xref: /linux/drivers/cpufreq/mediatek-cpufreq.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * Copyright (c) 2015 Linaro Ltd.
3  * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpumask.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_opp.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/slab.h>
25 #include <linux/thermal.h>
26 
27 #define MIN_VOLT_SHIFT		(100000)
28 #define MAX_VOLT_SHIFT		(200000)
29 #define MAX_VOLT_LIMIT		(1150000)
30 #define VOLT_TOL		(10000)
31 
32 /*
33  * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
34  * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
35  * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
36  * voltage inputs need to be controlled under a hardware limitation:
37  * 100mV < Vsram - Vproc < 200mV
38  *
39  * When scaling the clock frequency of a CPU clock domain, the clock source
40  * needs to be switched to another stable PLL clock temporarily until
41  * the original PLL becomes stable at target frequency.
42  */
43 struct mtk_cpu_dvfs_info {
44 	struct cpumask cpus;
45 	struct device *cpu_dev;
46 	struct regulator *proc_reg;
47 	struct regulator *sram_reg;
48 	struct clk *cpu_clk;
49 	struct clk *inter_clk;
50 	struct list_head list_head;
51 	int intermediate_voltage;
52 	bool need_voltage_tracking;
53 };
54 
55 static LIST_HEAD(dvfs_info_list);
56 
57 static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
58 {
59 	struct mtk_cpu_dvfs_info *info;
60 
61 	list_for_each_entry(info, &dvfs_info_list, list_head) {
62 		if (cpumask_test_cpu(cpu, &info->cpus))
63 			return info;
64 	}
65 
66 	return NULL;
67 }
68 
69 static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
70 					int new_vproc)
71 {
72 	struct regulator *proc_reg = info->proc_reg;
73 	struct regulator *sram_reg = info->sram_reg;
74 	int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
75 
76 	old_vproc = regulator_get_voltage(proc_reg);
77 	if (old_vproc < 0) {
78 		pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
79 		return old_vproc;
80 	}
81 	/* Vsram should not exceed the maximum allowed voltage of SoC. */
82 	new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
83 
84 	if (old_vproc < new_vproc) {
85 		/*
86 		 * When scaling up voltages, Vsram and Vproc scale up step
87 		 * by step. At each step, set Vsram to (Vproc + 200mV) first,
88 		 * then set Vproc to (Vsram - 100mV).
89 		 * Keep doing it until Vsram and Vproc hit target voltages.
90 		 */
91 		do {
92 			old_vsram = regulator_get_voltage(sram_reg);
93 			if (old_vsram < 0) {
94 				pr_err("%s: invalid Vsram value: %d\n",
95 				       __func__, old_vsram);
96 				return old_vsram;
97 			}
98 			old_vproc = regulator_get_voltage(proc_reg);
99 			if (old_vproc < 0) {
100 				pr_err("%s: invalid Vproc value: %d\n",
101 				       __func__, old_vproc);
102 				return old_vproc;
103 			}
104 
105 			vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
106 
107 			if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
108 				vsram = MAX_VOLT_LIMIT;
109 
110 				/*
111 				 * If the target Vsram hits the maximum voltage,
112 				 * try to set the exact voltage value first.
113 				 */
114 				ret = regulator_set_voltage(sram_reg, vsram,
115 							    vsram);
116 				if (ret)
117 					ret = regulator_set_voltage(sram_reg,
118 							vsram - VOLT_TOL,
119 							vsram);
120 
121 				vproc = new_vproc;
122 			} else {
123 				ret = regulator_set_voltage(sram_reg, vsram,
124 							    vsram + VOLT_TOL);
125 
126 				vproc = vsram - MIN_VOLT_SHIFT;
127 			}
128 			if (ret)
129 				return ret;
130 
131 			ret = regulator_set_voltage(proc_reg, vproc,
132 						    vproc + VOLT_TOL);
133 			if (ret) {
134 				regulator_set_voltage(sram_reg, old_vsram,
135 						      old_vsram);
136 				return ret;
137 			}
138 		} while (vproc < new_vproc || vsram < new_vsram);
139 	} else if (old_vproc > new_vproc) {
140 		/*
141 		 * When scaling down voltages, Vsram and Vproc scale down step
142 		 * by step. At each step, set Vproc to (Vsram - 200mV) first,
143 		 * then set Vproc to (Vproc + 100mV).
