1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/sysfs.h> 23 #include <linux/types.h> 24 #include <linux/fs.h> 25 #include <linux/acpi.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pm_qos.h> 28 #include <linux/bitfield.h> 29 #include <trace/events/power.h> 30 31 #include <asm/cpu.h> 32 #include <asm/div64.h> 33 #include <asm/msr.h> 34 #include <asm/cpu_device_id.h> 35 #include <asm/cpufeature.h> 36 #include <asm/intel-family.h> 37 #include "../drivers/thermal/intel/thermal_interrupt.h" 38 39 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 40 41 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 42 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 43 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 44 45 #ifdef CONFIG_ACPI 46 #include <acpi/processor.h> 47 #include <acpi/cppc_acpi.h> 48 #endif 49 50 #define FRAC_BITS 8 51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 52 #define fp_toint(X) ((X) >> FRAC_BITS) 53 54 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 55 56 #define EXT_BITS 6 57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 60 61 static inline int32_t mul_fp(int32_t x, int32_t y) 62 { 63 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 64 } 65 66 static inline int32_t div_fp(s64 x, s64 y) 67 { 68 return div64_s64((int64_t)x << FRAC_BITS, y); 69 } 70 71 static inline int ceiling_fp(int32_t x) 72 { 73 int mask, ret; 74 75 ret = fp_toint(x); 76 mask = (1 << FRAC_BITS) - 1; 77 if (x & mask) 78 ret += 1; 79 return ret; 80 } 81 82 static inline u64 mul_ext_fp(u64 x, u64 y) 83 { 84 return (x * y) >> EXT_FRAC_BITS; 85 } 86 87 static inline u64 div_ext_fp(u64 x, u64 y) 88 { 89 return div64_u64(x << EXT_FRAC_BITS, y); 90 } 91 92 /** 93 * struct sample - Store performance sample 94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 95 * performance during last sample period 96 * @busy_scaled: Scaled busy value which is used to calculate next 97 * P state. This can be different than core_avg_perf 98 * to account for cpu idle period 99 * @aperf: Difference of actual performance frequency clock count 100 * read from APERF MSR between last and current sample 101 * @mperf: Difference of maximum performance frequency clock count 102 * read from MPERF MSR between last and current sample 103 * @tsc: Difference of time stamp counter between last and 104 * current sample 105 * @time: Current time from scheduler 106 * 107 * This structure is used in the cpudata structure to store performance sample 108 * data for choosing next P State. 109 */ 110 struct sample { 111 int32_t core_avg_perf; 112 int32_t busy_scaled; 113 u64 aperf; 114 u64 mperf; 115 u64 tsc; 116 u64 time; 117 }; 118 119 /** 120 * struct pstate_data - Store P state data 121 * @current_pstate: Current requested P state 122 * @min_pstate: Min P state possible for this platform 123 * @max_pstate: Max P state possible for this platform 124 * @max_pstate_physical:This is physical Max P state for a processor 125 * This can be higher than the max_pstate which can 126 * be limited by platform thermal design power limits 127 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor 128 * @scaling: Scaling factor between performance and frequency 129 * @turbo_pstate: Max Turbo P state possible for this platform 130 * @min_freq: @min_pstate frequency in cpufreq units 131 * @max_freq: @max_pstate frequency in cpufreq units 132 * @turbo_freq: @turbo_pstate frequency in cpufreq units 133 * 134 * Stores the per cpu model P state limits and current P state. 135 */ 136 struct pstate_data { 137 int current_pstate; 138 int min_pstate; 139 int max_pstate; 140 int max_pstate_physical; 141 int perf_ctl_scaling; 142 int scaling; 143 int turbo_pstate; 144 unsigned int min_freq; 145 unsigned int max_freq; 146 unsigned int turbo_freq; 147 }; 148 149 /** 150 * struct vid_data - Stores voltage information data 151 * @min: VID data for this platform corresponding to 152 * the lowest P state 153 * @max: VID data corresponding to the highest P State. 154 * @turbo: VID data for turbo P state 155 * @ratio: Ratio of (vid max - vid min) / 156 * (max P state - Min P State) 157 * 158 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 159 * This data is used in Atom platforms, where in addition to target P state, 160 * the voltage data needs to be specified to select next P State. 161 */ 162 struct vid_data { 163 int min; 164 int max; 165 int turbo; 166 int32_t ratio; 167 }; 168 169 /** 170 * struct global_params - Global parameters, mostly tunable via sysfs. 