xref: /linux/drivers/cpufreq/powernow-k8.c (revision 9429ec96c2718c0d1e3317cf60a87a0405223814)
1 /*
2  *   (c) 2003-2012 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Maintainer:
8  *  Andreas Herrmann <andreas.herrmann3@amd.com>
9  *
10  *  Based on the powernow-k7.c module written by Dave Jones.
11  *  (C) 2003 Dave Jones on behalf of SuSE Labs
12  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
13  *  (C) 2004 Pavel Machek <pavel@ucw.cz>
14  *  Licensed under the terms of the GNU GPL License version 2.
15  *  Based upon datasheets & sample CPUs kindly provided by AMD.
16  *
17  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
18  *  Dominik Brodowski, Jacob Shin, and others.
19  *  Originally developed by Paul Devriendt.
20  *
21  *  Processor information obtained from Chapter 9 (Power and Thermal
22  *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23  *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24  *  Power Management" in BKDGs for newer AMD CPU families.
25  *
26  *  Tables for specific CPUs can be inferred from AMD's processor
27  *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
28  */
29 
30 #include <linux/kernel.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/cpumask.h>
38 #include <linux/io.h>
39 #include <linux/delay.h>
40 
41 #include <asm/msr.h>
42 #include <asm/cpu_device_id.h>
43 
44 #include <linux/acpi.h>
45 #include <linux/mutex.h>
46 #include <acpi/processor.h>
47 
48 #define PFX "powernow-k8: "
49 #define VERSION "version 2.20.00"
50 #include "powernow-k8.h"
51 #include "mperf.h"
52 
53 /* serialize freq changes  */
54 static DEFINE_MUTEX(fidvid_mutex);
55 
56 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
57 
58 static int cpu_family = CPU_OPTERON;
59 
60 /* array to map SW pstate number to acpi state */
61 static u32 ps_to_as[8];
62 
63 /* core performance boost */
64 static bool cpb_capable, cpb_enabled;
65 static struct msr __percpu *msrs;
66 
67 static struct cpufreq_driver cpufreq_amd64_driver;
68 
69 #ifndef CONFIG_SMP
70 static inline const struct cpumask *cpu_core_mask(int cpu)
71 {
72 	return cpumask_of(0);
73 }
74 #endif
75 
76 /* Return a frequency in MHz, given an input fid */
77 static u32 find_freq_from_fid(u32 fid)
78 {
79 	return 800 + (fid * 100);
80 }
81 
82 /* Return a frequency in KHz, given an input fid */
83 static u32 find_khz_freq_from_fid(u32 fid)
84 {
85 	return 1000 * find_freq_from_fid(fid);
86 }
87 
88 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
89 				     u32 pstate)
90 {
91 	return data[ps_to_as[pstate]].frequency;
92 }
93 
94 /* Return the vco fid for an input fid
95  *
96  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
97  * only from corresponding high fids. This returns "high" fid corresponding to
98  * "low" one.
99  */
100 static u32 convert_fid_to_vco_fid(u32 fid)
101 {
102 	if (fid < HI_FID_TABLE_BOTTOM)
103 		return 8 + (2 * fid);
104 	else
105 		return fid;
106 }
107 
108 /*
109  * Return 1 if the pending bit is set. Unless we just instructed the processor
110  * to transition to a new state, seeing this bit set is really bad news.
111  */
112 static int pending_bit_stuck(void)
113 {
114 	u32 lo, hi;
115 
116 	if (cpu_family == CPU_HW_PSTATE)
117 		return 0;
118 
119 	rdmsr(MSR_FIDVID_STATUS, lo, hi);
120 	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
121 }
122 
123 /*
124  * Update the global current fid / vid values from the status msr.
125  * Returns 1 on error.
126  */
127 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
128 {
129 	u32 lo, hi;
130 	u32 i = 0;
131 
132 	if (cpu_family == CPU_HW_PSTATE) {
133 		rdmsr(MSR_PSTATE_STATUS, lo, hi);
134 		i = lo & HW_PSTATE_MASK;
135 		data->currpstate = i;
136 
137 		/*
138 		 * a workaround for family 11h erratum 311 might cause
139 		 * an "out-of-range Pstate if the core is in Pstate-0
140 		 */
141 		if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
142 			data->currpstate = HW_PSTATE_0;
143 
144 		return 0;
145 	}
146 	do {
147 		if (i++ > 10000) {
148 			pr_debug("detected change pending stuck\n");
149 			return 1;
150 		}
151 		rdmsr(MSR_FIDVID_STATUS, lo, hi);
152 	} while (lo & MSR_S_LO_CHANGE_PENDING);
153 
154 	data->currvid = hi & MSR_S_HI_CURRENT_VID;
155 	data->currfid = lo & MSR_S_LO_CURRENT_FID;
156 
157 	return 0;
158 }
159 
160 /* the isochronous relief time */
161 static void count_off_irt(struct powernow_k8_data *data)
162 {
163 	udelay((1 << data->irt) * 10);
164 	return;
165 }
166 
167 /* the voltage stabilization time */
168 static void count_off_vst(struct powernow_k8_data *data)
169 {
170 	udelay(data->vstable * VST_UNITS_20US);
171 	return;
172 }
173 
174 /* need to init the control msr to a safe value (for each cpu) */
175 static void fidvid_msr_init(void)
176 {
177 	u32 lo, hi;
178 	u8 fid, vid;
179 
180 	rdmsr(MSR_FIDVID_STATUS, lo, hi);
181 	vid = hi & MSR_S_HI_CURRENT_VID;
182 	fid = lo & MSR_S_LO_CURRENT_FID;
183 	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
184 	hi = MSR_C_HI_STP_GNT_BENIGN;
185 	pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
186 	wrmsr(MSR_FIDVID_CTL, lo, hi);
187 }
188 
189 /* write the new fid value along with the other control fields to the msr */
190 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
191 {
192 	u32 lo;
193 	u32 savevid = data->currvid;
194 	u32 i = 0;
195 
196 	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
197 		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
198 		return 1;
199 	}
200 
201 	lo = fid;
202 	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
203 	lo |= MSR_C_LO_INIT_FID_VID;
204 
205 	pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206 		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
207 
208 	do {
209 		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
210 		if (i++ > 100) {
