xref: /linux/drivers/cpufreq/powernow-k8.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  *   (c) 2003-2012 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Maintainer:
8  *  Andreas Herrmann <andreas.herrmann3@amd.com>
9  *
10  *  Based on the powernow-k7.c module written by Dave Jones.
11  *  (C) 2003 Dave Jones on behalf of SuSE Labs
12  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
13  *  (C) 2004 Pavel Machek <pavel@ucw.cz>
14  *  Licensed under the terms of the GNU GPL License version 2.
15  *  Based upon datasheets & sample CPUs kindly provided by AMD.
16  *
17  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
18  *  Dominik Brodowski, Jacob Shin, and others.
19  *  Originally developed by Paul Devriendt.
20  *
21  *  Processor information obtained from Chapter 9 (Power and Thermal
22  *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23  *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24  *  Power Management" in BKDGs for newer AMD CPU families.
25  *
26  *  Tables for specific CPUs can be inferred from AMD's processor
27  *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
28  */
29 
30 #include <linux/kernel.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/cpumask.h>
38 #include <linux/sched.h>	/* for current / set_cpus_allowed() */
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 
42 #include <asm/msr.h>
43 
44 #include <linux/acpi.h>
45 #include <linux/mutex.h>
46 #include <acpi/processor.h>
47 
48 #define PFX "powernow-k8: "
49 #define VERSION "version 2.20.00"
50 #include "powernow-k8.h"
51 #include "mperf.h"
52 
53 /* serialize freq changes  */
54 static DEFINE_MUTEX(fidvid_mutex);
55 
56 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
57 
58 static int cpu_family = CPU_OPTERON;
59 
60 /* array to map SW pstate number to acpi state */
61 static u32 ps_to_as[8];
62 
63 /* core performance boost */
64 static bool cpb_capable, cpb_enabled;
65 static struct msr __percpu *msrs;
66 
67 static struct cpufreq_driver cpufreq_amd64_driver;
68 
69 #ifndef CONFIG_SMP
70 static inline const struct cpumask *cpu_core_mask(int cpu)
71 {
72 	return cpumask_of(0);
73 }
74 #endif
75 
76 /* Return a frequency in MHz, given an input fid */
77 static u32 find_freq_from_fid(u32 fid)
78 {
79 	return 800 + (fid * 100);
80 }
81 
82 /* Return a frequency in KHz, given an input fid */
83 static u32 find_khz_freq_from_fid(u32 fid)
84 {
85 	return 1000 * find_freq_from_fid(fid);
86 }
87 
88 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
89 				     u32 pstate)
90 {
91 	return data[ps_to_as[pstate]].frequency;
92 }
93 
94 /* Return the vco fid for an input fid
95  *
96  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
97  * only from corresponding high fids. This returns "high" fid corresponding to
98  * "low" one.
99  */
100 static u32 convert_fid_to_vco_fid(u32 fid)
101 {
102 	if (fid < HI_FID_TABLE_BOTTOM)
103 		return 8 + (2 * fid);
104 	else
105 		return fid;
106 }
107 
108 /*
109  * Return 1 if the pending bit is set. Unless we just instructed the processor
110  * to transition to a new state, seeing this bit set is really bad news.
111  */
112 static int pending_bit_stuck(void)
113 {
114 	u32 lo, hi;
115 
116 	if (cpu_family == CPU_HW_PSTATE)
117 		return 0;
118 
119 	rdmsr(MSR_FIDVID_STATUS, lo, hi);
120 	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
121 }
122 
123 /*
124  * Update the global current fid / vid values from the status msr.
125  * Returns 1 on error.
126  */
127 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
128 {
129 	u32 lo, hi;
130 	u32 i = 0;
131 
132 	if (cpu_family == CPU_HW_PSTATE) {
133 		rdmsr(MSR_PSTATE_STATUS, lo, hi);
134 		i = lo & HW_PSTATE_MASK;
135 		data->currpstate = i;
136 
137 		/*
138 		 * a workaround for family 11h erratum 311 might cause
139 		 * an "out-of-range Pstate if the core is in Pstate-0
140 		 */
141 		if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
142 			data->currpstate = HW_PSTATE_0;
143 
144 		return 0;
145 	}
146 	do {
147 		if (i++ > 10000) {
148 			pr_debug("detected change pending stuck\n");
149 			return 1;
150 		}
151 		rdmsr(MSR_FIDVID_STATUS, lo, hi);
152 	} while (lo & MSR_S_LO_CHANGE_PENDING);
153 
154 	data->currvid = hi & MSR_S_HI_CURRENT_VID;
155 	data->currfid = lo & MSR_S_LO_CURRENT_FID;
156 
157 	return 0;
158 }
159 
160 /* the isochronous relief time */
161 static void count_off_irt(struct powernow_k8_data *data)
162 {
163 	udelay((1 << data->irt) * 10);
164 	return;
165 }
166 
167 /* the voltage stabilization time */
168 static void count_off_vst(struct powernow_k8_data *data)
169 {
170 	udelay(data->vstable * VST_UNITS_20US);
171 	return;
172 }
173 
174 /* need to init the control msr to a safe value (for each cpu) */
175 static void fidvid_msr_init(void)
176 {
177 	u32 lo, hi;
178 	u8 fid, vid;
179 
180 	rdmsr(MSR_FIDVID_STATUS, lo, hi);
181 	vid = hi & MSR_S_HI_CURRENT_VID;
182 	fid = lo & MSR_S_LO_CURRENT_FID;
183 	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
184 	hi = MSR_C_HI_STP_GNT_BENIGN;
185 	pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
186 	wrmsr(MSR_FIDVID_CTL, lo, hi);
187 }
188 
189 /* write the new fid value along with the other control fields to the msr */
190 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
191 {
192 	u32 lo;
193 	u32 savevid = data->currvid;
194 	u32 i = 0;
195 
196 	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
197 		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
198 		return 1;
199 	}
200 
201 	lo = fid;
202 	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
203 	lo |= MSR_C_LO_INIT_FID_VID;
204 
205 	pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206 		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
207 
208 	do {
209 		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
