_data *data,
336 		u32 reqvid, u32 reqfid)
337 {
338 	u32 rvosteps = data->rvo;
339 	u32 savefid = data->currfid;
340 	u32 maxvid, lo, rvomult = 1;
341 
342 	pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
343 		"reqvid 0x%x, rvo 0x%x\n",
344 		smp_processor_id(),
345 		data->currfid, data->currvid, reqvid, data->rvo);
346 
347 	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
348 		rvomult = 2;
349 	rvosteps *= rvomult;
350 	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
351 	maxvid = 0x1f & (maxvid >> 16);
352 	pr_debug("ph1 maxvid=0x%x\n", maxvid);
353 	if (reqvid < maxvid) /* lower numbers are higher voltages */
354 		reqvid = maxvid;
355 
356 	while (data->currvid > reqvid) {
357 		pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
358 			data->currvid, reqvid);
359 		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
360 			return 1;
361 	}
362 
363 	while ((rvosteps > 0) &&
364 			((rvomult * data->rvo + data->currvid) > reqvid)) {
365 		if (data->currvid == maxvid) {
366 			rvosteps = 0;
367 		} else {
368 			pr_debug("ph1: changing vid for rvo, req 0x%x\n",
369 				data->currvid - 1);
370 			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
371 				return 1;
372 			rvosteps--;
373 		}
374 	}
375 
376 	if (query_current_values_with_pending_wait(data))
377 		return 1;
378 
379 	if (savefid != data->currfid) {
380 		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
381 				data->currfid);
382 		return 1;
383 	}
384 
385 	pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
386 		data->currfid, data->currvid);
387 
388 	return 0;
389 }
390 
391 /* Phase 2 - core frequency transition */
392 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
393 {
394 	u32 vcoreqfid, vcocurrfid, vcofiddiff;
395 	u32 fid_interval, savevid = data->currvid;
396 
397 	if (data->currfid == reqfid) {
398 		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
399 				data->currfid);
400 		return 0;
401 	}
402 
403 	pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
404 		"reqfid 0x%x\n",
405 		smp_processor_id(),
406 		data->currfid, data->currvid, reqfid);
407 
408 	vcoreqfid = convert_fid_to_vco_fid(reqfid);
409 	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
410 	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
411 	    : vcoreqfid - vcocurrfid;
412 
413 	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
414 		vcofiddiff = 0;
415 
416 	while (vcofiddiff > 2) {
417 		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
418 
419 		if (reqfid > data->currfid) {
420 			if (data->currfid > LO_FID_TABLE_TOP) {
421 				if (write_new_fid(data,
422 						data->currfid + fid_interval))
423 					return 1;
424 			} else {
425 				if (write_new_fid
426 				    (data,
427 				     2 + convert_fid_to_vco_fid(data->currfid)))
428 					return 1;
429 			}
430 		} else {
431 			if (write_new_fid(data, data->currfid - fid_interval))
432 				return 1;
433 		}
434 
435 		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
436 		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
437 		    : vcoreqfid - vcocurrfid;
438 	}
439 
440 	if (write_new_fid(data, reqfid))
441 		return 1;
442 
443 	if (query_current_values_with_pending_wait(data))
444 		return 1;
445 
446 	if (data->currfid != reqfid) {
447 		printk(KERN_ERR PFX
448 			"ph2: mismatch, failed fid transition, "
449 			"curr 0x%x, req 0x%x\n",
450 			data->currfid, reqfid);
451 		return 1;
452 	}
453 
454 	if (savevid != data->currvid) {
455 		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
456 			savevid, data->currvid);
457 		return 1;
458 	}
459 
460 	pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
461 		data->currfid, data->currvid);
462 
463 	return 0;
464 }
465 
466 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
467 static int core_voltage_post_transition(struct powernow_k8_data *data,
468 		u32 reqvid)
469 {
470 	u32 savefid = data->currfid;
471 	u32 savereqvid = reqvid;
472 
473 	pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
474 		smp_processor_id(),
475 		data->currfid, data->currvid);
476 
477 	if (reqvid != data->currvid) {
478 		if (write_new_vid(data, reqvid))
479 			return 1;
480 
481 		if (savefid != data->currfid) {
482 			printk(KERN_ERR PFX
483 			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
484 			       savefid, data->currfid);
485 			return 1;
486 		}
487 
488 		if (data->currvid != reqvid) {
489 			printk(KERN_ERR PFX
490 			       "ph3: failed vid transition\n, "
491 			       "req 0x%x, curr 0x%x",
492 			       reqvid, data->currvid);
493 			return 1;
494 		}
495 	}
496 