211 			printk(KERN_ERR PFX
212 				"Hardware error - pending bit very stuck - "
213 				"no further pstate changes possible\n");
214 			return 1;
215 		}
216 	} while (query_current_values_with_pending_wait(data));
217 
218 	count_off_irt(data);
219 
220 	if (savevid != data->currvid) {
221 		printk(KERN_ERR PFX
222 			"vid change on fid trans, old 0x%x, new 0x%x\n",
223 			savevid, data->currvid);
224 		return 1;
225 	}
226 
227 	if (fid != data->currfid) {
228 		printk(KERN_ERR PFX
229 			"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
230 			data->currfid);
231 		return 1;
232 	}
233 
234 	return 0;
235 }
236 
237 /* Write a new vid to the hardware */
238 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
239 {
240 	u32 lo;
241 	u32 savefid = data->currfid;
242 	int i = 0;
243 
244 	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
245 		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
246 		return 1;
247 	}
248 
249 	lo = data->currfid;
250 	lo |= (vid << MSR_C_LO_VID_SHIFT);
251 	lo |= MSR_C_LO_INIT_FID_VID;
252 
253 	pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
254 		vid, lo, STOP_GRANT_5NS);
255 
256 	do {
257 		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
258 		if (i++ > 100) {
259 			printk(KERN_ERR PFX "internal error - pending bit "
260 					"very stuck - no further pstate "
261 					"changes possible\n");
262 			return 1;
263 		}
264 	} while (query_current_values_with_pending_wait(data));
265 
266 	if (savefid != data->currfid) {
267 		printk(KERN_ERR PFX "fid changed on vid trans, old "
268 			"0x%x new 0x%x\n",
269 		       savefid, data->currfid);
270 		return 1;
271 	}
272 
273 	if (vid != data->currvid) {
274 		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
275 				"curr 0x%x\n",
276 				vid, data->currvid);
277 		return 1;
278 	}
279 
280 	return 0;
281 }
282 
283 /*
284  * Reduce the vid by the max of step or reqvid.
285  * Decreasing vid codes represent increasing voltages:
286  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
287  */
288 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
289 		u32 reqvid, u32 step)
290 {
291 	if ((data->currvid - reqvid) > step)
292 		reqvid = data->currvid - step;
293 
294 	if (write_new_vid(data, reqvid))
295 		return 1;
296 
297 	count_off_vst(data);
298 
299 	return 0;
300 }
301 
302 /* Change hardware pstate by single MSR write */
303 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
304 {
305 	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
306 	data->currpstate = pstate;
307 	return 0;
308 }
309 
310 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
311 static int transition_fid_vid(struct powernow_k8_data *data,
312 		u32 reqfid, u32 reqvid)
313 {
314 	if (core_voltage_pre_transition(data, reqvid, reqfid))
315 		return 1;
316 
317 	if (core_frequency_transition(data, reqfid))
318 		return 1;
319 
320 	if (core_voltage_post_transition(data, reqvid))
321 		return 1;
322 
323 	if (query_current_values_with_pending_wait(data))
324 		return 1;
325 
326 	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
327 		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
328 				"curr 0x%x 0x%x\n",
329 				smp_processor_id(),
330 				reqfid, reqvid, data->currfid, data->currvid);
331 		return 1;
332 	}
333 
334 	pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
335 		smp_processor_id(), data->currfid, data->currvid);
336 
337 	return 0;
338 }
339 
340 /* Phase 1 - core voltage transition ... setup voltage */
341 static int core_voltage_pre_transition(struct powernow_k8_data *data,
342 		u32 reqvid, u32 reqfid)
343 {
344 	u32 rvosteps = data->rvo;
345 	u32 savefid = data->currfid;
346 	u32 maxvid, lo, rvomult = 1;
347 
348 	pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
349 		"reqvid 0x%x, rvo 0x%x\n",
350 		smp_processor_id(),
351 		data->currfid, data->currvid, reqvid, data->rvo);
352 
353 	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
354 		rvomult = 2;
355 	rvosteps *= rvomult;
356 	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
357 	maxvid = 0x1f & (maxvid >> 16);
358 	pr_debug("ph1 maxvid=0x%x\n", maxvid);
359 	if (reqvid < maxvid) /* lower numbers are higher voltages */
360 		reqvid = maxvid;
361 
362 	while (data->currvid > reqvid) {
363 		pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
364 			data->currvid, reqvid);
365 		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
366 			return 1;
367 	}
368 
369 	while ((rvosteps > 0) &&
370 			((rvomult * data->rvo + data->currvid) > reqvid)) {
371 		if (data->currvid == maxvid) {
372 			rvosteps = 0;
373 		} else {
374 			pr_debug("ph1: changing vid for rvo, req 0x%x\n",
375 				data->currvid - 1);
376 			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
377 				return 1;
378 			rvosteps--;
379 		}
380 	}
381 
382 	if (query_current_values_with_pending_wait(data))
383 		return 1;
384 
385 	if (savefid != data->currfid) {
386 		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
387 				data->currfid);
388 		return 1;
389 	}
390 
391 	pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
392 		data->currfid, data->currvid);
393 
394 	return 0;
395 }
396 
397 /* Phase 2 - core frequency transition */
398 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
399 {
400 	u32 vcoreqfid, vcocurrfid, vcofiddiff;
401 	u32 fid_interval, savevid = data->currvid;
402 
403 	if (data->currfid == reqfid) {
404 		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
405 				data->currfid);
406 		return 0;
407 	}
408 
409 	pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
410 		"reqfid 0x%x\n",
411 		smp_processor_id(),
412 		data->currfid, data->currvid, reqfid);
413 
414 	vcoreqfid = convert_fid_to_vco_fid(reqfid);
415 	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
416 	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