210 		if (i++ > 100) {
211 			printk(KERN_ERR PFX
212 				"Hardware error - pending bit very stuck - "
213 				"no further pstate changes possible\n");
214 			return 1;
215 		}
216 	} while (query_current_values_with_pending_wait(data));
217 
218 	count_off_irt(data);
219 
220 	if (savevid != data->currvid) {
221 		printk(KERN_ERR PFX
222 			"vid change on fid trans, old 0x%x, new 0x%x\n",
223 			savevid, data->currvid);
224 		return 1;
225 	}
226 
227 	if (fid != data->currfid) {
228 		printk(KERN_ERR PFX
229 			"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
230 			data->currfid);
231 		return 1;
232 	}
233 
234 	return 0;
235 }
236 
237 /* Write a new vid to the hardware */
238 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
239 {
240 	u32 lo;
241 	u32 savefid = data->currfid;
242 	int i = 0;
243 
244 	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
245 		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
246 		return 1;
247 	}
248 
249 	lo = data->currfid;
250 	lo |= (vid << MSR_C_LO_VID_SHIFT);
251 	lo |= MSR_C_LO_INIT_FID_VID;
252 
253 	pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
254 		vid, lo, STOP_GRANT_5NS);
255 
256 	do {
257 		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
258 		if (i++ > 100) {
259 			printk(KERN_ERR PFX "internal error - pending bit "
260 					"very stuck - no further pstate "
261 					"changes possible\n");
262 			return 1;
263 		}
264 	} while (query_current_values_with_pending_wait(data));
265 
266 	if (savefid != data->currfid) {
267 		printk(KERN_ERR PFX "fid changed on vid trans, old "
268 			"0x%x new 0x%x\n",
269 		       savefid, data->currfid);
270 		return 1;
271 	}
272 
273 	if (vid != data->currvid) {
274 		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
275 				"curr 0x%x\n",
276 				vid, data->currvid);
277 		return 1;
278 	}
279 
280 	return 0;
281 }
282 
283 /*
284  * Reduce the vid by the max of step or reqvid.
285  * Decreasing vid codes represent increasing voltages:
286  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
287  */
288 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
289 		u32 reqvid, u32 step)
290 {
291 	if ((data->currvid - reqvid) > step)
292 		reqvid = data->currvid - step;
293 
294 	if (write_new_vid(data, reqvid))
295 		return 1;
296 
297 	count_off_vst(data);
298 
299 	return 0;
300 }
301 
302 /* Change hardware pstate by single MSR write */
303 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
304 {
305 	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
306 	data->currpstate = pstate;
307 	return 0;
308 }
309 
310 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
311 static int transition_fid_vid(struct powernow_k8_data *data,
312 		u32 reqfid, u32 reqvid)
313 {
314 	if (core_voltage_pre_transition(data, reqvid, reqfid))
315 		return 1;
316 
317 	if (core_frequency_transition(data, reqfid))
318 		return 1;
319 
320 	if (core_voltage_post_transition(data, reqvid))
321 		return 1;
322 
323 	if (query_current_values_with_pending_wait(data))
324 		return 1;
325 
326 	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
327 		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
328 				"curr 0x%x 0x%x\n",
329 				smp_processor_id(),
330 				reqfid, reqvid, data->currfid, data->currvid);
331 		return 1;
332 	}
333 
334 	pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
335 		smp_processor_id(), data->currfid, data->currvid);
336 
337 	return 0;
338 }
339 
340 /* Phase 1 - core voltage transition ... setup voltage */
341 static int core_voltage_pre_transition(struct powernow_k8_data *data,
342 		u32 reqvid, u32 reqfid)
343 {
344 	u32 rvosteps = data->rvo;
345 	u32 savefid = data->currfid;
346 	u32 maxvid, lo, rvomult = 1;
347 
348 	pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
349 		"reqvid 0x%x, rvo 0x%x\n",
350 		smp_processor_id(),
351 		data->currfid, data->currvid, reqvid, data->rvo);
352 
353 	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
354 		rvomult = 2;
355 	rvosteps *= rvomult;
356 	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
357 	maxvid = 0x1f & (maxvid >> 16);
358 	pr_debug("ph1 maxvid=0x%x\n", maxvid);
359 	if (reqvid < maxvid) /* lower numbers are higher voltages */
360 		reqvid = maxvid;
361 
362 	while (data->currvid > reqvid) {
363 		pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
364 			data->currvid, reqvid);
365 		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
366 			return 1;
367 	}
368 
369 	while ((rvosteps > 0) &&
370 			((rvomult * data->rvo + data->currvid) > reqvid)) {
371 		if (data->currvid == maxvid) {
372 			rvosteps = 0;
373 		} else {
374 			pr_debug("ph1: changing vid for rvo, req 0x%x\n",
375 				data->currvid - 1);
376 			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
377 				return 1;
378 			rvosteps--;
379 		}
380 	}
381 
382 	if (query_current_values_with_pending_wait(data))
383 		return 1;
384 
385 	if (savefid != data->currfid) {
386 		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
387 				data->currfid);
388 		return 1;
389 	}
390 
391 	pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
392 		data->currfid, data->currvid);
393 
394 	return 0;
395 }
396 
397 /* Phase 2 - core frequency transition */
398 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
399 {
400 	u32 vcoreqfid, vcocurrfid, vcofiddiff;
401 	u32 fid_interval, savevid = data->currvid;
402 
403 	if (data->currfid == reqfid) {
404 		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
405 				data->currfid);
406 		return 0;
407 	}
408 
409 	pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
410 		"reqfid 0x%x\n",
411 		smp_processor_id(),
412 		data->currfid, data->currvid, reqfid);
413 
414 	vcoreqfid = convert_fid_to_vco_fid(reqfid);
415 	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