144 		 * Keep doing it until Vsram and Vproc hit target voltages.
145 		 */
146 		do {
147 			old_vproc = regulator_get_voltage(proc_reg);
148 			if (old_vproc < 0) {
149 				pr_err("%s: invalid Vproc value: %d\n",
150 				       __func__, old_vproc);
151 				return old_vproc;
152 			}
153 			old_vsram = regulator_get_voltage(sram_reg);
154 			if (old_vsram < 0) {
155 				pr_err("%s: invalid Vsram value: %d\n",
156 				       __func__, old_vsram);
157 				return old_vsram;
158 			}
159 
160 			vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
161 			ret = regulator_set_voltage(proc_reg, vproc,
162 						    vproc + VOLT_TOL);
163 			if (ret)
164 				return ret;
165 
166 			if (vproc == new_vproc)
167 				vsram = new_vsram;
168 			else
169 				vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
170 
171 			if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
172 				vsram = MAX_VOLT_LIMIT;
173 
174 				/*
175 				 * If the target Vsram hits the maximum voltage,
176 				 * try to set the exact voltage value first.
177 				 */
178 				ret = regulator_set_voltage(sram_reg, vsram,
179 							    vsram);
180 				if (ret)
181 					ret = regulator_set_voltage(sram_reg,
182 							vsram - VOLT_TOL,
183 							vsram);
184 			} else {
185 				ret = regulator_set_voltage(sram_reg, vsram,
186 							    vsram + VOLT_TOL);
187 			}
188 
189 			if (ret) {
190 				regulator_set_voltage(proc_reg, old_vproc,
191 						      old_vproc);
192 				return ret;
193 			}
194 		} while (vproc > new_vproc + VOLT_TOL ||
195 			 vsram > new_vsram + VOLT_TOL);
196 	}
197 
198 	return 0;
199 }
200 
201 static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
202 {
203 	if (info->need_voltage_tracking)
204 		return mtk_cpufreq_voltage_tracking(info, vproc);
205 	else
206 		return regulator_set_voltage(info->proc_reg, vproc,
207 					     vproc + VOLT_TOL);
208 }
209 
210 static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
211 				  unsigned int index)
212 {
213 	struct cpufreq_frequency_table *freq_table = policy->freq_table;
214 	struct clk *cpu_clk = policy->clk;
215 	struct clk *armpll = clk_get_parent(cpu_clk);
216 	struct mtk_cpu_dvfs_info *info = policy->driver_data;
217 	struct device *cpu_dev = info->cpu_dev;
218 	struct dev_pm_opp *opp;
219 	long freq_hz, old_freq_hz;
220 	int vproc, old_vproc, inter_vproc, target_vproc, ret;
221 
222 	inter_vproc = info->intermediate_voltage;
223 
224 	old_freq_hz = clk_get_rate(cpu_clk);
225 	old_vproc = regulator_get_voltage(info->proc_reg);
226 	if (old_vproc < 0) {
227 		pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
228 		return old_vproc;
229 	}
230 
231 	freq_hz = freq_table[index].frequency * 1000;
232 
233 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
234 	if (IS_ERR(opp)) {
235 		pr_err("cpu%d: failed to find OPP for %ld\n",
236 		       policy->cpu, freq_hz);
237 		return PTR_ERR(opp);
238 	}
239 	vproc = dev_pm_opp_get_voltage(opp);
240 	dev_pm_opp_put(opp);
241 
242 	/*
243 	 * If the new voltage or the intermediate voltage is higher than the
244 	 * current voltage, scale up voltage first.
