xref: /linux/drivers/cpufreq/intel_pstate.c (revision f884ab15afdc5514e88105c92a4e2e1e6539869a)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 
34 #define SAMPLE_COUNT		3
35 
36 #define FRAC_BITS 8
37 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
38 #define fp_toint(X) ((X) >> FRAC_BITS)
39 
40 static inline int32_t mul_fp(int32_t x, int32_t y)
41 {
42 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
43 }
44 
45 static inline int32_t div_fp(int32_t x, int32_t y)
46 {
47 	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
48 }
49 
50 struct sample {
51 	int core_pct_busy;
52 	u64 aperf;
53 	u64 mperf;
54 	int freq;
55 };
56 
57 struct pstate_data {
58 	int	current_pstate;
59 	int	min_pstate;
60 	int	max_pstate;
61 	int	turbo_pstate;
62 };
63 
64 struct _pid {
65 	int setpoint;
66 	int32_t integral;
67 	int32_t p_gain;
68 	int32_t i_gain;
69 	int32_t d_gain;
70 	int deadband;
71 	int last_err;
72 };
73 
74 struct cpudata {
75 	int cpu;
76 
77 	char name[64];
78 
79 	struct timer_list timer;
80 
81 	struct pstate_adjust_policy *pstate_policy;
82 	struct pstate_data pstate;
83 	struct _pid pid;
84 
85 	int min_pstate_count;
86 
87 	u64	prev_aperf;
88 	u64	prev_mperf;
89 	int	sample_ptr;
90 	struct sample samples[SAMPLE_COUNT];
91 };
92 
93 static struct cpudata **all_cpu_data;
94 struct pstate_adjust_policy {
95 	int sample_rate_ms;
96 	int deadband;
97 	int setpoint;
98 	int p_gain_pct;
99 	int d_gain_pct;
100 	int i_gain_pct;
101 };
102 
103 static struct pstate_adjust_policy default_policy = {
104 	.sample_rate_ms = 10,
105 	.deadband = 0,
106 	.setpoint = 109,
107 	.p_gain_pct = 17,
108 	.d_gain_pct = 0,
109 	.i_gain_pct = 4,
110 };
111 
112 struct perf_limits {
113 	int no_turbo;
114 	int max_perf_pct;
115 	int min_perf_pct;
116 	int32_t max_perf;
117 	int32_t min_perf;
118 	int max_policy_pct;
119 	int max_sysfs_pct;
120 };
121 
122 static struct perf_limits limits = {
123 	.no_turbo = 0,
124 	.max_perf_pct = 100,
125 	.max_perf = int_tofp(1),
126 	.min_perf_pct = 0,
127 	.min_perf = 0,
128 	.max_policy_pct = 100,
129 	.max_sysfs_pct = 100,
130 };
131 
132 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
133 			int deadband, int integral) {
134 	pid->setpoint = setpoint;
135 	pid->deadband  = deadband;
136 	pid->integral  = int_tofp(integral);
137 	pid->last_err  = setpoint - busy;
138 }
139 
140 static inline void pid_p_gain_set(struct _pid *pid, int percent)
141 {
142 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
143 }
144 
145 static inline void pid_i_gain_set(struct _pid *pid, int percent)
146 {
147 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
148 }
149 
150 static inline void pid_d_gain_set(struct _pid *pid, int percent)
151 {
152 
153 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
154 }
155 
156 static signed int pid_calc(struct _pid *pid, int busy)
157 {
158 	signed int err, result;
159 	int32_t pterm, dterm, fp_error;
160 	int32_t integral_limit;
161 
162 	err = pid->setpoint - busy;
163 	fp_error = int_tofp(err);
164 
165 	if (abs(err) <= pid->deadband)
166 		return 0;
167 
168 	pterm = mul_fp(pid->p_gain, fp_error);
169 
170 	pid->integral += fp_error;
171 
172 	/* limit the integral term */
173 	integral_limit = int_tofp(30);
174 	if (pid->integral > integral_limit)
175 		pid->integral = integral_limit;
176 	if (pid->integral < -integral_limit)
177 		pid->integral = -integral_limit;
178 
179 	dterm = mul_fp(pid->d_gain, (err - pid->last_err));
180 	pid->last_err = err;
181 
182 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
183 
184 	return (signed int)fp_toint(result);
185 }
186 
187 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
188 {
189 	pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct);
190 	pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct);
191 	pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct);