417 	    : vcoreqfid - vcocurrfid;
418 
419 	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
420 		vcofiddiff = 0;
421 
422 	while (vcofiddiff > 2) {
423 		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
424 
425 		if (reqfid > data->currfid) {
426 			if (data->currfid > LO_FID_TABLE_TOP) {
427 				if (write_new_fid(data,
428 						data->currfid + fid_interval))
429 					return 1;
430 			} else {
431 				if (write_new_fid
432 				    (data,
433 				     2 + convert_fid_to_vco_fid(data->currfid)))
434 					return 1;
435 			}
436 		} else {
437 			if (write_new_fid(data, data->currfid - fid_interval))
438 				return 1;
439 		}
440 
441 		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
442 		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
443 		    : vcoreqfid - vcocurrfid;
444 	}
445 
446 	if (write_new_fid(data, reqfid))
447 		return 1;
448 
449 	if (query_current_values_with_pending_wait(data))
450 		return 1;
451 
452 	if (data->currfid != reqfid) {
453 		printk(KERN_ERR PFX
454 			"ph2: mismatch, failed fid transition, "
455 			"curr 0x%x, req 0x%x\n",
456 			data->currfid, reqfid);
457 		return 1;
458 	}
459 
460 	if (savevid != data->currvid) {
461 		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
462 			savevid, data->currvid);
463 		return 1;
464 	}
465 
466 	pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
467 		data->currfid, data->currvid);
468 
469 	return 0;
470 }
471 
472 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
473 static int core_voltage_post_transition(struct powernow_k8_data *data,
474 		u32 reqvid)
475 {
476 	u32 savefid = data->currfid;
477 	u32 savereqvid = reqvid;
478 
479 	pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
480 		smp_processor_id(),
481 		data->currfid, data->currvid);
482 
483 	if (reqvid != data->currvid) {
484 		if (write_new_vid(data, reqvid))
485 			return 1;
486 
487 		if (savefid != data->currfid) {
488 			printk(KERN_ERR PFX
489 			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
490 			       savefid, data->currfid);
491 			return 1;
492 		}
493 
494 		if (data->currvid != reqvid) {
495 			printk(KERN_ERR PFX
496 			       "ph3: failed vid transition\n, "
497 			       "req 0x%x, curr 0x%x",
498 			       reqvid, data->currvid);
499 			return 1;
500 		}
501 	}
502 
503 	if (query_current_values_with_pending_wait(data))
504 		return 1;
505 
506 	if (savereqvid != data->currvid) {
507 		pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
508 		return 1;
509 	}
510 
511 	if (savefid != data->currfid) {
512 		pr_debug("ph3 failed, currfid changed 0x%x\n",
513 			data->currfid);
514 		return 1;
515 	}
516 
517 	pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
518 		data->currfid, data->currvid);
519 
520 	return 0;
521 }
522 
523 static const struct x86_cpu_id powernow_k8_ids[] = {
524 	/* IO based frequency switching */
525 	{ X86_VENDOR_AMD, 0xf },
526 	/* MSR based frequency switching supported */
527 	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
528 	{}
529 };
530 MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
531 
532 static void check_supported_cpu(void *_rc)
533 {
534 	u32 eax, ebx, ecx, edx;
535 	int *rc = _rc;
536 
537 	*rc = -ENODEV;
538 
539 	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
540 
541 	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
542 		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
543 		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
544 			printk(KERN_INFO PFX
545 				"Processor cpuid %x not supported\n", eax);
546 			return;
547 		}
548 
549 		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
550 		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
551 			printk(KERN_INFO PFX
552 			       "No frequency change capabilities detected\n");
553 			return;
554 		}
555 
556 		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
557 		if ((edx & P_STATE_TRANSITION_CAPABLE)
558 			!= P_STATE_TRANSITION_CAPABLE) {
559 			printk(KERN_INFO PFX
560 				"Power state transitions not supported\n");
561 			return;
562 		}
563 	} else { /* must be a HW Pstate capable processor */
564 		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
565 		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
566 			cpu_family = CPU_HW_PSTATE;
567 		else
568 			return;
569 	}
570 
571 	*rc = 0;
572 }
573 
574 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
575 		u8 maxvid)
576 {
577 	unsigned int j;
578 	u8 lastfid = 0xff;
579 
580 	for (j = 0; j < data->numps; j++) {
581 		if (pst[j].vid > LEAST_VID) {
582 			printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
583 			       j, pst[j].vid);
584 			return -EINVAL;
585 		}
586 		if (pst[j].vid < data->rvo) {
587 			/* vid + rvo >= 0 */
588 			printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
589 			       " %d\n", j);
590 			return -ENODEV;
591 		}
592 		if (pst[j].vid < maxvid + data->rvo) {
593 			/* vid + rvo >= maxvid */
594 			printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
595 			       " %d\n", j);
596 			return -ENODEV;
597 		}
598 		if (pst[j].fid > MAX_FID) {
599 			printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
600 			       " %d\n", j);
601 			return -ENODEV;
602 		}
603 		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
604 			/* Only first fid is allowed to be in "low" range */
605 			printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
606 			       "0x%x\n", j, pst[j].fid);
607 			return -EINVAL;
608 		}
609 		if (pst[j].fid < lastfid)
610 			lastfid = pst[j].fid;
611 	}
612 	if (lastfid & 1) {
613 		printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
614 		return -EINVAL;
615 	}
616 	if (lastfid > LO_FID_TABLE_TOP)
617 		printk(KERN_INFO FW_BUG PFX
618 			"first fid not from lo freq table\n");
619 
620 	return 0;
621 }
622 