245 	 */
246 	target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
247 	if (old_vproc < target_vproc) {
248 		ret = mtk_cpufreq_set_voltage(info, target_vproc);
249 		if (ret) {
250 			pr_err("cpu%d: failed to scale up voltage!\n",
251 			       policy->cpu);
252 			mtk_cpufreq_set_voltage(info, old_vproc);
253 			return ret;
254 		}
255 	}
256 
257 	/* Reparent the CPU clock to intermediate clock. */
258 	ret = clk_set_parent(cpu_clk, info->inter_clk);
259 	if (ret) {
260 		pr_err("cpu%d: failed to re-parent cpu clock!\n",
261 		       policy->cpu);
262 		mtk_cpufreq_set_voltage(info, old_vproc);
263 		WARN_ON(1);
264 		return ret;
265 	}
266 
267 	/* Set the original PLL to target rate. */
268 	ret = clk_set_rate(armpll, freq_hz);
269 	if (ret) {
270 		pr_err("cpu%d: failed to scale cpu clock rate!\n",
271 		       policy->cpu);
272 		clk_set_parent(cpu_clk, armpll);
273 		mtk_cpufreq_set_voltage(info, old_vproc);
274 		return ret;
275 	}
276 
277 	/* Set parent of CPU clock back to the original PLL. */
278 	ret = clk_set_parent(cpu_clk, armpll);
279 	if (ret) {
280 		pr_err("cpu%d: failed to re-parent cpu clock!\n",
281 		       policy->cpu);
282 		mtk_cpufreq_set_voltage(info, inter_vproc);
283 		WARN_ON(1);
284 		return ret;
285 	}
286 
287 	/*
288 	 * If the new voltage is lower than the intermediate voltage or the
289 	 * original voltage, scale down to the new voltage.
290 	 */
291 	if (vproc < inter_vproc || vproc < old_vproc) {
292 		ret = mtk_cpufreq_set_voltage(info, vproc);
293 		if (ret) {
294 			pr_err("cpu%d: failed to scale down voltage!\n",
295 			       policy->cpu);
296 			clk_set_parent(cpu_clk, info->inter_clk);
297 			clk_set_rate(armpll, old_freq_hz);
298 			clk_set_parent(cpu_clk, armpll);
299 			return ret;
300 		}
301 	}
302 
303 	return 0;
304 }
305 
306 #define DYNAMIC_POWER "dynamic-power-coefficient"
307 
308 static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
309 {
310 	struct device *cpu_dev;
311 	struct regulator *proc_reg = ERR_PTR(-ENODEV);
312 	struct regulator *sram_reg = ERR_PTR(-ENODEV);
313 	struct clk *cpu_clk = ERR_PTR(-ENODEV);
314 	struct clk *inter_clk = ERR_PTR(-ENODEV);
315 	struct dev_pm_opp *opp;
316 	unsigned long rate;
317 	int ret;
318 
319 	cpu_dev = get_cpu_device(cpu);
320 	if (!cpu_dev) {
321 		pr_err("failed to get cpu%d device\n", cpu);
322 		return -ENODEV;
323 	}
324 
325 	cpu_clk = clk_get(cpu_dev, "cpu");
326 	if (IS_ERR(cpu_clk)) {
327 		if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
328 			pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
329 		else
330 			pr_err("failed to get cpu clk for cpu%d\n", cpu);
331 
332 		ret = PTR_ERR(cpu_clk);
333 		return ret;
334 	}
335 
336 	inter_clk = clk_get(cpu_dev, "intermediate");
337 	if (IS_ERR(inter_clk)) {
338 		if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
339 			pr_warn("intermediate clk for cpu%d not ready, retry.\n",
340 				cpu);
341 		else
342 			pr_err("failed to get intermediate clk for cpu%d\n",
343 			       cpu);
344 
345 		ret = PTR_ERR(inter_clk);
346 		goto out_free_resources;
347 	}
348 
349 	proc_reg = regulator_get_exclusive(cpu_dev, "proc");
350 	if (IS_ERR(proc_reg)) {
351 		if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
352 			pr_warn("proc regulator for cpu%d not ready, retry.\n",
353 				cpu);
354 		else