192 
193 	pid_reset(&cpu->pid,
194 		cpu->pstate_policy->setpoint,
195 		100,
196 		cpu->pstate_policy->deadband,
197 		0);
198 }
199 
200 static inline void intel_pstate_reset_all_pid(void)
201 {
202 	unsigned int cpu;
203 	for_each_online_cpu(cpu) {
204 		if (all_cpu_data[cpu])
205 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
206 	}
207 }
208 
209 /************************** debugfs begin ************************/
210 static int pid_param_set(void *data, u64 val)
211 {
212 	*(u32 *)data = val;
213 	intel_pstate_reset_all_pid();
214 	return 0;
215 }
216 static int pid_param_get(void *data, u64 *val)
217 {
218 	*val = *(u32 *)data;
219 	return 0;
220 }
221 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
222 			pid_param_set, "%llu\n");
223 
224 struct pid_param {
225 	char *name;
226 	void *value;
227 };
228 
229 static struct pid_param pid_files[] = {
230 	{"sample_rate_ms", &default_policy.sample_rate_ms},
231 	{"d_gain_pct", &default_policy.d_gain_pct},
232 	{"i_gain_pct", &default_policy.i_gain_pct},
233 	{"deadband", &default_policy.deadband},
234 	{"setpoint", &default_policy.setpoint},
235 	{"p_gain_pct", &default_policy.p_gain_pct},
236 	{NULL, NULL}
237 };
238 
239 static struct dentry *debugfs_parent;
240 static void intel_pstate_debug_expose_params(void)
241 {
242 	int i = 0;
243 
244 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
245 	if (IS_ERR_OR_NULL(debugfs_parent))
246 		return;
247 	while (pid_files[i].name) {
248 		debugfs_create_file(pid_files[i].name, 0660,
249 				debugfs_parent, pid_files[i].value,
250 				&fops_pid_param);
251 		i++;
252 	}
253 }
254 
255 /************************** debugfs end ************************/
256 
257 /************************** sysfs begin ************************/
258 #define show_one(file_name, object)					\
259 	static ssize_t show_##file_name					\
260 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
261 	{								\
262 		return sprintf(buf, "%u\n", limits.object);		\
263 	}
264 
265 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
266 				const char *buf, size_t count)
267 {
268 	unsigned int input;
269 	int ret;
270 	ret = sscanf(buf, "%u", &input);
271 	if (ret != 1)
272 		return -EINVAL;
273 	limits.no_turbo = clamp_t(int, input, 0 , 1);
274 
275 	return count;
276 }
277 
278 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
279 				const char *buf, size_t count)
280 {
281 	unsigned int input;
282 	int ret;
283 	ret = sscanf(buf, "%u", &input);
284 	if (ret != 1)
285 		return -EINVAL;
286 
287 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
288 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
289 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
290 	return count;
291 }
292 
293 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
294 				const char *buf, size_t count)
295 {
296 	unsigned int input;
297 	int ret;
298 	ret = sscanf(buf, "%u", &input);
299 	if (ret != 1)
300 		return -EINVAL;
301 	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
302 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
303 
304 	return count;
305 }
306 
307 show_one(no_turbo, no_turbo);
308 show_one(max_perf_pct, max_perf_pct);
309 show_one(min_perf_pct, min_perf_pct);
310 
311 define_one_global_rw(no_turbo);
312 define_one_global_rw(max_perf_pct);
313 define_one_global_rw(min_perf_pct);
314 
315 static struct attribute *intel_pstate_attributes[] = {
316 	&no_turbo.attr,
317 	&max_perf_pct.attr,
318 	&min_perf_pct.attr,
319 	NULL
320 };
321 
322 static struct attribute_group intel_pstate_attr_group = {
323 	.attrs = intel_pstate_attributes,
324 };
325 static struct kobject *intel_pstate_kobject;
326 
327 static void intel_pstate_sysfs_expose_params(void)
328 {
329 	int rc;
330 
331 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
332 						&cpu_subsys.dev_root->kobj);