623 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
624 		unsigned int entry)
625 {
626 	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
627 }
628 
629 static void print_basics(struct powernow_k8_data *data)
630 {
631 	int j;
632 	for (j = 0; j < data->numps; j++) {
633 		if (data->powernow_table[j].frequency !=
634 				CPUFREQ_ENTRY_INVALID) {
635 			if (cpu_family == CPU_HW_PSTATE) {
636 				printk(KERN_INFO PFX
637 					"   %d : pstate %d (%d MHz)\n", j,
638 					data->powernow_table[j].index,
639 					data->powernow_table[j].frequency/1000);
640 			} else {
641 				printk(KERN_INFO PFX
642 					"fid 0x%x (%d MHz), vid 0x%x\n",
643 					data->powernow_table[j].index & 0xff,
644 					data->powernow_table[j].frequency/1000,
645 					data->powernow_table[j].index >> 8);
646 			}
647 		}
648 	}
649 	if (data->batps)
650 		printk(KERN_INFO PFX "Only %d pstates on battery\n",
651 				data->batps);
652 }
653 
654 static u32 freq_from_fid_did(u32 fid, u32 did)
655 {
656 	u32 mhz = 0;
657 
658 	if (boot_cpu_data.x86 == 0x10)
659 		mhz = (100 * (fid + 0x10)) >> did;
660 	else if (boot_cpu_data.x86 == 0x11)
661 		mhz = (100 * (fid + 8)) >> did;
662 	else
663 		BUG();
664 
665 	return mhz * 1000;
666 }
667 
668 static int fill_powernow_table(struct powernow_k8_data *data,
669 		struct pst_s *pst, u8 maxvid)
670 {
671 	struct cpufreq_frequency_table *powernow_table;
672 	unsigned int j;
673 
674 	if (data->batps) {
675 		/* use ACPI support to get full speed on mains power */
676 		printk(KERN_WARNING PFX
677 			"Only %d pstates usable (use ACPI driver for full "
678 			"range\n", data->batps);
679 		data->numps = data->batps;
680 	}
681 
682 	for (j = 1; j < data->numps; j++) {
683 		if (pst[j-1].fid >= pst[j].fid) {
684 			printk(KERN_ERR PFX "PST out of sequence\n");
685 			return -EINVAL;
686 		}
687 	}
688 
689 	if (data->numps < 2) {
690 		printk(KERN_ERR PFX "no p states to transition\n");
691 		return -ENODEV;
692 	}
693 
694 	if (check_pst_table(data, pst, maxvid))
695 		return -EINVAL;
696 
697 	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
698 		* (data->numps + 1)), GFP_KERNEL);
699 	if (!powernow_table) {
700 		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
701 		return -ENOMEM;
702 	}
703 
704 	for (j = 0; j < data->numps; j++) {
705 		int freq;
706 		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
707 		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
708 		freq = find_khz_freq_from_fid(pst[j].fid);
709 		powernow_table[j].frequency = freq;
710 	}
711 	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
712 	powernow_table[data->numps].index = 0;
713 
714 	if (query_current_values_with_pending_wait(data)) {
715 		kfree(powernow_table);
716 		return -EIO;
717 	}
718 
719 	pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
720 	data->powernow_table = powernow_table;
721 	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
722 		print_basics(data);
723 
724 	for (j = 0; j < data->numps; j++)
725 		if ((pst[j].fid == data->currfid) &&
726 		    (pst[j].vid == data->currvid))
727 			return 0;
728 
729 	pr_debug("currfid/vid do not match PST, ignoring\n");
730 	return 0;
731 }
732 
733 /* Find and validate the PSB/PST table in BIOS. */
734 static int find_psb_table(struct powernow_k8_data *data)
735 {
736 	struct psb_s *psb;
737 	unsigned int i;
738 	u32 mvs;
739 	u8 maxvid;
740 	u32 cpst = 0;
741 	u32 thiscpuid;
742 
743 	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
744 		/* Scan BIOS looking for the signature. */
745 		/* It can not be at ffff0 - it is too big. */
746 
747 		psb = phys_to_virt(i);
748 		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
749 			continue;
750 
751 		pr_debug("found PSB header at 0x%p\n", psb);
752 
753 		pr_debug("table vers: 0x%x\n", psb->tableversion);
754 		if (psb->tableversion != PSB_VERSION_1_4) {
755 			printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
756 			return -ENODEV;
757 		}
758 
759 		pr_debug("flags: 0x%x\n", psb->flags1);
760 		if (psb->flags1) {
761 			printk(KERN_ERR FW_BUG PFX "unknown flags\n");
762 			return -ENODEV;
763 		}
764 
765 		data->vstable = psb->vstable;
766 		pr_debug("voltage stabilization time: %d(*20us)\n",
767 				data->vstable);
768 
769 		pr_debug("flags2: 0x%x\n", psb->flags2);
770 		data->rvo = psb->flags2 & 3;
771 		data->irt = ((psb->flags2) >> 2) & 3;
772 		mvs = ((psb->flags2) >> 4) & 3;
773 		data->vidmvs = 1 << mvs;
774 		data->batps = ((psb->flags2) >> 6) & 3;
775 
776 		pr_debug("ramp voltage offset: %d\n", data->rvo);
777 		pr_debug("isochronous relief time: %d\n", data->irt);
778 		pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
779 
780 		pr_debug("numpst: 0x%x\n", psb->num_tables);
781 		cpst = psb->num_tables;
782 		if ((psb->cpuid == 0x00000fc0) ||
783 		    (psb->cpuid == 0x00000fe0)) {
784 			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
785 			if ((thiscpuid == 0x00000fc0) ||
786 			    (thiscpuid == 0x00000fe0))
787 				cpst = 1;
788 		}
789 		if (cpst != 1) {
790 			printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
791 			return -ENODEV;
792 		}
793 
794 		data->plllock = psb->plllocktime;
795 		pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
796 		pr_debug("maxfid: 0x%x\n", psb->maxfid);
797 		pr_debug("maxvid: 0x%x\n", psb->maxvid);
798 		maxvid = psb->maxvid;
799 
800 		data->numps = psb->numps;
801 		pr_debug("numpstates: 0x%x\n", data->numps);
802 		return fill_powernow_table(data,
803 				(struct pst_s *)(psb+1), maxvid);
804 	}
805 	/*
806 	 * If you see this message, complain to BIOS manufacturer. If
807 	 * he tells you "we do not support Linux" or some similar
808 	 * nonsense, remember that Windows 2000 uses the same legacy
809 	 * mechanism that the old Linux PSB driver uses. Tell them it
810 	 * is broken with Windows 2000.