416 	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
417 	    : vcoreqfid - vcocurrfid;
418 
419 	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
420 		vcofiddiff = 0;
421 
422 	while (vcofiddiff > 2) {
423 		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
424 
425 		if (reqfid > data->currfid) {
426 			if (data->currfid > LO_FID_TABLE_TOP) {
427 				if (write_new_fid(data,
428 						data->currfid + fid_interval))
429 					return 1;
430 			} else {
431 				if (write_new_fid
432 				    (data,
433 				     2 + convert_fid_to_vco_fid(data->currfid)))
434 					return 1;
435 			}
436 		} else {
437 			if (write_new_fid(data, data->currfid - fid_interval))
438 				return 1;
439 		}
440 
441 		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
442 		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
443 		    : vcoreqfid - vcocurrfid;
444 	}
445 
446 	if (write_new_fid(data, reqfid))
447 		return 1;
448 
449 	if (query_current_values_with_pending_wait(data))
450 		return 1;
451 
452 	if (data->currfid != reqfid) {
453 		printk(KERN_ERR PFX
454 			"ph2: mismatch, failed fid transition, "
455 			"curr 0x%x, req 0x%x\n",
456 			data->currfid, reqfid);
457 		return 1;
458 	}
459 
460 	if (savevid != data->currvid) {
461 		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
462 			savevid, data->currvid);
463 		return 1;
464 	}
465 
466 	pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
467 		data->currfid, data->currvid);
468 
469 	return 0;
470 }
471 
472 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
473 static int core_voltage_post_transition(struct powernow_k8_data *data,
474 		u32 reqvid)
475 {
476 	u32 savefid = data->currfid;
477 	u32 savereqvid = reqvid;
478 
479 	pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
480 		smp_processor_id(),
481 		data->currfid, data->currvid);
482 
483 	if (reqvid != data->currvid) {
484 		if (write_new_vid(data, reqvid))
485 			return 1;
486 
487 		if (savefid != data->currfid) {
488 			printk(KERN_ERR PFX
489 			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
490 			       savefid, data->currfid);
491 			return 1;
492 		}
493 
494 		if (data->currvid != reqvid) {
495 			printk(KERN_ERR PFX
496 			       "ph3: failed vid transition\n, "
497 			       "req 0x%x, curr 0x%x",
498 			       reqvid, data->currvid);
499 			return 1;
500 		}
501 	}
502 
503 	if (query_current_values_with_pending_wait(data))
504 		return 1;
505 
506 	if (savereqvid != data->currvid) {
507 		pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
508 		return 1;
509 	}
510 
511 	if (savefid != data->currfid) {
512 		pr_debug("ph3 failed, currfid changed 0x%x\n",
513 			data->currfid);
514 		return 1;
515 	}
516 
517 	pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
518 		data->currfid, data->currvid);
519 
520 	return 0;
521 }
522 
523 static void check_supported_cpu(void *_rc)
524 {
525 	u32 eax, ebx, ecx, edx;
526 	int *rc = _rc;
527 
528 	*rc = -ENODEV;
529 
530 	if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD)
531 		return;
532 
533 	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
534 	if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
535 	    ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
536 		return;
537 
538 	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
539 		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
540 		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
541 			printk(KERN_INFO PFX
542 				"Processor cpuid %x not supported\n", eax);
543 			return;
544 		}
545 
546 		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
547 		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
548 			printk(KERN_INFO PFX
549 			       "No frequency change capabilities detected\n");
550 			return;
551 		}
552 
553 		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
554 		if ((edx & P_STATE_TRANSITION_CAPABLE)
555 			!= P_STATE_TRANSITION_CAPABLE) {
556 			printk(KERN_INFO PFX
557 				"Power state transitions not supported\n");
558 			return;
559 		}
560 	} else { /* must be a HW Pstate capable processor */
561 		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
562 		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
563 			cpu_family = CPU_HW_PSTATE;
564 		else
565 			return;
566 	}
567 
568 	*rc = 0;
569 }
570 
571 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
572 		u8 maxvid)
573 {
574 	unsigned int j;
575 	u8 lastfid = 0xff;
576 
577 	for (j = 0; j < data->numps; j++) {
578 		if (pst[j].vid > LEAST_VID) {
579 			printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
580 			       j, pst[j].vid);
581 			return -EINVAL;
582 		}
583 		if (pst[j].vid < data->rvo) {
584 			/* vid + rvo >= 0 */
585 			printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
586 			       " %d\n", j);
587 			return -ENODEV;
588 		}
589 		if (pst[j].vid < maxvid + data->rvo) {
590 			/* vid + rvo >= maxvid */
591 			printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
592 			       " %d\n", j);
593 			return -ENODEV;
594 		}
595 		if (pst[j].fid > MAX_FID) {
596 			printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
597 			       " %d\n", j);
598 			return -ENODEV;
599 		}
600 		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
601 			/* Only first fid is allowed to be in "low" range */
602 			printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
603 			       "0x%x\n", j, pst[j].fid);
604 			return -EINVAL;
605 		}
606 		if (pst[j].fid < lastfid)
607 			lastfid = pst[j].fid;
608 	}
609 	if (lastfid & 1) {
610 		printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
611 		return -EINVAL;
612 	}
613 	if (lastfid > LO_FID_TABLE_TOP)
614 		printk(KERN_INFO FW_BUG PFX
615 			"first fid not from lo freq table\n");
616 
617 	return 0;
618 }
619 