355 			pr_err("failed to get proc regulator for cpu%d\n",
356 			       cpu);
357 
358 		ret = PTR_ERR(proc_reg);
359 		goto out_free_resources;
360 	}
361 
362 	/* Both presence and absence of sram regulator are valid cases. */
363 	sram_reg = regulator_get_exclusive(cpu_dev, "sram");
364 
365 	/* Get OPP-sharing information from "operating-points-v2" bindings */
366 	ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
367 	if (ret) {
368 		pr_err("failed to get OPP-sharing information for cpu%d\n",
369 		       cpu);
370 		goto out_free_resources;
371 	}
372 
373 	ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
374 	if (ret) {
375 		pr_warn("no OPP table for cpu%d\n", cpu);
376 		goto out_free_resources;
377 	}
378 
379 	/* Search a safe voltage for intermediate frequency. */
380 	rate = clk_get_rate(inter_clk);
381 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
382 	if (IS_ERR(opp)) {
383 		pr_err("failed to get intermediate opp for cpu%d\n", cpu);
384 		ret = PTR_ERR(opp);
385 		goto out_free_opp_table;
386 	}
387 	info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
388 	dev_pm_opp_put(opp);
389 
390 	info->cpu_dev = cpu_dev;
391 	info->proc_reg = proc_reg;
392 	info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
393 	info->cpu_clk = cpu_clk;
394 	info->inter_clk = inter_clk;
395 
396 	/*
397 	 * If SRAM regulator is present, software "voltage tracking" is needed
398 	 * for this CPU power domain.
399 	 */
400 	info->need_voltage_tracking = !IS_ERR(sram_reg);
401 
402 	return 0;
403 
404 out_free_opp_table:
405 	dev_pm_opp_of_cpumask_remove_table(&info->cpus);
406 
407 out_free_resources:
408 	if (!IS_ERR(proc_reg))
409 		regulator_put(proc_reg);
410 	if (!IS_ERR(sram_reg))
411 		regulator_put(sram_reg);
412 	if (!IS_ERR(cpu_clk))
413 		clk_put(cpu_clk);
414 	if (!IS_ERR(inter_clk))
415 		clk_put(inter_clk);
416 
417 	return ret;
418 }
419 
420 static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
421 {
422 	if (!IS_ERR(info->proc_reg))
423 		regulator_put(info->proc_reg);
424 	if (!IS_ERR(info->sram_reg))
425 		regulator_put(info->sram_reg);
426 	if (!IS_ERR(info->cpu_clk))
427 		clk_put(info->cpu_clk);
428 	if (!IS_ERR(info->inter_clk))
429 		clk_put(info->inter_clk);
430 
431 	dev_pm_opp_of_cpumask_remove_table(&info->cpus);
432 }
433 
434 static int mtk_cpufreq_init(struct cpufreq_policy *policy)
435 {
436 	struct mtk_cpu_dvfs_info *info;
437 	struct cpufreq_frequency_table *freq_table;
438 	int ret;
439 
440 	info = mtk_cpu_dvfs_info_lookup(policy->cpu);
441 	if (!info) {
442 		pr_err("dvfs info for cpu%d is not initialized.\n",
443 		       policy->cpu);
444 		return -EINVAL;
445 	}
446 
447 	ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
448 	if (ret) {
449 		pr_err("failed to init cpufreq table for cpu%d: %d\n",
450 		       policy->cpu, ret);
451 		return ret;
452 	}
453 
454 	cpumask_copy(policy->cpus, &info->cpus);
455 	policy->freq_table = freq_table;
456 	policy->driver_data = info;
457 	policy->clk = info->cpu_clk;
458 
459 	dev_pm_opp_of_register_em(policy->cpus);
460 
461 	return 0;
462 }
463 
464 static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
465 {
466 	struct mtk_cpu_dvfs_info *info = policy->driver_data;
467 
468 	dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
469 
470 	return 0;
471 }
472 