811 	 *
812 	 * The reference to the AMD documentation is chapter 9 in the
813 	 * BIOS and Kernel Developer's Guide, which is available on
814 	 * www.amd.com
815 	 */
816 	printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
817 	printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
818 		" and Cool'N'Quiet support is enabled in BIOS setup\n");
819 	return -ENODEV;
820 }
821 
822 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
823 		unsigned int index)
824 {
825 	u64 control;
826 
827 	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
828 		return;
829 
830 	control = data->acpi_data.states[index].control;
831 	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
832 	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
833 	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
834 	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
835 	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
836 	data->vstable = (control >> VST_SHIFT) & VST_MASK;
837 }
838 
839 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
840 {
841 	struct cpufreq_frequency_table *powernow_table;
842 	int ret_val = -ENODEV;
843 	u64 control, status;
844 
845 	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
846 		pr_debug("register performance failed: bad ACPI data\n");
847 		return -EIO;
848 	}
849 
850 	/* verify the data contained in the ACPI structures */
851 	if (data->acpi_data.state_count <= 1) {
852 		pr_debug("No ACPI P-States\n");
853 		goto err_out;
854 	}
855 
856 	control = data->acpi_data.control_register.space_id;
857 	status = data->acpi_data.status_register.space_id;
858 
859 	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
860 	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
861 		pr_debug("Invalid control/status registers (%llx - %llx)\n",
862 			control, status);
863 		goto err_out;
864 	}
865 
866 	/* fill in data->powernow_table */
867 	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
868 		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
869 	if (!powernow_table) {
870 		pr_debug("powernow_table memory alloc failure\n");
871 		goto err_out;
872 	}
873 
874 	/* fill in data */
875 	data->numps = data->acpi_data.state_count;
876 	powernow_k8_acpi_pst_values(data, 0);
877 
878 	if (cpu_family == CPU_HW_PSTATE)
879 		ret_val = fill_powernow_table_pstate(data, powernow_table);
880 	else
881 		ret_val = fill_powernow_table_fidvid(data, powernow_table);
882 	if (ret_val)
883 		goto err_out_mem;
884 
885 	powernow_table[data->acpi_data.state_count].frequency =
886 		CPUFREQ_TABLE_END;
887 	powernow_table[data->acpi_data.state_count].index = 0;
888 	data->powernow_table = powernow_table;
889 
890 	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
891 		print_basics(data);
892 
893 	/* notify BIOS that we exist */
894 	acpi_processor_notify_smm(THIS_MODULE);
895 
896 	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
897 		printk(KERN_ERR PFX
898 				"unable to alloc powernow_k8_data cpumask\n");
899 		ret_val = -ENOMEM;
900 		goto err_out_mem;
901 	}
902 
903 	return 0;
904 
905 err_out_mem:
906 	kfree(powernow_table);
907 
908 err_out:
909 	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
910 
911 	/* data->acpi_data.state_count informs us at ->exit()
912 	 * whether ACPI was used */
913 	data->acpi_data.state_count = 0;
914 
915 	return ret_val;
916 }
917 
918 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
919 		struct cpufreq_frequency_table *powernow_table)
920 {
921 	int i;
922 	u32 hi = 0, lo = 0;
923 	rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
924 	data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
925 
926 	for (i = 0; i < data->acpi_data.state_count; i++) {
927 		u32 index;
928 
929 		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
930 		if (index > data->max_hw_pstate) {
931 			printk(KERN_ERR PFX "invalid pstate %d - "
932 					"bad value %d.\n", i, index);
933 			printk(KERN_ERR PFX "Please report to BIOS "
934 					"manufacturer\n");
935 			invalidate_entry(powernow_table, i);
936 			continue;
937 		}
938 
939 		ps_to_as[index] = i;
940 
941 		/* Frequency may be rounded for these */
942 		if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
943 				 || boot_cpu_data.x86 == 0x11) {
944 
945 			rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
946 			if (!(hi & HW_PSTATE_VALID_MASK)) {
947 				pr_debug("invalid pstate %d, ignoring\n", index);
948 				invalidate_entry(powernow_table, i);
949 				continue;
950 			}
951 
952 			powernow_table[i].frequency =
953 				freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
954 		} else
955 			powernow_table[i].frequency =
956 				data->acpi_data.states[i].core_frequency * 1000;
957 
958 		powernow_table[i].index = index;
959 	}
960 	return 0;
961 }
962 
963 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
964 		struct cpufreq_frequency_table *powernow_table)
965 {
966 	int i;
967 
968 	for (i = 0; i < data->acpi_data.state_count; i++) {
969 		u32 fid;
970 		u32 vid;
971 		u32 freq, index;
972 		u64 status, control;
973 
974 		if (data->exttype) {
975 			status =  data->acpi_data.states[i].status;
976 			fid = status & EXT_FID_MASK;
977 			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
978 		} else {
979 			control =  data->acpi_data.states[i].control;
980 			fid = control & FID_MASK;
981 			vid = (control >> VID_SHIFT) & VID_MASK;
982 		}
983 
984 		pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
985 
986 		index = fid | (vid<<8);
987 		powernow_table[i].index = index;
988 
989 		freq = find_khz_freq_from_fid(fid);
990 		powernow_table[i].frequency = freq;
991 
992 		/* verify frequency is OK */
993 		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
994 			pr_debug("invalid freq %u kHz, ignoring\n", freq);
995 			invalidate_entry(powernow_table, i);
996 			continue;
997 		}
998 
999 		/* verify voltage is OK -
1000 		 * BIOSs are using "off" to indicate invalid */
1001 		if (vid == VID_OFF) {
1002 			pr_debug("invalid vid %u, ignoring\n", vid);
1003 			invalidate_entry(powernow_table, i);
1004 			continue;
1005 		}
1006 
1007 		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1008 			printk(KERN_INFO PFX "invalid freq entries "
1009 				"%u kHz vs. %u kHz\n", freq,
1010 				(unsigned int)
1011 				(data->acpi_data.states[i].core_frequency
1012 				 * 1000));
1013 			invalidate_entry(powernow_table, i);
1014 			continue;
1015 		}
1016 	}
1017 	return 0;
1018 }
1019 
1020 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1021 {
1022 	if (data->acpi_data.state_count)
1023 		acpi_processor_unregister_performance(&data->acpi_data,
1024 				data->cpu);
1025 	free_cpumask_var(data->acpi_data.shared_cpu_map);
1026 }
1027 
1028 static int get_transition_latency(struct powernow_k8_data *data)
1029 {
1030 	int max_latency = 0;
1031 	int i;
1032 	for (i = 0; i < data->acpi_data.state_count; i++) {
1033 		int cur_latency = data->acpi_data.states[i].transition_latency
1034 			+ data->acpi_data.states[i].bus_master_latency;
1035 		if (cur_latency > max_latency)
1036 			max_latency = cur_latency;
1037 	}
1038 	if (max_latency == 0) {
1039 		/*
1040 		 * Fam 11h and later may return 0 as transition latency. This
1041 		 * is intended and means "very fast". While cpufreq core and
1042 		 * governors currently can handle that gracefully, better set it
1043 		 * to 1 to avoid problems in the future.