620 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
621 		unsigned int entry)
622 {
623 	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
624 }
625 
626 static void print_basics(struct powernow_k8_data *data)
627 {
628 	int j;
629 	for (j = 0; j < data->numps; j++) {
630 		if (data->powernow_table[j].frequency !=
631 				CPUFREQ_ENTRY_INVALID) {
632 			if (cpu_family == CPU_HW_PSTATE) {
633 				printk(KERN_INFO PFX
634 					"   %d : pstate %d (%d MHz)\n", j,
635 					data->powernow_table[j].index,
636 					data->powernow_table[j].frequency/1000);
637 			} else {
638 				printk(KERN_INFO PFX
639 					"fid 0x%x (%d MHz), vid 0x%x\n",
640 					data->powernow_table[j].index & 0xff,
641 					data->powernow_table[j].frequency/1000,
642 					data->powernow_table[j].index >> 8);
643 			}
644 		}
645 	}
646 	if (data->batps)
647 		printk(KERN_INFO PFX "Only %d pstates on battery\n",
648 				data->batps);
649 }
650 
651 static u32 freq_from_fid_did(u32 fid, u32 did)
652 {
653 	u32 mhz = 0;
654 
655 	if (boot_cpu_data.x86 == 0x10)
656 		mhz = (100 * (fid + 0x10)) >> did;
657 	else if (boot_cpu_data.x86 == 0x11)
658 		mhz = (100 * (fid + 8)) >> did;
659 	else
660 		BUG();
661 
662 	return mhz * 1000;
663 }
664 
665 static int fill_powernow_table(struct powernow_k8_data *data,
666 		struct pst_s *pst, u8 maxvid)
667 {
668 	struct cpufreq_frequency_table *powernow_table;
669 	unsigned int j;
670 
671 	if (data->batps) {
672 		/* use ACPI support to get full speed on mains power */
673 		printk(KERN_WARNING PFX
674 			"Only %d pstates usable (use ACPI driver for full "
675 			"range\n", data->batps);
676 		data->numps = data->batps;
677 	}
678 
679 	for (j = 1; j < data->numps; j++) {
680 		if (pst[j-1].fid >= pst[j].fid) {
681 			printk(KERN_ERR PFX "PST out of sequence\n");
682 			return -EINVAL;
683 		}
684 	}
685 
686 	if (data->numps < 2) {
687 		printk(KERN_ERR PFX "no p states to transition\n");
688 		return -ENODEV;
689 	}
690 
691 	if (check_pst_table(data, pst, maxvid))
692 		return -EINVAL;
693 
694 	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
695 		* (data->numps + 1)), GFP_KERNEL);
696 	if (!powernow_table) {
697 		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
698 		return -ENOMEM;
699 	}
700 
701 	for (j = 0; j < data->numps; j++) {
702 		int freq;
703 		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
704 		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
705 		freq = find_khz_freq_from_fid(pst[j].fid);
706 		powernow_table[j].frequency = freq;
707 	}
708 	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
709 	powernow_table[data->numps].index = 0;
710 
711 	if (query_current_values_with_pending_wait(data)) {
712 		kfree(powernow_table);
713 		return -EIO;
714 	}
715 
716 	pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
717 	data->powernow_table = powernow_table;
718 	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
719 		print_basics(data);
720 
721 	for (j = 0; j < data->numps; j++)
722 		if ((pst[j].fid == data->currfid) &&
723 		    (pst[j].vid == data->currvid))
724 			return 0;
725 
726 	pr_debug("currfid/vid do not match PST, ignoring\n");
727 	return 0;
728 }
729 
730 /* Find and validate the PSB/PST table in BIOS. */
731 static int find_psb_table(struct powernow_k8_data *data)
732 {
733 	struct psb_s *psb;
734 	unsigned int i;
735 	u32 mvs;
736 	u8 maxvid;
737 	u32 cpst = 0;
738 	u32 thiscpuid;
739 
740 	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
741 		/* Scan BIOS looking for the signature. */
742 		/* It can not be at ffff0 - it is too big. */
743 
744 		psb = phys_to_virt(i);
745 		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
746 			continue;
747 
748 		pr_debug("found PSB header at 0x%p\n", psb);
749 
750 		pr_debug("table vers: 0x%x\n", psb->tableversion);
751 		if (psb->tableversion != PSB_VERSION_1_4) {
752 			printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
753 			return -ENODEV;
754 		}
755 
756 		pr_debug("flags: 0x%x\n", psb->flags1);
757 		if (psb->flags1) {
758 			printk(KERN_ERR FW_BUG PFX "unknown flags\n");
759 			return -ENODEV;
760 		}
761 
762 		data->vstable = psb->vstable;
763 		pr_debug("voltage stabilization time: %d(*20us)\n",
764 				data->vstable);
765 
766 		pr_debug("flags2: 0x%x\n", psb->flags2);
767 		data->rvo = psb->flags2 & 3;
768 		data->irt = ((psb->flags2) >> 2) & 3;
769 		mvs = ((psb->flags2) >> 4) & 3;
770 		data->vidmvs = 1 << mvs;
771 		data->batps = ((psb->flags2) >> 6) & 3;
772 
773 		pr_debug("ramp voltage offset: %d\n", data->rvo);
774 		pr_debug("isochronous relief time: %d\n", data->irt);
775 		pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
776 
777 		pr_debug("numpst: 0x%x\n", psb->num_tables);
778 		cpst = psb->num_tables;
779 		if ((psb->cpuid == 0x00000fc0) ||
780 		    (psb->cpuid == 0x00000fe0)) {
781 			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
782 			if ((thiscpuid == 0x00000fc0) ||
783 			    (thiscpuid == 0x00000fe0))
784 				cpst = 1;
785 		}
786 		if (cpst != 1) {
787 			printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
788 			return -ENODEV;
789 		}
790 
791 		data->plllock = psb->plllocktime;
792 		pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
793 		pr_debug("maxfid: 0x%x\n", psb->maxfid);
794 		pr_debug("maxvid: 0x%x\n", psb->maxvid);
795 		maxvid = psb->maxvid;
796 
797 		data->numps = psb->numps;
798 		pr_debug("numpstates: 0x%x\n", data->numps);
799 		return fill_powernow_table(data,
800 				(struct pst_s *)(psb+1), maxvid);
801 	}
802 	/*
803 	 * If you see this message, complain to BIOS manufacturer. If
804 	 * he tells you "we do not support Linux" or some similar
805 	 * nonsense, remember that Windows 2000 uses the same legacy
806 	 * mechanism that the old Linux PSB driver uses. Tell them it
807 	 * is broken with Windows 2000.