333 	BUG_ON(!intel_pstate_kobject);
334 	rc = sysfs_create_group(intel_pstate_kobject,
335 				&intel_pstate_attr_group);
336 	BUG_ON(rc);
337 }
338 
339 /************************** sysfs end ************************/
340 
341 static int intel_pstate_min_pstate(void)
342 {
343 	u64 value;
344 	rdmsrl(MSR_PLATFORM_INFO, value);
345 	return (value >> 40) & 0xFF;
346 }
347 
348 static int intel_pstate_max_pstate(void)
349 {
350 	u64 value;
351 	rdmsrl(MSR_PLATFORM_INFO, value);
352 	return (value >> 8) & 0xFF;
353 }
354 
355 static int intel_pstate_turbo_pstate(void)
356 {
357 	u64 value;
358 	int nont, ret;
359 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
360 	nont = intel_pstate_max_pstate();
361 	ret = ((value) & 255);
362 	if (ret <= nont)
363 		ret = nont;
364 	return ret;
365 }
366 
367 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
368 {
369 	int max_perf = cpu->pstate.turbo_pstate;
370 	int min_perf;
371 	if (limits.no_turbo)
372 		max_perf = cpu->pstate.max_pstate;
373 
374 	max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
375 	*max = clamp_t(int, max_perf,
376 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
377 
378 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
379 	*min = clamp_t(int, min_perf,
380 			cpu->pstate.min_pstate, max_perf);
381 }
382 
383 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
384 {
385 	int max_perf, min_perf;
386 
387 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
388 
389 	pstate = clamp_t(int, pstate, min_perf, max_perf);
390 
391 	if (pstate == cpu->pstate.current_pstate)
392 		return;
393 
394 	trace_cpu_frequency(pstate * 100000, cpu->cpu);
395 
396 	cpu->pstate.current_pstate = pstate;
397 	wrmsrl(MSR_IA32_PERF_CTL, pstate << 8);
398 
399 }
400 
401 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
402 {
403 	int target;
404 	target = cpu->pstate.current_pstate + steps;
405 
406 	intel_pstate_set_pstate(cpu, target);
407 }
408 
409 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
410 {
411 	int target;
412 	target = cpu->pstate.current_pstate - steps;
413 	intel_pstate_set_pstate(cpu, target);
414 }
415 
416 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
417 {
418 	sprintf(cpu->name, "Intel 2nd generation core");
419 
420 	cpu->pstate.min_pstate = intel_pstate_min_pstate();
421 	cpu->pstate.max_pstate = intel_pstate_max_pstate();
422 	cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate();
423 
424 	/*
425 	 * goto max pstate so we don't slow up boot if we are built-in if we are
426 	 * a module we will take care of it during normal operation
427 	 */
428 	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
429 }
430 
431 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
432 					struct sample *sample)
433 {
434 	u64 core_pct;
435 	core_pct = div64_u64(sample->aperf * 100, sample->mperf);
436 	sample->freq = cpu->pstate.max_pstate * core_pct * 1000;
437 
438 	sample->core_pct_busy = core_pct;
439 }
440 
441 static inline void intel_pstate_sample(struct cpudata *cpu)
442 {
443 	u64 aperf, mperf;
444 
445 	rdmsrl(MSR_IA32_APERF, aperf);
446 	rdmsrl(MSR_IA32_MPERF, mperf);
447 	cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
448 	cpu->samples[cpu->sample_ptr].aperf = aperf;
449 	cpu->samples[cpu->sample_ptr].mperf = mperf;
450 	cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
451 	cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
452 
453 	intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
454 
455 	cpu->prev_aperf = aperf;
456 	cpu->prev_mperf = mperf;
457 }
458 
459 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
460 {
461 	int sample_time, delay;
462 
463 	sample_time = cpu->pstate_policy->sample_rate_ms;
464 	delay = msecs_to_jiffies(sample_time);
465 	mod_timer_pinned(&cpu->timer, jiffies + delay);
466 }
467 
468 static inline int intel_pstate_get_scaled_busy(struct cpudata *cpu)