1044 		 */
1045 		if (boot_cpu_data.x86 < 0x11)
1046 			printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1047 				"latency\n");
1048 		max_latency = 1;
1049 	}
1050 	/* value in usecs, needs to be in nanoseconds */
1051 	return 1000 * max_latency;
1052 }
1053 
1054 /* Take a frequency, and issue the fid/vid transition command */
1055 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1056 		unsigned int index)
1057 {
1058 	u32 fid = 0;
1059 	u32 vid = 0;
1060 	int res, i;
1061 	struct cpufreq_freqs freqs;
1062 
1063 	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1064 
1065 	/* fid/vid correctness check for k8 */
1066 	/* fid are the lower 8 bits of the index we stored into
1067 	 * the cpufreq frequency table in find_psb_table, vid
1068 	 * are the upper 8 bits.
1069 	 */
1070 	fid = data->powernow_table[index].index & 0xFF;
1071 	vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1072 
1073 	pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1074 
1075 	if (query_current_values_with_pending_wait(data))
1076 		return 1;
1077 
1078 	if ((data->currvid == vid) && (data->currfid == fid)) {
1079 		pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1080 			fid, vid);
1081 		return 0;
1082 	}
1083 
1084 	pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1085 		smp_processor_id(), fid, vid);
1086 	freqs.old = find_khz_freq_from_fid(data->currfid);
1087 	freqs.new = find_khz_freq_from_fid(fid);
1088 
1089 	for_each_cpu(i, data->available_cores) {
1090 		freqs.cpu = i;
1091 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1092 	}
1093 
1094 	res = transition_fid_vid(data, fid, vid);
1095 	if (res)
1096 		return res;
1097 
1098 	freqs.new = find_khz_freq_from_fid(data->currfid);
1099 
1100 	for_each_cpu(i, data->available_cores) {
1101 		freqs.cpu = i;
1102 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1103 	}
1104 	return res;
1105 }
1106 
1107 /* Take a frequency, and issue the hardware pstate transition command */
1108 static int transition_frequency_pstate(struct powernow_k8_data *data,
1109 		unsigned int index)
1110 {
1111 	u32 pstate = 0;
1112 	int res, i;
1113 	struct cpufreq_freqs freqs;
1114 
1115 	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1116 
1117 	/* get MSR index for hardware pstate transition */
1118 	pstate = index & HW_PSTATE_MASK;
1119 	if (pstate > data->max_hw_pstate)
1120 		return -EINVAL;
1121 
1122 	freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1123 			data->currpstate);
1124 	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1125 
1126 	for_each_cpu(i, data->available_cores) {
1127 		freqs.cpu = i;
1128 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1129 	}
1130 
1131 	res = transition_pstate(data, pstate);
1132 	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1133 
1134 	for_each_cpu(i, data->available_cores) {
1135 		freqs.cpu = i;
1136 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1137 	}
1138 	return res;
1139 }
1140 
1141 struct powernowk8_target_arg {
1142 	struct cpufreq_policy		*pol;
1143 	unsigned			targfreq;
1144 	unsigned			relation;
1145 };
1146 
1147 static long powernowk8_target_fn(void *arg)
1148 {
1149 	struct powernowk8_target_arg *pta = arg;
1150 	struct cpufreq_policy *pol = pta->pol;
1151 	unsigned targfreq = pta->targfreq;
1152 	unsigned relation = pta->relation;
1153 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1154 	u32 checkfid;
1155 	u32 checkvid;
1156 	unsigned int newstate;
1157 	int ret;
1158 
1159 	if (!data)
1160 		return -EINVAL;
1161 
1162 	checkfid = data->currfid;
1163 	checkvid = data->currvid;
1164 
1165 	if (pending_bit_stuck()) {
1166 		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1167 		return -EIO;
1168 	}
1169 
1170 	pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1171 		pol->cpu, targfreq, pol->min, pol->max, relation);
1172 
1173 	if (query_current_values_with_pending_wait(data))
1174 		return -EIO;
1175 
1176 	if (cpu_family != CPU_HW_PSTATE) {
1177 		pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1178 		data->currfid, data->currvid);
1179 
1180 		if ((checkvid != data->currvid) ||
1181 		    (checkfid != data->currfid)) {
1182 			printk(KERN_INFO PFX
1183 				"error - out of sync, fix 0x%x 0x%x, "
1184 				"vid 0x%x 0x%x\n",
1185 				checkfid, data->currfid,
1186 				checkvid, data->currvid);
1187 		}
1188 	}
1189 
1190 	if (cpufreq_frequency_table_target(pol, data->powernow_table,
1191 				targfreq, relation, &newstate))
1192 		return -EIO;
1193 
1194 	mutex_lock(&fidvid_mutex);
1195 
1196 	powernow_k8_acpi_pst_values(data, newstate);
1197 
1198 	if (cpu_family == CPU_HW_PSTATE)
1199 		ret = transition_frequency_pstate(data,
1200 			data->powernow_table[newstate].index);
1201 	else
1202 		ret = transition_frequency_fidvid(data, newstate);
1203 	if (ret) {
1204 		printk(KERN_ERR PFX "transition frequency failed\n");
1205 		mutex_unlock(&fidvid_mutex);
1206 		return 1;
1207 	}
1208 	mutex_unlock(&fidvid_mutex);
1209 
1210 	if (cpu_family == CPU_HW_PSTATE)
1211 		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1212 				data->powernow_table[newstate].index);
1213 	else
1214 		pol->cur = find_khz_freq_from_fid(data->currfid);
1215 
1216 	return 0;
1217 }
1218 
1219 /* Driver entry point to switch to the target frequency */
1220 static int powernowk8_target(struct cpufreq_policy *pol,
1221 		unsigned targfreq, unsigned relation)
1222 {
1223 	struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq,
1224 					     .relation = relation };
1225 
1226 	/*
1227 	 * Must run on @pol->cpu.  cpufreq core is responsible for ensuring
1228 	 * that we're bound to the current CPU and pol->cpu stays online.