808 	 *
809 	 * The reference to the AMD documentation is chapter 9 in the
810 	 * BIOS and Kernel Developer's Guide, which is available on
811 	 * www.amd.com
812 	 */
813 	printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
814 	printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
815 		" and Cool'N'Quiet support is enabled in BIOS setup\n");
816 	return -ENODEV;
817 }
818 
819 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
820 		unsigned int index)
821 {
822 	u64 control;
823 
824 	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
825 		return;
826 
827 	control = data->acpi_data.states[index].control;
828 	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
829 	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
830 	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
831 	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
832 	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
833 	data->vstable = (control >> VST_SHIFT) & VST_MASK;
834 }
835 
836 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
837 {
838 	struct cpufreq_frequency_table *powernow_table;
839 	int ret_val = -ENODEV;
840 	u64 control, status;
841 
842 	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
843 		pr_debug("register performance failed: bad ACPI data\n");
844 		return -EIO;
845 	}
846 
847 	/* verify the data contained in the ACPI structures */
848 	if (data->acpi_data.state_count <= 1) {
849 		pr_debug("No ACPI P-States\n");
850 		goto err_out;
851 	}
852 
853 	control = data->acpi_data.control_register.space_id;
854 	status = data->acpi_data.status_register.space_id;
855 
856 	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
857 	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
858 		pr_debug("Invalid control/status registers (%llx - %llx)\n",
859 			control, status);
860 		goto err_out;
861 	}
862 
863 	/* fill in data->powernow_table */
864 	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
865 		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
866 	if (!powernow_table) {
867 		pr_debug("powernow_table memory alloc failure\n");
868 		goto err_out;
869 	}
870 
871 	/* fill in data */
872 	data->numps = data->acpi_data.state_count;
873 	powernow_k8_acpi_pst_values(data, 0);
874 
875 	if (cpu_family == CPU_HW_PSTATE)
876 		ret_val = fill_powernow_table_pstate(data, powernow_table);
877 	else
878 		ret_val = fill_powernow_table_fidvid(data, powernow_table);
879 	if (ret_val)
880 		goto err_out_mem;
881 
882 	powernow_table[data->acpi_data.state_count].frequency =
883 		CPUFREQ_TABLE_END;
884 	powernow_table[data->acpi_data.state_count].index = 0;
885 	data->powernow_table = powernow_table;
886 
887 	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
888 		print_basics(data);
889 
890 	/* notify BIOS that we exist */
891 	acpi_processor_notify_smm(THIS_MODULE);
892 
893 	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
894 		printk(KERN_ERR PFX
895 				"unable to alloc powernow_k8_data cpumask\n");
896 		ret_val = -ENOMEM;
897 		goto err_out_mem;
898 	}
899 
900 	return 0;
901 
902 err_out_mem:
903 	kfree(powernow_table);
904 
905 err_out:
906 	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
907 
908 	/* data->acpi_data.state_count informs us at ->exit()
909 	 * whether ACPI was used */
910 	data->acpi_data.state_count = 0;
911 
912 	return ret_val;
913 }
914 
915 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
916 		struct cpufreq_frequency_table *powernow_table)
917 {
918 	int i;
919 	u32 hi = 0, lo = 0;
920 	rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
921 	data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
922 
923 	for (i = 0; i < data->acpi_data.state_count; i++) {
924 		u32 index;
925 
926 		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
927 		if (index > data->max_hw_pstate) {
928 			printk(KERN_ERR PFX "invalid pstate %d - "
929 					"bad value %d.\n", i, index);
930 			printk(KERN_ERR PFX "Please report to BIOS "
931 					"manufacturer\n");
932 			invalidate_entry(powernow_table, i);
933 			continue;
934 		}
935 
936 		ps_to_as[index] = i;
937 
938 		/* Frequency may be rounded for these */
939 		if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
940 				 || boot_cpu_data.x86 == 0x11) {
941 
942 			rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
943 			if (!(hi & HW_PSTATE_VALID_MASK)) {
944 				pr_debug("invalid pstate %d, ignoring\n", index);
945 				invalidate_entry(powernow_table, i);
946 				continue;
947 			}
948 
949 			powernow_table[i].frequency =
950 				freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
951 		} else
952 			powernow_table[i].frequency =
953 				data->acpi_data.states[i].core_frequency * 1000;
954 
955 		powernow_table[i].index = index;
956 	}
957 	return 0;
958 }
959 
960 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
961 		struct cpufreq_frequency_table *powernow_table)
962 {
963 	int i;
964 
965 	for (i = 0; i < data->acpi_data.state_count; i++) {
966 		u32 fid;
967 		u32 vid;
968 		u32 freq, index;
969 		u64 status, control;
970 
971 		if (data->exttype) {
972 			status =  data->acpi_data.states[i].status;
973 			fid = status & EXT_FID_MASK;
974 			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
975 		} else {
976 			control =  data->acpi_data.states[i].control;
977 			fid = control & FID_MASK;
978 			vid = (control >> VID_SHIFT) & VID_MASK;
979 		}
980 
981 		pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
982 
983 		index = fid | (vid<<8);
984 		powernow_table[i].index = index;
985 
986 		freq = find_khz_freq_from_fid(fid);
987 		powernow_table[i].frequency = freq;
988 
989 		/* verify frequency is OK */
990 		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
991 			pr_debug("invalid freq %u kHz, ignoring\n", freq);
992 			invalidate_entry(powernow_table, i);
993 			continue;
994 		}
995 
996 		/* verify voltage is OK -
997 		 * BIOSs are using "off" to indicate invalid */
998 		if (vid == VID_OFF) {
999 			pr_debug("invalid vid %u, ignoring\n", vid);
1000 			invalidate_entry(powernow_table, i);
1001 			continue;
1002 		}
1003 
1004 		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1005 			printk(KERN_INFO PFX "invalid freq entries "
1006 				"%u kHz vs. %u kHz\n", freq,
1007 				(unsigned int)
1008 				(data->acpi_data.states[i].core_frequency
1009 				 * 1000));
1010 			invalidate_entry(powernow_table, i);
1011 			continue;
1012 		}
1013 	}
1014 	return 0;
1015 }
1016 
1017 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1018 {
1019 	if (data->acpi_data.state_count)
1020 		acpi_processor_unregister_performance(&data->acpi_data,
1021 				data->cpu);
1022 	free_cpumask_var(data->acpi_data.shared_cpu_map);
1023 }
1024 
1025 static int get_transition_latency(struct powernow_k8_data *data)
1026 {
1027 	int max_latency = 0;
1028 	int i;
1029 	for (i = 0; i < data->acpi_data.state_count; i++) {
1030 		int cur_latency = data->acpi_data.states[i].transition_latency
1031 			+ data->acpi_data.states[i].bus_master_latency;
1032 		if (cur_latency > max_latency)
1033 			max_latency = cur_latency;
1034 	}
1035 	if (max_latency == 0) {
1036 		/*
1037 		 * Fam 11h and later may return 0 as transition latency. This
1038 		 * is intended and means "very fast". While cpufreq core and
1039 		 * governors currently can handle that gracefully, better set it
1040 		 * to 1 to avoid problems in the future.