497 	if (query_current_values_with_pending_wait(data))
498 		return 1;
499 
500 	if (savereqvid != data->currvid) {
501 		pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
502 		return 1;
503 	}
504 
505 	if (savefid != data->currfid) {
506 		pr_debug("ph3 failed, currfid changed 0x%x\n",
507 			data->currfid);
508 		return 1;
509 	}
510 
511 	pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
512 		data->currfid, data->currvid);
513 
514 	return 0;
515 }
516 
517 static void check_supported_cpu(void *_rc)
518 {
519 	u32 eax, ebx, ecx, edx;
520 	int *rc = _rc;
521 
522 	*rc = -ENODEV;
523 
524 	if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD)
525 		return;
526 
527 	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
528 	if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
529 	    ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
530 		return;
531 
532 	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
533 		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
534 		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
535 			printk(KERN_INFO PFX
536 				"Processor cpuid %x not supported\n", eax);
537 			return;
538 		}
539 
540 		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
541 		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
542 			printk(KERN_INFO PFX
543 			       "No frequency change capabilities detected\n");
544 			return;
545 		}
546 
547 		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
548 		if ((edx & P_STATE_TRANSITION_CAPABLE)
549 			!= P_STATE_TRANSITION_CAPABLE) {
550 			printk(KERN_INFO PFX
551 				"Power state transitions not supported\n");
552 			return;
553 		}
554 	} else { /* must be a HW Pstate capable processor */
555 		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
556 		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
557 			cpu_family = CPU_HW_PSTATE;
558 		else
559 			return;
560 	}
561 
562 	*rc = 0;
563 }
564 
565 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
566 		u8 maxvid)
567 {
568 	unsigned int j;
569 	u8 lastfid = 0xff;
570 
571 	for (j = 0; j < data->numps; j++) {
572 		if (pst[j].vid > LEAST_VID) {
573 			printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
574 			       j, pst[j].vid);
575 			return -EINVAL;
576 		}
577 		if (pst[j].vid < data->rvo) {
578 			/* vid + rvo >= 0 */
579 			printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
580 			       " %d\n", j);
581 			return -ENODEV;
582 		}
583 		if (pst[j].vid < maxvid + data->rvo) {
584 			/* vid + rvo >= maxvid */
585 			printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
586 			       " %d\n", j);
587 			return -ENODEV;
588 		}
589 		if (pst[j].fid > MAX_FID) {
590 			printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
591 			       " %d\n", j);
592 			return -ENODEV;
593 		}
594 		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
595 			/* Only first fid is allowed to be in "low" range */
596 			printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
597 			       "0x%x\n", j, pst[j].fid);
598 			return -EINVAL;
599 		}
600 		if (pst[j].fid < lastfid)
601 			lastfid = pst[j].fid;
602 	}
603 	if (lastfid & 1) {
604 		printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
605 		return -EINVAL;
606 	}
607 	if (lastfid > LO_FID_TABLE_TOP)
608 		printk(KERN_INFO FW_BUG PFX
609 			"first fid not from lo freq table\n");
610 
611 	return 0;
612 }
613 
614 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
615 		unsigned int entry)
616 {
617 	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
618 }
619 
620 static void print_basics(struct powernow_k8_data *data)
621 {
622 	int j;
623 	for (j = 0; j < data->numps; j++) {
624 		if (data->powernow_table[j].frequency !=
625 				CPUFREQ_ENTRY_INVALID) {
626 			if (cpu_family == CPU_HW_PSTATE) {
627 				printk(KERN_INFO PFX
628 					"   %d : pstate %d (%d MHz)\n", j,
629 					data->powernow_table[j].index,
630 					data->powernow_table[j].frequency/1000);
631 			} else {
632 				printk(KERN_INFO PFX
633 					"fid 0x%x (%d MHz), vid 0x%x\n",
634 					data->powernow_table[j].index & 0xff,
635 					data->powernow_table[j].frequency/1000,
636 					data->powernow_table[j].index >> 8);
637 			}
638 		}
639 	}
640 	if (data->batps)
641 		printk(KERN_INFO PFX "Only %d pstates on battery\n",
642 				data->batps);
643 }
644 
645 static u32 freq_from_fid_did(u32 fid, u32 did)
646 {
647 	u32 mhz = 0;
648 
649 	if (boot_cpu_data.x86 == 0x10)
650 		mhz = (100 * (fid + 0x10)) >> did;
651 	else if (boot_cpu_data.x86 == 0x11)
652 		mhz = (100 * (fid + 8)) >> did;
653 	else
654 		BUG();
655 
656 	return mhz * 1000;