1229 	 */
1230 	if (smp_processor_id() == pol->cpu)
1231 		return powernowk8_target_fn(&pta);
1232 	else
1233 		return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
1234 }
1235 
1236 /* Driver entry point to verify the policy and range of frequencies */
1237 static int powernowk8_verify(struct cpufreq_policy *pol)
1238 {
1239 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1240 
1241 	if (!data)
1242 		return -EINVAL;
1243 
1244 	return cpufreq_frequency_table_verify(pol, data->powernow_table);
1245 }
1246 
1247 struct init_on_cpu {
1248 	struct powernow_k8_data *data;
1249 	int rc;
1250 };
1251 
1252 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1253 {
1254 	struct init_on_cpu *init_on_cpu = _init_on_cpu;
1255 
1256 	if (pending_bit_stuck()) {
1257 		printk(KERN_ERR PFX "failing init, change pending bit set\n");
1258 		init_on_cpu->rc = -ENODEV;
1259 		return;
1260 	}
1261 
1262 	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1263 		init_on_cpu->rc = -ENODEV;
1264 		return;
1265 	}
1266 
1267 	if (cpu_family == CPU_OPTERON)
1268 		fidvid_msr_init();
1269 
1270 	init_on_cpu->rc = 0;
1271 }
1272 
1273 /* per CPU init entry point to the driver */
1274 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1275 {
1276 	static const char ACPI_PSS_BIOS_BUG_MSG[] =
1277 		KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1278 		FW_BUG PFX "Try again with latest BIOS.\n";
1279 	struct powernow_k8_data *data;
1280 	struct init_on_cpu init_on_cpu;
1281 	int rc;
1282 	struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1283 
1284 	if (!cpu_online(pol->cpu))
1285 		return -ENODEV;
1286 
1287 	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1288 	if (rc)
1289 		return -ENODEV;
1290 
1291 	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1292 	if (!data) {
1293 		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1294 		return -ENOMEM;
1295 	}
1296 
1297 	data->cpu = pol->cpu;
1298 	data->currpstate = HW_PSTATE_INVALID;
1299 
1300 	if (powernow_k8_cpu_init_acpi(data)) {
1301 		/*
1302 		 * Use the PSB BIOS structure. This is only available on
1303 		 * an UP version, and is deprecated by AMD.
1304 		 */
1305 		if (num_online_cpus() != 1) {
1306 			printk_once(ACPI_PSS_BIOS_BUG_MSG);
1307 			goto err_out;
1308 		}
1309 		if (pol->cpu != 0) {
1310 			printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1311 			       "CPU other than CPU0. Complain to your BIOS "
1312 			       "vendor.\n");
1313 			goto err_out;
1314 		}
1315 		rc = find_psb_table(data);
1316 		if (rc)
1317 			goto err_out;
1318 
1319 		/* Take a crude guess here.
1320 		 * That guess was in microseconds, so multiply with 1000 */
1321 		pol->cpuinfo.transition_latency = (
1322 			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1323 			 ((1 << data->irt) * 30)) * 1000;
1324 	} else /* ACPI _PSS objects available */
1325 		pol->cpuinfo.transition_latency = get_transition_latency(data);
1326 
1327 	/* only run on specific CPU from here on */
1328 	init_on_cpu.data = data;
1329 	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1330 				 &init_on_cpu, 1);
1331 	rc = init_on_cpu.rc;
1332 	if (rc != 0)
1333 		goto err_out_exit_acpi;
1334 
1335 	if (cpu_family == CPU_HW_PSTATE)
1336 		cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1337 	else
1338 		cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1339 	data->available_cores = pol->cpus;
1340 
1341 	if (cpu_family == CPU_HW_PSTATE)
1342 		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1343 				data->currpstate);
1344 	else
1345 		pol->cur = find_khz_freq_from_fid(data->currfid);
1346 	pr_debug("policy current frequency %d kHz\n", pol->cur);
1347 
1348 	/* min/max the cpu is capable of */
1349 	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1350 		printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1351 		powernow_k8_cpu_exit_acpi(data);
1352 		kfree(data->powernow_table);
1353 		kfree(data);
1354 		return -EINVAL;
1355 	}
1356 
1357 	/* Check for APERF/MPERF support in hardware */
1358 	if (cpu_has(c, X86_FEATURE_APERFMPERF))
1359 		cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1360 
1361 	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1362 
1363 	if (cpu_family == CPU_HW_PSTATE)
1364 		pr_debug("cpu_init done, current pstate 0x%x\n",
1365 				data->currpstate);
1366 	else
1367 		pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1368 			data->currfid, data->currvid);
1369 
1370 	per_cpu(powernow_data, pol->cpu) = data;
1371 
1372 	return 0;
1373 
1374 err_out_exit_acpi:
1375 	powernow_k8_cpu_exit_acpi(data);
1376 
1377 err_out:
1378 	kfree(data);
1379 	return -ENODEV;
1380 }
1381 
1382 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1383 {
1384 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1385 
1386 	if (!data)
1387 		return -EINVAL;
1388 
1389 	powernow_k8_cpu_exit_acpi(data);
1390 
1391 	cpufreq_frequency_table_put_attr(pol->cpu);
1392 
1393 	kfree(data->powernow_table);
1394 	kfree(data);
1395 	per_cpu(powernow_data, pol->cpu) = NULL;
1396 
1397 	return 0;
1398 }
1399 
1400 static void query_values_on_cpu(void *_err)
1401 {
1402 	int *err = _err;
1403 	struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1404 
1405 	*err = query_current_values_with_pending_wait(data);
1406 }
1407 
1408 static unsigned int powernowk8_get(unsigned int cpu)
1409 {
1410 	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1411 	unsigned int khz = 0;
1412 	int err;
1413 
1414 	if (!data)
1415 		return 0;
1416 
1417 	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1418 	if (err)
1419 		goto out;
1420 
1421 	if (cpu_family == CPU_HW_PSTATE)
1422 		khz = find_khz_freq_from_pstate(data->powernow_table,
1423 						data->currpstate);
1424 	else
1425 		khz = find_khz_freq_from_fid(data->currfid);
1426 
1427 
1428 out:
1429 	return khz;
1430 }
1431 
1432 static void _cpb_toggle_msrs(bool t)
1433 {
1434 	int cpu;
1435 
1436 	get_online_cpus();
1437 
1438 	rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1439 
1440 	for_each_cpu(cpu, cpu_online_mask) {
1441 		struct msr *reg = per_cpu_ptr(msrs, cpu);
1442 		if (t)
1443 			reg->l &= ~BIT(25);
1444 		else
1445 			reg->l |= BIT(25);
1446 	}
1447 	wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1448 
1449 	put_online_cpus();
1450 }
1451 
1452 /*
1453  * Switch on/off core performance boosting.