473 static struct cpufreq_driver mtk_cpufreq_driver = {
474 	.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
475 		 CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
476 		 CPUFREQ_IS_COOLING_DEV,
477 	.verify = cpufreq_generic_frequency_table_verify,
478 	.target_index = mtk_cpufreq_set_target,
479 	.get = cpufreq_generic_get,
480 	.init = mtk_cpufreq_init,
481 	.exit = mtk_cpufreq_exit,
482 	.name = "mtk-cpufreq",
483 	.attr = cpufreq_generic_attr,
484 };
485 
486 static int mtk_cpufreq_probe(struct platform_device *pdev)
487 {
488 	struct mtk_cpu_dvfs_info *info, *tmp;
489 	int cpu, ret;
490 
491 	for_each_possible_cpu(cpu) {
492 		info = mtk_cpu_dvfs_info_lookup(cpu);
493 		if (info)
494 			continue;
495 
496 		info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
497 		if (!info) {
498 			ret = -ENOMEM;
499 			goto release_dvfs_info_list;
500 		}
501 
502 		ret = mtk_cpu_dvfs_info_init(info, cpu);
503 		if (ret) {
504 			dev_err(&pdev->dev,
505 				"failed to initialize dvfs info for cpu%d\n",
506 				cpu);
507 			goto release_dvfs_info_list;
508 		}
509 
510 		list_add(&info->list_head, &dvfs_info_list);
511 	}
512 
513 	ret = cpufreq_register_driver(&mtk_cpufreq_driver);
514 	if (ret) {
515 		dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
516 		goto release_dvfs_info_list;
517 	}
518 
519 	return 0;
520 
521 release_dvfs_info_list:
522 	list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
523 		mtk_cpu_dvfs_info_release(info);
524 		list_del(&info->list_head);
525 	}
526 
527 	return ret;
528 }
529 
530 static struct platform_driver mtk_cpufreq_platdrv = {
531 	.driver = {
532 		.name	= "mtk-cpufreq",
533 	},
534 	.probe		= mtk_cpufreq_probe,
535 };
536 
537 /* List of machines supported by this driver */
538 static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
539 	{ .compatible = "mediatek,mt2701", },
540 	{ .compatible = "mediatek,mt2712", },
541 	{ .compatible = "mediatek,mt7622", },
542 	{ .compatible = "mediatek,mt7623", },
543 	{ .compatible = "mediatek,mt817x", },
544 	{ .compatible = "mediatek,mt8173", },
545 	{ .compatible = "mediatek,mt8176", },
546 
547 	{ }
548 };
549 
550 static int __init mtk_cpufreq_driver_init(void)
551 {
552 	struct device_node *np;
553 	const struct of_device_id *match;
554 	struct platform_device *pdev;
555 	int err;
556 
557 	np = of_find_node_by_path("/");
558 	if (!np)
559 		return -ENODEV;
560 
561 	match = of_match_node(mtk_cpufreq_machines, np);
562 	of_node_put(np);
563 	if (!match) {
564 		pr_debug("Machine is not compatible with mtk-cpufreq\n");
565 		return -ENODEV;
566 	}
567 
568 	err = platform_driver_register(&mtk_cpufreq_platdrv);
569 	if (err)
570 		return err;
571 
572 	/*
573 	 * Since there's no place to hold device registration code and no
574 	 * device tree based way to match cpufreq driver yet, both the driver
575 	 * and the device registration codes are put here to handle defer
576 	 * probing.
577 	 */
578 	pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0);
579 	if (IS_ERR(pdev)) {
580 		pr_err("failed to register mtk-cpufreq platform device\n");
581 		return PTR_ERR(pdev);
582 	}
583 
584 	return 0;
585 }
586 device_initcall(mtk_cpufreq_driver_init);
587 
588 MODULE_DESCRIPTION("MediaTek CPUFreq driver");
589 MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
590 MODULE_LICENSE("GPL v2");
591