657 }
658 
659 static int fill_powernow_table(struct powernow_k8_data *data,
660 		struct pst_s *pst, u8 maxvid)
661 {
662 	struct cpufreq_frequency_table *powernow_table;
663 	unsigned int j;
664 
665 	if (data->batps) {
666 		/* use ACPI support to get full speed on mains power */
667 		printk(KERN_WARNING PFX
668 			"Only %d pstates usable (use ACPI driver for full "
669 			"range\n", data->batps);
670 		data->numps = data->batps;
671 	}
672 
673 	for (j = 1; j < data->numps; j++) {
674 		if (pst[j-1].fid >= pst[j].fid) {
675 			printk(KERN_ERR PFX "PST out of sequence\n");
676 			return -EINVAL;
677 		}
678 	}
679 
680 	if (data->numps < 2) {
681 		printk(KERN_ERR PFX "no p states to transition\n");
682 		return -ENODEV;
683 	}
684 
685 	if (check_pst_table(data, pst, maxvid))
686 		return -EINVAL;
687 
688 	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
689 		* (data->numps + 1)), GFP_KERNEL);
690 	if (!powernow_table) {
691 		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
692 		return -ENOMEM;
693 	}
694 
695 	for (j = 0; j < data->numps; j++) {
696 		int freq;
697 		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
698 		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
699 		freq = find_khz_freq_from_fid(pst[j].fid);
700 		powernow_table[j].frequency = freq;
701 	}
702 	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
703 	powernow_table[data->numps].index = 0;
704 
705 	if (query_current_values_with_pending_wait(data)) {
706 		kfree(powernow_table);
707 		return -EIO;
708 	}
709 
710 	pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
711 	data->powernow_table = powernow_table;
712 	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
713 		print_basics(data);
714 
715 	for (j = 0; j < data->numps; j++)
716 		if ((pst[j].fid == data->currfid) &&
717 		    (pst[j].vid == data->currvid))
718 			return 0;
719 
720 	pr_debug("currfid/vid do not match PST, ignoring\n");
721 	return 0;
722 }
723 
724 /* Find and validate the PSB/PST table in BIOS. */
725 static int find_psb_table(struct powernow_k8_data *data)
726 {
727 	struct psb_s *psb;
728 	unsigned int i;
729 	u32 mvs;
730 	u8 maxvid;
731 	u32 cpst = 0;
732 	u32 thiscpuid;
733 
734 	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
735 		/* Scan BIOS looking for the signature. */
736 		/* It can not be at ffff0 - it is too big. */
737 
738 		psb = phys_to_virt(i);
739 		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
740 			continue;
741 
742 		pr_debug("found PSB header at 0x%p\n", psb);
743 
744 		pr_debug("table vers: 0x%x\n", psb->tableversion);
745 		if (psb->tableversion != PSB_VERSION_1_4) {
746 			printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
747 			return -ENODEV;
748 		}
749 
750 		pr_debug("flags: 0x%x\n", psb->flags1);
751 		if (psb->flags1) {
752 			printk(KERN_ERR FW_BUG PFX "unknown flags\n");
753 			return -ENODEV;
754 		}
755 
756 		data->vstable = psb->vstable;
757 		pr_debug("voltage stabilization time: %d(*20us)\n",
758 				data->vstable);
759 
760 		pr_debug("flags2: 0x%x\n", psb->flags2);
761 		data->rvo = psb->flags2 & 3;
762 		data->irt = ((psb->flags2) >> 2) & 3;
763 		mvs = ((psb->flags2) >> 4) & 3;
764 		data->vidmvs = 1 << mvs;
765 		data->batps = ((psb->flags2) >> 6) & 3;
766 
767 		pr_debug("ramp voltage offset: %d\n", data->rvo);
768 		pr_debug("isochronous relief time: %d\n", data->irt);
769 		pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
770 
771 		pr_debug("numpst: 0x%x\n", psb->num_tables);
772 		cpst = psb->num_tables;
773 		if ((psb->cpuid == 0x00000fc0) ||
774 		    (psb->cpuid == 0x00000fe0)) {
775 			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
776 			if ((thiscpuid == 0x00000fc0) ||
777 			    (thiscpuid == 0x00000fe0))
778 				cpst = 1;
779 		}
780 		if (cpst != 1) {
781 			printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
782 			return -ENODEV;
783 		}
784 
785 		data->plllock = psb->plllocktime;
786 		pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
787 		pr_debug("maxfid: 0x%x\n", psb->maxfid);
788 		pr_debug("maxvid: 0x%x\n", psb->maxvid);
789 		maxvid = psb->maxvid;
790 
791 		data->numps = psb->numps;
792 		pr_debug("numpstates: 0x%x\n", data->numps);
793 		return fill_powernow_table(data,
794 				(struct pst_s *)(psb+1), maxvid);
795 	}
796 	/*
797 	 * If you see this message, complain to BIOS manufacturer. If
798 	 * he tells you "we do not support Linux" or some similar
799 	 * nonsense, remember that Windows 2000 uses the same legacy
800 	 * mechanism that the old Linux PSB driver uses. Tell them it
801 	 * is broken with Windows 2000.