1454  *
1455  * 0=disable
1456  * 1=enable.
1457  */
1458 static void cpb_toggle(bool t)
1459 {
1460 	if (!cpb_capable)
1461 		return;
1462 
1463 	if (t && !cpb_enabled) {
1464 		cpb_enabled = true;
1465 		_cpb_toggle_msrs(t);
1466 		printk(KERN_INFO PFX "Core Boosting enabled.\n");
1467 	} else if (!t && cpb_enabled) {
1468 		cpb_enabled = false;
1469 		_cpb_toggle_msrs(t);
1470 		printk(KERN_INFO PFX "Core Boosting disabled.\n");
1471 	}
1472 }
1473 
1474 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1475 				 size_t count)
1476 {
1477 	int ret = -EINVAL;
1478 	unsigned long val = 0;
1479 
1480 	ret = strict_strtoul(buf, 10, &val);
1481 	if (!ret && (val == 0 || val == 1) && cpb_capable)
1482 		cpb_toggle(val);
1483 	else
1484 		return -EINVAL;
1485 
1486 	return count;
1487 }
1488 
1489 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1490 {
1491 	return sprintf(buf, "%u\n", cpb_enabled);
1492 }
1493 
1494 #define define_one_rw(_name) \
1495 static struct freq_attr _name = \
1496 __ATTR(_name, 0644, show_##_name, store_##_name)
1497 
1498 define_one_rw(cpb);
1499 
1500 static struct freq_attr *powernow_k8_attr[] = {
1501 	&cpufreq_freq_attr_scaling_available_freqs,
1502 	&cpb,
1503 	NULL,
1504 };
1505 
1506 static struct cpufreq_driver cpufreq_amd64_driver = {
1507 	.verify		= powernowk8_verify,
1508 	.target		= powernowk8_target,
1509 	.bios_limit	= acpi_processor_get_bios_limit,
1510 	.init		= powernowk8_cpu_init,
1511 	.exit		= __devexit_p(powernowk8_cpu_exit),
1512 	.get		= powernowk8_get,
1513 	.name		= "powernow-k8",
1514 	.owner		= THIS_MODULE,
1515 	.attr		= powernow_k8_attr,
1516 };
1517 
1518 /*
1519  * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1520  * cannot block the remaining ones from boosting. On the CPU_UP path we
1521  * simply keep the boost-disable flag in sync with the current global
1522  * state.
1523  */
1524 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1525 		      void *hcpu)
1526 {
1527 	unsigned cpu = (long)hcpu;
1528 	u32 lo, hi;
1529 
1530 	switch (action) {
1531 	case CPU_UP_PREPARE:
1532 	case CPU_UP_PREPARE_FROZEN:
1533 
1534 		if (!cpb_enabled) {
1535 			rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1536 			lo |= BIT(25);
1537 			wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1538 		}
1539 		break;
1540 
1541 	case CPU_DOWN_PREPARE:
1542 	case CPU_DOWN_PREPARE_FROZEN:
1543 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1544 		lo &= ~BIT(25);
1545 		wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1546 		break;
1547 
1548 	default:
1549 		break;
1550 	}
1551 
1552 	return NOTIFY_OK;
1553 }
1554 
1555 static struct notifier_block cpb_nb = {
1556 	.notifier_call		= cpb_notify,
1557 };
1558 
1559 /* driver entry point for init */
1560 static int __cpuinit powernowk8_init(void)
1561 {
1562 	unsigned int i, supported_cpus = 0, cpu;
1563 	int rv;
1564 
1565 	if (!x86_match_cpu(powernow_k8_ids))
1566 		return -ENODEV;
1567 
1568 	for_each_online_cpu(i) {
1569 		int rc;
1570 		smp_call_function_single(i, check_supported_cpu, &rc, 1);
1571 		if (rc == 0)
1572 			supported_cpus++;
1573 	}
1574 
1575 	if (supported_cpus != num_online_cpus())
1576 		return -ENODEV;
1577 
1578 	printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1579 		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1580 
1581 	if (boot_cpu_has(X86_FEATURE_CPB)) {
1582 
1583 		cpb_capable = true;
1584 
1585 		msrs = msrs_alloc();
1586 		if (!msrs) {
1587 			printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1588 			return -ENOMEM;
1589 		}
1590 
1591 		register_cpu_notifier(&cpb_nb);
1592 
1593 		rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1594 
1595 		for_each_cpu(cpu, cpu_online_mask) {
1596 			struct msr *reg = per_cpu_ptr(msrs, cpu);
1597 			cpb_enabled |= !(!!(reg->l & BIT(25)));
1598 		}
1599 
1600 		printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1601 			(cpb_enabled ? "on" : "off"));
1602 	}
1603 
1604 	rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1605 	if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1606 		unregister_cpu_notifier(&cpb_nb);
1607 		msrs_free(msrs);
1608 		msrs = NULL;
1609 	}
1610 	return rv;
1611 }
1612 
1613 /* driver entry point for term */
1614 static void __exit powernowk8_exit(void)
1615 {
1616 	pr_debug("exit\n");
1617 
1618 	if (boot_cpu_has(X86_FEATURE_CPB)) {
1619 		msrs_free(msrs);
1620 		msrs = NULL;
1621 
1622 		unregister_cpu_notifier(&cpb_nb);
1623 	}
1624 
1625 	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1626 }
1627 
1628 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1629 		"Mark Langsdorf <mark.langsdorf@amd.com>");
1630 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1631 MODULE_LICENSE("GPL");
1632 
1633 late_initcall(powernowk8_init);
1634 module_exit(powernowk8_exit);
1635