1041 		 */
1042 		if (boot_cpu_data.x86 < 0x11)
1043 			printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1044 				"latency\n");
1045 		max_latency = 1;
1046 	}
1047 	/* value in usecs, needs to be in nanoseconds */
1048 	return 1000 * max_latency;
1049 }
1050 
1051 /* Take a frequency, and issue the fid/vid transition command */
1052 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1053 		unsigned int index)
1054 {
1055 	u32 fid = 0;
1056 	u32 vid = 0;
1057 	int res, i;
1058 	struct cpufreq_freqs freqs;
1059 
1060 	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1061 
1062 	/* fid/vid correctness check for k8 */
1063 	/* fid are the lower 8 bits of the index we stored into
1064 	 * the cpufreq frequency table in find_psb_table, vid
1065 	 * are the upper 8 bits.
1066 	 */
1067 	fid = data->powernow_table[index].index & 0xFF;
1068 	vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1069 
1070 	pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1071 
1072 	if (query_current_values_with_pending_wait(data))
1073 		return 1;
1074 
1075 	if ((data->currvid == vid) && (data->currfid == fid)) {
1076 		pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1077 			fid, vid);
1078 		return 0;
1079 	}
1080 
1081 	pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1082 		smp_processor_id(), fid, vid);
1083 	freqs.old = find_khz_freq_from_fid(data->currfid);
1084 	freqs.new = find_khz_freq_from_fid(fid);
1085 
1086 	for_each_cpu(i, data->available_cores) {
1087 		freqs.cpu = i;
1088 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1089 	}
1090 
1091 	res = transition_fid_vid(data, fid, vid);
1092 	if (res)
1093 		return res;
1094 
1095 	freqs.new = find_khz_freq_from_fid(data->currfid);
1096 
1097 	for_each_cpu(i, data->available_cores) {
1098 		freqs.cpu = i;
1099 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1100 	}
1101 	return res;
1102 }
1103 
1104 /* Take a frequency, and issue the hardware pstate transition command */
1105 static int transition_frequency_pstate(struct powernow_k8_data *data,
1106 		unsigned int index)
1107 {
1108 	u32 pstate = 0;
1109 	int res, i;
1110 	struct cpufreq_freqs freqs;
1111 
1112 	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1113 
1114 	/* get MSR index for hardware pstate transition */
1115 	pstate = index & HW_PSTATE_MASK;
1116 	if (pstate > data->max_hw_pstate)
1117 		return -EINVAL;
1118 
1119 	freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1120 			data->currpstate);
1121 	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1122 
1123 	for_each_cpu(i, data->available_cores) {
1124 		freqs.cpu = i;
1125 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1126 	}
1127 
1128 	res = transition_pstate(data, pstate);
1129 	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1130 
1131 	for_each_cpu(i, data->available_cores) {
1132 		freqs.cpu = i;
1133 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1134 	}
1135 	return res;
1136 }
1137 
1138 /* Driver entry point to switch to the target frequency */
1139 static int powernowk8_target(struct cpufreq_policy *pol,
1140 		unsigned targfreq, unsigned relation)
1141 {
1142 	cpumask_var_t oldmask;
1143 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1144 	u32 checkfid;
1145 	u32 checkvid;
1146 	unsigned int newstate;
1147 	int ret = -EIO;
1148 
1149 	if (!data)
1150 		return -EINVAL;
1151 
1152 	checkfid = data->currfid;
1153 	checkvid = data->currvid;
1154 
1155 	/* only run on specific CPU from here on. */
1156 	/* This is poor form: use a workqueue or smp_call_function_single */
1157 	if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1158 		return -ENOMEM;
1159 
1160 	cpumask_copy(oldmask, tsk_cpus_allowed(current));
1161 	set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1162 
1163 	if (smp_processor_id() != pol->cpu) {
1164 		printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1165 		goto err_out;
1166 	}
1167 
1168 	if (pending_bit_stuck()) {
1169 		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1170 		goto err_out;
1171 	}
1172 
1173 	pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1174 		pol->cpu, targfreq, pol->min, pol->max, relation);
1175 
1176 	if (query_current_values_with_pending_wait(data))
1177 		goto err_out;
1178 
1179 	if (cpu_family != CPU_HW_PSTATE) {
1180 		pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1181 		data->currfid, data->currvid);
1182 
1183 		if ((checkvid != data->currvid) ||
1184 		    (checkfid != data->currfid)) {
1185 			printk(KERN_INFO PFX
1186 				"error - out of sync, fix 0x%x 0x%x, "
1187 				"vid 0x%x 0x%x\n",
1188 				checkfid, data->currfid,
1189 				checkvid, data->currvid);
1190 		}
1191 	}
1192 
1193 	if (cpufreq_frequency_table_target(pol, data->powernow_table,
1194 				targfreq, relation, &newstate))
1195 		goto err_out;
1196 
1197 	mutex_lock(&fidvid_mutex);
1198 
1199 	powernow_k8_acpi_pst_values(data, newstate);
1200 
1201 	if (cpu_family == CPU_HW_PSTATE)
1202 		ret = transition_frequency_pstate(data,
1203 			data->powernow_table[newstate].index);
1204 	else
1205 		ret = transition_frequency_fidvid(data, newstate);
1206 	if (ret) {
1207 		printk(KERN_ERR PFX "transition frequency failed\n");
1208 		ret = 1;
1209 		mutex_unlock(&fidvid_mutex);
1210 		goto err_out;
1211 	}
1212 	mutex_unlock(&fidvid_mutex);
1213 
1214 	if (cpu_family == CPU_HW_PSTATE)
1215 		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1216 				data->powernow_table[newstate].index);
1217 	else
1218 		pol->cur = find_khz_freq_from_fid(data->currfid);
1219 	ret = 0;
1220 
1221 err_out:
1222 	set_cpus_allowed_ptr(current, oldmask);
1223 	free_cpumask_var(oldmask);
1224 	return ret;
1225 }
1226 
1227 /* Driver entry point to verify the policy and range of frequencies */
1228 static int powernowk8_verify(struct cpufreq_policy *pol)
1229 {
1230 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1231 
1232 	if (!data)
1233 		return -EINVAL;