802 	 *
803 	 * The reference to the AMD documentation is chapter 9 in the
804 	 * BIOS and Kernel Developer's Guide, which is available on
805 	 * www.amd.com
806 	 */
807 	printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
808 	printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
809 		" and Cool'N'Quiet support is enabled in BIOS setup\n");
810 	return -ENODEV;
811 }
812 
813 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
814 		unsigned int index)
815 {
816 	u64 control;
817 
818 	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
819 		return;
820 
821 	control = data->acpi_data.states[index].control;
822 	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
823 	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
824 	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
825 	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
826 	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
827 	data->vstable = (control >> VST_SHIFT) & VST_MASK;
828 }
829 
830 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
831 {
832 	struct cpufreq_frequency_table *powernow_table;
833 	int ret_val = -ENODEV;
834 	u64 control, status;
835 
836 	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
837 		pr_debug("register performance failed: bad ACPI data\n");
838 		return -EIO;
839 	}
840 
841 	/* verify the data contained in the ACPI structures */
842 	if (data->acpi_data.state_count <= 1) {
843 		pr_debug("No ACPI P-States\n");
844 		goto err_out;
845 	}
846 
847 	control = data->acpi_data.control_register.space_id;
848 	status = data->acpi_data.status_register.space_id;
849 
850 	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
851 	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
852 		pr_debug("Invalid control/status registers (%llx - %llx)\n",
853 			control, status);
854 		goto err_out;
855 	}
856 
857 	/* fill in data->powernow_table */
858 	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
859 		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
860 	if (!powernow_table) {
861 		pr_debug("powernow_table memory alloc failure\n");
862 		goto err_out;
863 	}
864 
865 	/* fill in data */
866 	data->numps = data->acpi_data.state_count;
867 	powernow_k8_acpi_pst_values(data, 0);
868 
869 	if (cpu_family == CPU_HW_PSTATE)
870 		ret_val = fill_powernow_table_pstate(data, powernow_table);
871 	else
872 		ret_val = fill_powernow_table_fidvid(data, powernow_table);
873 	if (ret_val)
874 		goto err_out_mem;
875 
876 	powernow_table[data->acpi_data.state_count].frequency =
877 		CPUFREQ_TABLE_END;
878 	powernow_table[data->acpi_data.state_count].index = 0;
879 	data->powernow_table = powernow_table;
880 
881 	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
882 		print_basics(data);
883 
884 	/* notify BIOS that we exist */
885 	acpi_processor_notify_smm(THIS_MODULE);
886 
887 	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
888 		printk(KERN_ERR PFX
889 				"unable to alloc powernow_k8_data cpumask\n");
890 		ret_val = -ENOMEM;
891 		goto err_out_mem;
892 	}
893 
894 	return 0;
895 
896 err_out_mem:
897 	kfree(powernow_table);
898 
899 err_out:
900 	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
901 
902 	/* data->acpi_data.state_count informs us at ->exit()
903 	 * whether ACPI was used */
904 	data->acpi_data.state_count = 0;
905 
906 	return ret_val;
907 }
908 
909 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
910 		struct cpufreq_frequency_table *powernow_table)
911 {
912 	int i;
913 	u32 hi = 0, lo = 0;
914 	rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
915 	data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
916 
917 	for (i = 0; i < data->acpi_data.state_count; i++) {
918 		u32 index;
919 
920 		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
921 		if (index > data->max_hw_pstate) {
922 			printk(KERN_ERR PFX "invalid pstate %d - "
923 					"bad value %d.\n", i, index);
924 			printk(KERN_ERR PFX "Please report to BIOS "
925 					"manufacturer\n");
926 			invalidate_entry(powernow_table, i);
927 			continue;
928 		}
929 		rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
930 		if (!(hi & HW_PSTATE_VALID_MASK)) {
931 			pr_debug("invalid pstate %d, ignoring\n", index);
932 			invalidate_entry(powernow_table, i);
933 			continue;
934 		}
935 
936 		powernow_table[i].index = index;
937 
938 		/* Frequency may be rounded for these */
939 		if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
940 				 || boot_cpu_data.x86 == 0x11) {
941 			powernow_table[i].frequency =
942 				freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
943 		} else
944 			powernow_table[i].frequency =
945 				data->acpi_data.states[i].core_frequency * 1000;
946 	}
947 	return 0;
948 }
949 
950 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
951 		struct cpufreq_frequency_table *powernow_table)
952 {
953 	int i;
954 
955 	for (i = 0; i < data->acpi_data.state_count; i++) {
956 		u32 fid;
957 		u32 vid;
958 		u32 freq, index;