469 {
470 	int32_t busy_scaled;
471 	int32_t core_busy, turbo_pstate, current_pstate;
472 
473 	core_busy = int_tofp(cpu->samples[cpu->sample_ptr].core_pct_busy);
474 	turbo_pstate = int_tofp(cpu->pstate.turbo_pstate);
475 	current_pstate = int_tofp(cpu->pstate.current_pstate);
476 	busy_scaled = mul_fp(core_busy, div_fp(turbo_pstate, current_pstate));
477 
478 	return fp_toint(busy_scaled);
479 }
480 
481 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
482 {
483 	int busy_scaled;
484 	struct _pid *pid;
485 	signed int ctl = 0;
486 	int steps;
487 
488 	pid = &cpu->pid;
489 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
490 
491 	ctl = pid_calc(pid, busy_scaled);
492 
493 	steps = abs(ctl);
494 	if (ctl < 0)
495 		intel_pstate_pstate_increase(cpu, steps);
496 	else
497 		intel_pstate_pstate_decrease(cpu, steps);
498 }
499 
500 static void intel_pstate_timer_func(unsigned long __data)
501 {
502 	struct cpudata *cpu = (struct cpudata *) __data;
503 
504 	intel_pstate_sample(cpu);
505 	intel_pstate_adjust_busy_pstate(cpu);
506 
507 	if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) {
508 		cpu->min_pstate_count++;
509 		if (!(cpu->min_pstate_count % 5)) {
510 			intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
511 		}
512 	} else
513 		cpu->min_pstate_count = 0;
514 
515 	intel_pstate_set_sample_time(cpu);
516 }
517 
518 #define ICPU(model, policy) \
519 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy }
520 
521 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
522 	ICPU(0x2a, default_policy),
523 	ICPU(0x2d, default_policy),
524 	ICPU(0x3a, default_policy),
525 	{}
526 };
527 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
528 
529 static int intel_pstate_init_cpu(unsigned int cpunum)
530 {
531 
532 	const struct x86_cpu_id *id;
533 	struct cpudata *cpu;
534 
535 	id = x86_match_cpu(intel_pstate_cpu_ids);
536 	if (!id)
537 		return -ENODEV;
538 
539 	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
540 	if (!all_cpu_data[cpunum])
541 		return -ENOMEM;
542 
543 	cpu = all_cpu_data[cpunum];
544 
545 	intel_pstate_get_cpu_pstates(cpu);
546 
547 	cpu->cpu = cpunum;
548 	cpu->pstate_policy =
549 		(struct pstate_adjust_policy *)id->driver_data;
550 	init_timer_deferrable(&cpu->timer);
551 	cpu->timer.function = intel_pstate_timer_func;
552 	cpu->timer.data =
553 		(unsigned long)cpu;
554 	cpu->timer.expires = jiffies + HZ/100;
555 	intel_pstate_busy_pid_reset(cpu);
556 	intel_pstate_sample(cpu);
557 	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
558 
559 	add_timer_on(&cpu->timer, cpunum);
560 
561 	pr_info("Intel pstate controlling: cpu %d\n", cpunum);
562 
563 	return 0;
564 }
565 
566 static unsigned int intel_pstate_get(unsigned int cpu_num)
567 {
568 	struct sample *sample;
569 	struct cpudata *cpu;
570 
571 	cpu = all_cpu_data[cpu_num];
572 	if (!cpu)
573 		return 0;
574 	sample = &cpu->samples[cpu->sample_ptr];
575 	return sample->freq;
576 }
577 
578 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
579 {
580 	struct cpudata *cpu;
581 
582 	cpu = all_cpu_data[policy->cpu];
583 
584 	if (!policy->cpuinfo.max_freq)
585 		return -ENODEV;
586 
587 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
588 		limits.min_perf_pct = 100;
589 		limits.min_perf = int_tofp(1);
590 		limits.max_perf_pct = 100;
591 		limits.max_perf = int_tofp(1);
592 		limits.no_turbo = 0;
593 		return 0;
594 	}
595 	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
596 	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
597 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
598 
599 	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
600 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
601 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
602 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
603 
604 	return 0;
605 }