1234 
1235 	return cpufreq_frequency_table_verify(pol, data->powernow_table);
1236 }
1237 
1238 struct init_on_cpu {
1239 	struct powernow_k8_data *data;
1240 	int rc;
1241 };
1242 
1243 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1244 {
1245 	struct init_on_cpu *init_on_cpu = _init_on_cpu;
1246 
1247 	if (pending_bit_stuck()) {
1248 		printk(KERN_ERR PFX "failing init, change pending bit set\n");
1249 		init_on_cpu->rc = -ENODEV;
1250 		return;
1251 	}
1252 
1253 	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1254 		init_on_cpu->rc = -ENODEV;
1255 		return;
1256 	}
1257 
1258 	if (cpu_family == CPU_OPTERON)
1259 		fidvid_msr_init();
1260 
1261 	init_on_cpu->rc = 0;
1262 }
1263 
1264 /* per CPU init entry point to the driver */
1265 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1266 {
1267 	static const char ACPI_PSS_BIOS_BUG_MSG[] =
1268 		KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1269 		FW_BUG PFX "Try again with latest BIOS.\n";
1270 	struct powernow_k8_data *data;
1271 	struct init_on_cpu init_on_cpu;
1272 	int rc;
1273 	struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1274 
1275 	if (!cpu_online(pol->cpu))
1276 		return -ENODEV;
1277 
1278 	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1279 	if (rc)
1280 		return -ENODEV;
1281 
1282 	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1283 	if (!data) {
1284 		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1285 		return -ENOMEM;
1286 	}
1287 
1288 	data->cpu = pol->cpu;
1289 	data->currpstate = HW_PSTATE_INVALID;
1290 
1291 	if (powernow_k8_cpu_init_acpi(data)) {
1292 		/*
1293 		 * Use the PSB BIOS structure. This is only available on
1294 		 * an UP version, and is deprecated by AMD.
1295 		 */
1296 		if (num_online_cpus() != 1) {
1297 			printk_once(ACPI_PSS_BIOS_BUG_MSG);
1298 			goto err_out;
1299 		}
1300 		if (pol->cpu != 0) {
1301 			printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1302 			       "CPU other than CPU0. Complain to your BIOS "
1303 			       "vendor.\n");
1304 			goto err_out;
1305 		}
1306 		rc = find_psb_table(data);
1307 		if (rc)
1308 			goto err_out;
1309 
1310 		/* Take a crude guess here.
1311 		 * That guess was in microseconds, so multiply with 1000 */
1312 		pol->cpuinfo.transition_latency = (
1313 			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1314 			 ((1 << data->irt) * 30)) * 1000;
1315 	} else /* ACPI _PSS objects available */
1316 		pol->cpuinfo.transition_latency = get_transition_latency(data);
1317 
1318 	/* only run on specific CPU from here on */
1319 	init_on_cpu.data = data;
1320 	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1321 				 &init_on_cpu, 1);
1322 	rc = init_on_cpu.rc;
1323 	if (rc != 0)
1324 		goto err_out_exit_acpi;
1325 
1326 	if (cpu_family == CPU_HW_PSTATE)
1327 		cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1328 	else
1329 		cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1330 	data->available_cores = pol->cpus;
1331 
1332 	if (cpu_family == CPU_HW_PSTATE)
1333 		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1334 				data->currpstate);
1335 	else
1336 		pol->cur = find_khz_freq_from_fid(data->currfid);
1337 	pr_debug("policy current frequency %d kHz\n", pol->cur);
1338 
1339 	/* min/max the cpu is capable of */
1340 	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1341 		printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1342 		powernow_k8_cpu_exit_acpi(data);
1343 		kfree(data->powernow_table);
1344 		kfree(data);
1345 		return -EINVAL;
1346 	}
1347 
1348 	/* Check for APERF/MPERF support in hardware */
1349 	if (cpu_has(c, X86_FEATURE_APERFMPERF))
1350 		cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1351 
1352 	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1353 
1354 	if (cpu_family == CPU_HW_PSTATE)
1355 		pr_debug("cpu_init done, current pstate 0x%x\n",
1356 				data->currpstate);
1357 	else
1358 		pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1359 			data->currfid, data->currvid);
1360 
1361 	per_cpu(powernow_data, pol->cpu) = data;
1362 
1363 	return 0;
1364 
1365 err_out_exit_acpi:
1366 	powernow_k8_cpu_exit_acpi(data);
1367 
1368 err_out:
1369 	kfree(data);
1370 	return -ENODEV;
1371 }
1372 
1373 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1374 {
1375 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1376 
1377 	if (!data)
1378 		return -EINVAL;
1379 
1380 	powernow_k8_cpu_exit_acpi(data);
1381 
1382 	cpufreq_frequency_table_put_attr(pol->cpu);
1383 
1384 	kfree(data->powernow_table);
1385 	kfree(data);
1386 	per_cpu(powernow_data, pol->cpu) = NULL;
1387 
1388 	return 0;
1389 }
1390 
1391 static void query_values_on_cpu(void *_err)
1392 {
1393 	int *err = _err;
1394 	struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1395 
1396 	*err = query_current_values_with_pending_wait(data);
1397 }
1398 
1399 static unsigned int powernowk8_get(unsigned int cpu)
1400 {
1401 	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1402 	unsigned int khz = 0;
1403 	int err;
1404 
1405 	if (!data)
1406 		return 0;
1407 
1408 	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1409 	if (err)
1410 		goto out;
1411 
1412 	if (cpu_family == CPU_HW_PSTATE)
1413 		khz = find_khz_freq_from_pstate(data->powernow_table,
1414 						data->currpstate);
1415 	else
1416 		khz = find_khz_freq_from_fid(data->currfid);
1417 
1418 
1419 out:
1420 	return khz;
1421 }
1422 
1423 static void _cpb_toggle_msrs(bool t)
1424 {
1425 	int cpu;
1426 
1427 	get_online_cpus();
1428 
1429 	rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1430 
1431 	for_each_cpu(cpu, cpu_online_mask) {
1432 		struct msr *reg = per_cpu_ptr(msrs, cpu);
1433 		if (t)
1434 			reg->l &= ~BIT(25);
1435 		else
1436 			reg->l |= BIT(25);
1437 	}
1438 	wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1439 
1440 	put_online_cpus();
1441 }
1442 
1443 /*
1444  * Switch on/off core performance boosting.