959 		u64 status, control;
960 
961 		if (data->exttype) {
962 			status =  data->acpi_data.states[i].status;
963 			fid = status & EXT_FID_MASK;
964 			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
965 		} else {
966 			control =  data->acpi_data.states[i].control;
967 			fid = control & FID_MASK;
968 			vid = (control >> VID_SHIFT) & VID_MASK;
969 		}
970 
971 		pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
972 
973 		index = fid | (vid<<8);
974 		powernow_table[i].index = index;
975 
976 		freq = find_khz_freq_from_fid(fid);
977 		powernow_table[i].frequency = freq;
978 
979 		/* verify frequency is OK */
980 		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
981 			pr_debug("invalid freq %u kHz, ignoring\n", freq);
982 			invalidate_entry(powernow_table, i);
983 			continue;
984 		}
985 
986 		/* verify voltage is OK -
987 		 * BIOSs are using "off" to indicate invalid */
988 		if (vid == VID_OFF) {
989 			pr_debug("invalid vid %u, ignoring\n", vid);
990 			invalidate_entry(powernow_table, i);
991 			continue;
992 		}
993 
994 		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
995 			printk(KERN_INFO PFX "invalid freq entries "
996 				"%u kHz vs. %u kHz\n", freq,
997 				(unsigned int)
998 				(data->acpi_data.states[i].core_frequency
999 				 * 1000));
1000 			invalidate_entry(powernow_table, i);
1001 			continue;
1002 		}
1003 	}
1004 	return 0;
1005 }
1006 
1007 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1008 {
1009 	if (data->acpi_data.state_count)
1010 		acpi_processor_unregister_performance(&data->acpi_data,
1011 				data->cpu);
1012 	free_cpumask_var(data->acpi_data.shared_cpu_map);
1013 }
1014 
1015 static int get_transition_latency(struct powernow_k8_data *data)
1016 {
1017 	int max_latency = 0;
1018 	int i;
1019 	for (i = 0; i < data->acpi_data.state_count; i++) {
1020 		int cur_latency = data->acpi_data.states[i].transition_latency
1021 			+ data->acpi_data.states[i].bus_master_latency;
1022 		if (cur_latency > max_latency)
1023 			max_latency = cur_latency;
1024 	}
1025 	if (max_latency == 0) {
1026 		/*
1027 		 * Fam 11h and later may return 0 as transition latency. This
1028 		 * is intended and means "very fast". While cpufreq core and
1029 		 * governors currently can handle that gracefully, better set it
1030 		 * to 1 to avoid problems in the future.
1031 		 */
1032 		if (boot_cpu_data.x86 < 0x11)
1033 			printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1034 				"latency\n");
1035 		max_latency = 1;
1036 	}
1037 	/* value in usecs, needs to be in nanoseconds */
1038 	return 1000 * max_latency;
1039 }
1040 
1041 /* Take a frequency, and issue the fid/vid transition command */
1042 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1043 		unsigned int index)
1044 {
1045 	u32 fid = 0;
1046 	u32 vid = 0;
1047 	int res, i;
1048 	struct cpufreq_freqs freqs;
1049 
1050 	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1051 
1052 	/* fid/vid correctness check for k8 */
1053 	/* fid are the lower 8 bits of the index we stored into
1054 	 * the cpufreq frequency table in find_psb_table, vid
1055 	 * are the upper 8 bits.
1056 	 */
1057 	fid = data->powernow_table[index].index & 0xFF;
1058 	vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1059 
1060 	pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1061 
1062 	if (query_current_values_with_pending_wait(data))
1063 		return 1;
1064 
1065 	if ((data->currvid == vid) && (data->currfid == fid)) {
1066 		pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1067 			fid, vid);
1068 		return 0;
1069 	}
1070 
1071 	pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1072 		smp_processor_id(), fid, vid);
1073 	freqs.old = find_khz_freq_from_fid(data->currfid);
1074 	freqs.new = find_khz_freq_from_fid(fid);
1075 
1076 	for_each_cpu(i, data->available_cores) {
1077 		freqs.cpu = i;
1078 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1079 	}
1080 
1081 	res = transition_fid_vid(data, fid, vid);
1082 	if (res)
1083 		return res;
1084 
1085 	freqs.new = find_khz_freq_from_fid(data->currfid);
1086 
1087 	for_each_cpu(i, data->available_cores) {
1088 		freqs.cpu = i;
1089 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1090 	}
1091 	return res;
1092 }
1093 
1094 /* Take a frequency, and issue the hardware pstate transition command */
1095 static int transition_frequency_pstate(struct powernow_k8_data *data,
1096 		unsigned int index)
1097 {
1098 	u32 pstate = 0;
1099 	int res, i;
1100 	struct cpufreq_freqs freqs;
1101 
1102 	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1103 
1104 	/* get MSR index for hardware pstate transition */
1105 	pstate = index & HW_PSTATE_MASK;
1106 	if (pstate > data->max_hw_pstate)
1107 		return -EINVAL;
1108 
1109 	freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1110 			data->currpstate);
1111 	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1112 
1113 	for_each_cpu(i, data->available_cores) {
1114 		freqs.cpu = i;