606 
607 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
608 {
609 	cpufreq_verify_within_limits(policy,
610 				policy->cpuinfo.min_freq,
611 				policy->cpuinfo.max_freq);
612 
613 	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
614 		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
615 		return -EINVAL;
616 
617 	return 0;
618 }
619 
620 static int __cpuinit intel_pstate_cpu_exit(struct cpufreq_policy *policy)
621 {
622 	int cpu = policy->cpu;
623 
624 	del_timer(&all_cpu_data[cpu]->timer);
625 	kfree(all_cpu_data[cpu]);
626 	all_cpu_data[cpu] = NULL;
627 	return 0;
628 }
629 
630 static int __cpuinit intel_pstate_cpu_init(struct cpufreq_policy *policy)
631 {
632 	int rc, min_pstate, max_pstate;
633 	struct cpudata *cpu;
634 
635 	rc = intel_pstate_init_cpu(policy->cpu);
636 	if (rc)
637 		return rc;
638 
639 	cpu = all_cpu_data[policy->cpu];
640 
641 	if (!limits.no_turbo &&
642 		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
643 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
644 	else
645 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
646 
647 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
648 	policy->min = min_pstate * 100000;
649 	policy->max = max_pstate * 100000;
650 
651 	/* cpuinfo and default policy values */
652 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
653 	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
654 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
655 	cpumask_set_cpu(policy->cpu, policy->cpus);
656 
657 	return 0;
658 }
659 
660 static struct cpufreq_driver intel_pstate_driver = {
661 	.flags		= CPUFREQ_CONST_LOOPS,
662 	.verify		= intel_pstate_verify_policy,
663 	.setpolicy	= intel_pstate_set_policy,
664 	.get		= intel_pstate_get,
665 	.init		= intel_pstate_cpu_init,
666 	.exit		= intel_pstate_cpu_exit,
667 	.name		= "intel_pstate",
668 	.owner		= THIS_MODULE,
669 };
670 
671 static int __initdata no_load;
672 
673 static int intel_pstate_msrs_not_valid(void)
674 {
675 	/* Check that all the msr's we are using are valid. */
676 	u64 aperf, mperf, tmp;
677 
678 	rdmsrl(MSR_IA32_APERF, aperf);
679 	rdmsrl(MSR_IA32_MPERF, mperf);
680 
681 	if (!intel_pstate_min_pstate() ||
682 		!intel_pstate_max_pstate() ||
683 		!intel_pstate_turbo_pstate())
684 		return -ENODEV;
685 
686 	rdmsrl(MSR_IA32_APERF, tmp);
687 	if (!(tmp - aperf))
688 		return -ENODEV;
689 
690 	rdmsrl(MSR_IA32_MPERF, tmp);
691 	if (!(tmp - mperf))
692 		return -ENODEV;
693 
694 	return 0;
695 }
696 static int __init intel_pstate_init(void)
697 {
698 	int cpu, rc = 0;
699 	const struct x86_cpu_id *id;
700 
701 	if (no_load)
702 		return -ENODEV;
703 
704 	id = x86_match_cpu(intel_pstate_cpu_ids);
705 	if (!id)
706 		return -ENODEV;
707 
708 	if (intel_pstate_msrs_not_valid())
709 		return -ENODEV;
710 
711 	pr_info("Intel P-state driver initializing.\n");
712 
713 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
714 	if (!all_cpu_data)
715 		return -ENOMEM;
716 
717 	rc = cpufreq_register_driver(&intel_pstate_driver);
718 	if (rc)
719 		goto out;
720 
721 	intel_pstate_debug_expose_params();
722 	intel_pstate_sysfs_expose_params();
723 	return rc;
724 out:
725 	get_online_cpus();
726 	for_each_online_cpu(cpu) {
727 		if (all_cpu_data[cpu]) {
728 			del_timer_sync(&all_cpu_data[cpu]->timer);
729 			kfree(all_cpu_data[cpu]);
730 		}
731 	}
732 
733 	put_online_cpus();
734 	vfree(all_cpu_data);
735 	return -ENODEV;
736 }
737 device_initcall(intel_pstate_init);
738 
739 static int __init intel_pstate_setup(char *str)
740 {
741 	if (!str)
742 		return -EINVAL;
743 
744 	if (!strcmp(str, "disable"))
745 		no_load = 1;
746 	return 0;
747 }
748 early_param("intel_pstate", intel_pstate_setup);
749 
750 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
751 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
752 MODULE_LICENSE("GPL");
753