1445  *
1446  * 0=disable
1447  * 1=enable.
1448  */
1449 static void cpb_toggle(bool t)
1450 {
1451 	if (!cpb_capable)
1452 		return;
1453 
1454 	if (t && !cpb_enabled) {
1455 		cpb_enabled = true;
1456 		_cpb_toggle_msrs(t);
1457 		printk(KERN_INFO PFX "Core Boosting enabled.\n");
1458 	} else if (!t && cpb_enabled) {
1459 		cpb_enabled = false;
1460 		_cpb_toggle_msrs(t);
1461 		printk(KERN_INFO PFX "Core Boosting disabled.\n");
1462 	}
1463 }
1464 
1465 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1466 				 size_t count)
1467 {
1468 	int ret = -EINVAL;
1469 	unsigned long val = 0;
1470 
1471 	ret = strict_strtoul(buf, 10, &val);
1472 	if (!ret && (val == 0 || val == 1) && cpb_capable)
1473 		cpb_toggle(val);
1474 	else
1475 		return -EINVAL;
1476 
1477 	return count;
1478 }
1479 
1480 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1481 {
1482 	return sprintf(buf, "%u\n", cpb_enabled);
1483 }
1484 
1485 #define define_one_rw(_name) \
1486 static struct freq_attr _name = \
1487 __ATTR(_name, 0644, show_##_name, store_##_name)
1488 
1489 define_one_rw(cpb);
1490 
1491 static struct freq_attr *powernow_k8_attr[] = {
1492 	&cpufreq_freq_attr_scaling_available_freqs,
1493 	&cpb,
1494 	NULL,
1495 };
1496 
1497 static struct cpufreq_driver cpufreq_amd64_driver = {
1498 	.verify		= powernowk8_verify,
1499 	.target		= powernowk8_target,
1500 	.bios_limit	= acpi_processor_get_bios_limit,
1501 	.init		= powernowk8_cpu_init,
1502 	.exit		= __devexit_p(powernowk8_cpu_exit),
1503 	.get		= powernowk8_get,
1504 	.name		= "powernow-k8",
1505 	.owner		= THIS_MODULE,
1506 	.attr		= powernow_k8_attr,
1507 };
1508 
1509 /*
1510  * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1511  * cannot block the remaining ones from boosting. On the CPU_UP path we
1512  * simply keep the boost-disable flag in sync with the current global
1513  * state.
1514  */
1515 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1516 		      void *hcpu)
1517 {
1518 	unsigned cpu = (long)hcpu;
1519 	u32 lo, hi;
1520 
1521 	switch (action) {
1522 	case CPU_UP_PREPARE:
1523 	case CPU_UP_PREPARE_FROZEN:
1524 
1525 		if (!cpb_enabled) {
1526 			rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1527 			lo |= BIT(25);
1528 			wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1529 		}
1530 		break;
1531 
1532 	case CPU_DOWN_PREPARE:
1533 	case CPU_DOWN_PREPARE_FROZEN:
1534 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1535 		lo &= ~BIT(25);
1536 		wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1537 		break;
1538 
1539 	default:
1540 		break;
1541 	}
1542 
1543 	return NOTIFY_OK;
1544 }
1545 
1546 static struct notifier_block cpb_nb = {
1547 	.notifier_call		= cpb_notify,
1548 };
1549 
1550 /* driver entry point for init */
1551 static int __cpuinit powernowk8_init(void)
1552 {
1553 	unsigned int i, supported_cpus = 0, cpu;
1554 	int rv;
1555 
1556 	for_each_online_cpu(i) {
1557 		int rc;
1558 		smp_call_function_single(i, check_supported_cpu, &rc, 1);
1559 		if (rc == 0)
1560 			supported_cpus++;
1561 	}
1562 
1563 	if (supported_cpus != num_online_cpus())
1564 		return -ENODEV;
1565 
1566 	printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1567 		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1568 
1569 	if (boot_cpu_has(X86_FEATURE_CPB)) {
1570 
1571 		cpb_capable = true;
1572 
1573 		msrs = msrs_alloc();
1574 		if (!msrs) {
1575 			printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1576 			return -ENOMEM;
1577 		}
1578 
1579 		register_cpu_notifier(&cpb_nb);
1580 
1581 		rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1582 
1583 		for_each_cpu(cpu, cpu_online_mask) {
1584 			struct msr *reg = per_cpu_ptr(msrs, cpu);
1585 			cpb_enabled |= !(!!(reg->l & BIT(25)));
1586 		}
1587 
1588 		printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1589 			(cpb_enabled ? "on" : "off"));
1590 	}
1591 
1592 	rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1593 	if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1594 		unregister_cpu_notifier(&cpb_nb);
1595 		msrs_free(msrs);
1596 		msrs = NULL;
1597 	}
1598 	return rv;
1599 }
1600 
1601 /* driver entry point for term */
1602 static void __exit powernowk8_exit(void)
1603 {
1604 	pr_debug("exit\n");
1605 
1606 	if (boot_cpu_has(X86_FEATURE_CPB)) {
1607 		msrs_free(msrs);
1608 		msrs = NULL;
1609 
1610 		unregister_cpu_notifier(&cpb_nb);
1611 	}
1612 
1613 	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1614 }
1615 
1616 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1617 		"Mark Langsdorf <mark.langsdorf@amd.com>");
1618 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1619 MODULE_LICENSE("GPL");
1620 
1621 late_initcall(powernowk8_init);
1622 module_exit(powernowk8_exit);
1623