1115 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1116 	}
1117 
1118 	res = transition_pstate(data, pstate);
1119 	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1120 
1121 	for_each_cpu(i, data->available_cores) {
1122 		freqs.cpu = i;
1123 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1124 	}
1125 	return res;
1126 }
1127 
1128 /* Driver entry point to switch to the target frequency */
1129 static int powernowk8_target(struct cpufreq_policy *pol,
1130 		unsigned targfreq, unsigned relation)
1131 {
1132 	cpumask_var_t oldmask;
1133 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1134 	u32 checkfid;
1135 	u32 checkvid;
1136 	unsigned int newstate;
1137 	int ret = -EIO;
1138 
1139 	if (!data)
1140 		return -EINVAL;
1141 
1142 	checkfid = data->currfid;
1143 	checkvid = data->currvid;
1144 
1145 	/* only run on specific CPU from here on. */
1146 	/* This is poor form: use a workqueue or smp_call_function_single */
1147 	if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1148 		return -ENOMEM;
1149 
1150 	cpumask_copy(oldmask, tsk_cpus_allowed(current));
1151 	set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1152 
1153 	if (smp_processor_id() != pol->cpu) {
1154 		printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1155 		goto err_out;
1156 	}
1157 
1158 	if (pending_bit_stuck()) {
1159 		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1160 		goto err_out;
1161 	}
1162 
1163 	pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1164 		pol->cpu, targfreq, pol->min, pol->max, relation);
1165 
1166 	if (query_current_values_with_pending_wait(data))
1167 		goto err_out;
1168 
1169 	if (cpu_family != CPU_HW_PSTATE) {
1170 		pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1171 		data->currfid, data->currvid);
1172 
1173 		if ((checkvid != data->currvid) ||
1174 		    (checkfid != data->currfid)) {
1175 			printk(KERN_INFO PFX
1176 				"error - out of sync, fix 0x%x 0x%x, "
1177 				"vid 0x%x 0x%x\n",
1178 				checkfid, data->currfid,
1179 				checkvid, data->currvid);
1180 		}
1181 	}
1182 
1183 	if (cpufreq_frequency_table_target(pol, data->powernow_table,
1184 				targfreq, relation, &newstate))
1185 		goto err_out;
1186 
1187 	mutex_lock(&fidvid_mutex);
1188 
1189 	powernow_k8_acpi_pst_values(data, newstate);
1190 
1191 	if (cpu_family == CPU_HW_PSTATE)
1192 		ret = transition_frequency_pstate(data, newstate);
1193 	else
1194 		ret = transition_frequency_fidvid(data, newstate);
1195 	if (ret) {
1196 		printk(KERN_ERR PFX "transition frequency failed\n");
1197 		ret = 1;
1198 		mutex_unlock(&fidvid_mutex);
1199 		goto err_out;
1200 	}
1201 	mutex_unlock(&fidvid_mutex);
1202 
1203 	if (cpu_family == CPU_HW_PSTATE)
1204 		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1205 				newstate);
1206 	else
1207 		pol->cur = find_khz_freq_from_fid(data->currfid);
1208 	ret = 0;
1209 
1210 err_out:
1211 	set_cpus_allowed_ptr(current, oldmask);
1212 	free_cpumask_var(oldmask);
1213 	return ret;
1214 }
1215 
1216 /* Driver entry point to verify the policy and range of frequencies */
1217 static int powernowk8_verify(struct cpufreq_policy *pol)
1218 {
1219 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1220 
1221 	if (!data)
1222 		return -EINVAL;
1223 
1224 	return cpufreq_frequency_table_verify(pol, data->powernow_table);
1225 }
1226 
1227 struct init_on_cpu {
1228 	struct powernow_k8_data *data;
1229 	int rc;
1230 };
1231 
1232 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1233 {
1234 	struct init_on_cpu *init_on_cpu = _init_on_cpu;
1235 
1236 	if (pending_bit_stuck()) {
1237 		printk(KERN_ERR PFX "failing init, change pending bit set\n");
1238 		init_on_cpu->rc = -ENODEV;
1239 		return;
1240 	}
1241 
1242 	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1243 		init_on_cpu->rc = -ENODEV;
1244 		return;
1245 	}
1246 
1247 	if (cpu_family == CPU_OPTERON)
1248 		fidvid_msr_init();
1249 
1250 	init_on_cpu->rc = 0;
1251 }
1252 
1253 /* per CPU init entry point to the driver */
1254 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1255 {
1256 	static const char ACPI_PSS_BIOS_BUG_MSG[] =
1257 		KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1258 		FW_BUG PFX "Try again with latest BIOS.\n";
1259 	struct powernow_k8_data *data;
1260 	struct init_on_cpu init_on_cpu;
1261 	int rc;
1262 	struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1263 
1264 	if (!cpu_online(pol->cpu))
1265 		return -ENODEV;
1266 
1267 	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1268 	if (rc)
1269 		return -ENODEV;
1270 
1271 	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1272 	if (!data) {
1273 		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1274 		return -ENOMEM;
1275 	}
1276 
1277 	data->cpu = pol->cpu;
1278 	data->currpstate = HW_PSTATE_INVALID;
1279 
1280 	if (powernow_k8_cpu_init_acpi(data)) {
1281 		/*
1282 		 * Use the PSB BIOS structure. This is only available on
1283 		 * an UP version, and is deprecated by AMD.
1284 		 */
1285 		if (num_online_cpus() != 1) {
1286 			printk_once(ACPI_PSS_BIOS_BUG_MSG);
1287 			goto err_out;
1288 		}
1289 		if (pol->cpu != 0) {
1290 			printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1291 			       "CPU other than CPU0. Complain to your BIOS "
1292 			       "vendor.\n");
1293 			goto err_out;
1294 		}
1295 		rc = find_psb_table(data);
1296 		if (rc)
1297 			goto err_out;
1298 
1299 		/* Take a crude guess here.
1300 		 * That guess was in microseconds, so multiply with 1000 */
1301 		pol->cpuinfo.transition_latency = (
1302 			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1303 			 ((1 << data->irt) * 30)) * 1000;
1304 	} else /* ACPI _PSS objects available */
1305 		pol->cpuinfo.transition_latency = get_transition_latency(data);
1306 
1307 	/* only run on specific CPU from here on */
1308 	init_on_cpu.data = data;
1309 	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1310 				 &init_on_cpu, 1);
1311 	rc = init_on_cpu.rc;
1312 	if (rc != 0)
1313 		goto err_out_exit_acpi;
1314 
1315 	if (cpu_family == CPU_HW_PSTATE)
1316 		cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1317 	else
1318 		cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1319 	data->available_cores = pol->cpus;
1320 
1321 	if (cpu_family == CPU_HW_PSTATE)
1322 		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1323 				data->currpstate);
1324 	else
1325 		pol->cur = find_khz_freq_from_fid(data->currfid);
1326 	pr_debug("policy current frequency %d kHz\n", pol->cur);
1327 
1328 	/* min/max the cpu is capable of */
1329 	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1330 		printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1331 		powernow_k8_cpu_exit_acpi(data);
1332 		kfree(data->powernow_table);
1333 		kfree(data);
1334 		return -EINVAL;
1335 	}
1336 
1337 	/* Check for APERF/MPERF support in hardware */
1338 	if (cpu_has(c, X86_FEATURE_APERFMPERF))
1339 		cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1340 
1341 	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1342 
1343 	if (cpu_family == CPU_HW_PSTATE)
1344 		pr_debug("cpu_init done, current pstate 0x%x\n",
1345 				data->currpstate);
1346 	else
1347 		pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1348 			data->currfid, data->currvid);
1349 
1350 	per_cpu(powernow_data, pol->cpu) = data;
1351 
1352 	return 0;
1353 
1354 err_out_exit_acpi:
1355 	powernow_k8_cpu_exit_acpi(data);
1356 
1357 err_out:
1358 	kfree(data);
1359 	return -ENODEV;
1360 }
1361 
1362 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1363 {
1364 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1365 
1366 	if (!data)
1367 		return -EINVAL;
1368 
1369 	powernow_k8_cpu_exit_acpi(data);
1370 
1371 	cpufreq_frequency_table_put_attr(pol->cpu);
1372 
1373 	kfree(data->powernow_table);
1374 	kfree(data);
1375 	per_cpu(powernow_data, pol->cpu) = NULL;
1376 
1377 	return 0;
1378 }
1379 
1380 static void query_values_on_cpu(void *_err)
1381 {
1382 	int *err = _err;
1383 	struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1384 
1385 	*err = query_current_values_with_pending_wait(data);
1386 }
1387 
1388 static unsigned int powernowk8_get(unsigned int cpu)
1389 {
1390 	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1391 	unsigned int khz = 0;
1392 	int err;
1393 
1394 	if (!data)
1395 		return 0;
1396 
1397 	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1398 	if (err)
1399 		goto out;
1400 
1401 	if (cpu_family == CPU_HW_PSTATE)
1402 		khz = find_khz_freq_from_pstate(data->powernow_table,
1403 						data->currpstate);
1404 	else
1405 		khz = find_khz_freq_from_fid(data->currfid);
1406 
1407 
1408 out:
1409 	return khz;
1410 }
1411 
1412 static void _cpb_toggle_msrs(bool t)
1413 {
1414 	int cpu;
1415 
1416 	get_online_cpus();
1417 
1418 	rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1419 
1420 	for_each_cpu(cpu, cpu_online_mask) {
1421 		struct msr *reg = per_cpu_ptr(msrs, cpu);
1422 		if (t)
1423 			reg->l &= ~BIT(25);
1424 		else
1425 			reg->l |= BIT(25);
1426 	}
1427 	wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1428 
1429 	put_online_cpus();
1430 }
1431 
1432 /*
1433  * Switch on/off core performance boosting.
1434  *
1435  * 0=disable
1436  * 1=enable.
1437  */
1438 static void cpb_toggle(bool t)
1439 {
1440 	if (!cpb_capable)
1441 		return;
1442 
1443 	if (t && !cpb_enabled) {
1444 		cpb_enabled = true;
1445 		_cpb_toggle_msrs(t);
1446 		printk(KERN_INFO PFX "Core Boosting enabled.\n");
1447 	} else if (!t && cpb_enabled) {
1448 		cpb_enabled = false;
1449 		_cpb_toggle_msrs(t);
1450 		printk(KERN_INFO PFX "Core Boosting disabled.\n");
1451 	}
1452 }
1453 
1454 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1455 				 size_t count)
1456 {
1457 	int ret = -EINVAL;
1458 	unsigned long val = 0;
1459 
1460 	ret = strict_strtoul(buf, 10, &val);
1461 	if (!ret && (val == 0 || val == 1) && cpb_capable)
1462 		cpb_toggle(val);
1463 	else
1464 		return -EINVAL;
1465 
1466 	return count;
1467 }
1468 
1469 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1470 {
1471 	return sprintf(buf, "%u\n", cpb_enabled);
1472 }
1473 
1474 #define define_one_rw(_name) \
1475 static struct freq_attr _name = \
1476 __ATTR(_name, 0644, show_##_name, store_##_name)
1477 
1478 define_one_rw(cpb);
1479 
1480 static struct freq_attr *powernow_k8_attr[] = {
1481 	&cpufreq_freq_attr_scaling_available_freqs,
1482 	&cpb,
1483 	NULL,
1484 };
1485 
1486 static struct cpufreq_driver cpufreq_amd64_driver = {
1487 	.verify		= powernowk8_verify,
1488 	.target		= powernowk8_target,
1489 	.bios_limit	= acpi_processor_get_bios_limit,
1490 	.init		= powernowk8_cpu_init,
1491 	.exit		= __devexit_p(powernowk8_cpu_exit),
1492 	.get		= powernowk8_get,
1493 	.name		= "powernow-k8",
1494 	.owner		= THIS_MODULE,
1495 	.attr		= powernow_k8_attr,
1496 };
1497 
1498 /*
1499  * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1500  * cannot block the remaining ones from boosting. On the CPU_UP path we
1501  * simply keep the boost-disable flag in sync with the current global
1502  * state.
1503  */
1504 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1505 		      void *hcpu)
1506 {
1507 	unsigned cpu = (long)hcpu;
1508 	u32 lo, hi;
1509 
1510 	switch (action) {
1511 	case CPU_UP_PREPARE:
1512 	case CPU_UP_PREPARE_FROZEN:
1513 
1514 		if (!cpb_enabled) {
1515 			rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1516 			lo |= BIT(25);
1517 			wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1518 		}
1519 		break;
1520 
1521 	case CPU_DOWN_PREPARE:
1522 	case CPU_DOWN_PREPARE_FROZEN:
1523 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1524 		lo &= ~BIT(25);
1525 		wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1526 		break;
1527 
1528 	default:
1529 		break;
1530 	}
1531 
1532 	return NOTIFY_OK;
1533 }
1534 
1535 static struct notifier_block cpb_nb = {
1536 	.notifier_call		= cpb_notify,
1537 };
1538 
1539 /* driver entry point for init */
1540 static int __cpuinit powernowk8_init(void)
1541 {
1542 	unsigned int i, supported_cpus = 0, cpu;
1543 	int rv;
1544 
1545 	for_each_online_cpu(i) {
1546 		int rc;
1547 		smp_call_function_single(i, check_supported_cpu, &rc, 1);
1548 		if (rc == 0)
1549 			supported_cpus++;
1550 	}
1551 
1552 	if (supported_cpus != num_online_cpus())
1553 		return -ENODEV;
1554 
1555 	printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1556 		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1557 
1558 	if (boot_cpu_has(X86_FEATURE_CPB)) {
1559 
1560 		cpb_capable = true;
1561 
1562 		msrs = msrs_alloc();
1563 		if (!msrs) {
1564 			printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1565 			return -ENOMEM;
1566 		}
1567 
1568 		register_cpu_notifier(&cpb_nb);
1569 
1570 		rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1571 
1572 		for_each_cpu(cpu, cpu_online_mask) {
1573 			struct msr *reg = per_cpu_ptr(msrs, cpu);
1574 			cpb_enabled |= !(!!(reg->l & BIT(25)));
1575 		}
1576 
1577 		printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1578 			(cpb_enabled ? "on" : "off"));
1579 	}
1580 
1581 	rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1582 	if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1583 		unregister_cpu_notifier(&cpb_nb);
1584 		msrs_free(msrs);
1585 		msrs = NULL;
1586 	}
1587 	return rv;
1588 }
1589 
1590 /* driver entry point for term */
1591 static void __exit powernowk8_exit(void)
1592 {
1593 	pr_debug("exit\n");
1594 
1595 	if (boot_cpu_has(X86_FEATURE_CPB)) {
1596 		msrs_free(msrs);
1597 		msrs = NULL;
1598 
1599 		unregister_cpu_notifier(&cpb_nb);
1600 	}
1601 
1602 	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1603 }
1604 
1605 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1606 		"Mark Langsdorf <mark.langsdorf@amd.com>");
1607 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1608 MODULE_LICENSE("GPL");
1609 
1610 late_initcall(powernowk8_init);
1611 module_exit(powernowk8_exit);
1612