171 * @no_turbo: Whether or not to use turbo P-states. 172 * @turbo_disabled: Whether or not turbo P-states are available at all, 173 * based on the MSR_IA32_MISC_ENABLE value and whether or 174 * not the maximum reported turbo P-state is different from 175 * the maximum reported non-turbo one. 176 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 177 * P-state capacity. 178 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 179 * P-state capacity. 180 */ 181 struct global_params { 182 bool no_turbo; 183 bool turbo_disabled; 184 int max_perf_pct; 185 int min_perf_pct; 186 }; 187 188 /** 189 * struct cpudata - Per CPU instance data storage 190 * @cpu: CPU number for this instance data 191 * @policy: CPUFreq policy value 192 * @update_util: CPUFreq utility callback information 193 * @update_util_set: CPUFreq utility callback is set 194 * @iowait_boost: iowait-related boost fraction 195 * @last_update: Time of the last update. 196 * @pstate: Stores P state limits for this CPU 197 * @vid: Stores VID limits for this CPU 198 * @last_sample_time: Last Sample time 199 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 200 * @prev_aperf: Last APERF value read from APERF MSR 201 * @prev_mperf: Last MPERF value read from MPERF MSR 202 * @prev_tsc: Last timestamp counter (TSC) value 203 * @sample: Storage for storing last Sample data 204 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 205 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 206 * @acpi_perf_data: Stores ACPI perf information read from _PSS 207 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 208 * @epp_powersave: Last saved HWP energy performance preference 209 * (EPP) or energy performance bias (EPB), 210 * when policy switched to performance 211 * @epp_policy: Last saved policy used to set EPP/EPB 212 * @epp_default: Power on default HWP energy performance 213 * preference/bias 214 * @epp_cached: Cached HWP energy-performance preference value 215 * @hwp_req_cached: Cached value of the last HWP Request MSR 216 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 217 * @last_io_update: Last time when IO wake flag was set 218 * @sched_flags: Store scheduler flags for possible cross CPU update 219 * @hwp_boost_min: Last HWP boosted min performance 220 * @suspended: Whether or not the driver has been suspended. 221 * @hwp_notify_work: workqueue for HWP notifications. 222 * 223 * This structure stores per CPU instance data for all CPUs. 224 */ 225 struct cpudata { 226 int cpu; 227 228 unsigned int policy; 229 struct update_util_data update_util; 230 bool update_util_set; 231 232 struct pstate_data pstate; 233 struct vid_data vid; 234 235 u64 last_update; 236 u64 last_sample_time; 237 u64 aperf_mperf_shift; 238 u64 prev_aperf; 239 u64 prev_mperf; 240 u64 prev_tsc; 241 struct sample sample; 242 int32_t min_perf_ratio; 243 int32_t max_perf_ratio; 244 #ifdef CONFIG_ACPI 245 struct acpi_processor_performance acpi_perf_data; 246 bool valid_pss_table; 247 #endif 248 unsigned int iowait_boost; 249 s16 epp_powersave; 250 s16 epp_policy; 251 s16 epp_default; 252 s16 epp_cached; 253 u64 hwp_req_cached; 254 u64 hwp_cap_cached; 255 u64 last_io_update; 256 unsigned int sched_flags; 257 u32 hwp_boost_min; 258 bool suspended; 259 struct delayed_work hwp_notify_work; 260 }; 261 262 static struct cpudata **all_cpu_data; 263 264 /** 265 * struct pstate_funcs - Per CPU model specific callbacks 266 * @get_max: Callback to get maximum non turbo effective P state 267 * @get_max_physical: Callback to get maximum non turbo physical P state 268 * @get_min: Callback to get minimum P state 269 * @get_turbo: Callback to get turbo P state 270 * @get_scaling: Callback to get frequency scaling factor 271 * @get_cpu_scaling: Get frequency scaling factor for a given cpu 272 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 273 * @get_val: Callback to convert P state to actual MSR write value 274 * @get_vid: Callback to get VID data for Atom platforms 275 * 276 * Core and Atom CPU models have different way to get P State limits. This 277 * structure is used to store those callbacks. 278 */ 279 struct pstate_funcs { 280 int (*get_max)(int cpu); 281 int (*get_max_physical)(int cpu); 282 int (*get_min)(int cpu); 283 int (*get_turbo)(int cpu); 284 int (*get_scaling)(void); 285 int (*get_cpu_scaling)(int cpu); 286 int (*get_aperf_mperf_shift)(void); 287 u64 (*get_val)(struct cpudata*, int pstate); 288 void (*get_vid)(struct cpudata *); 289 }; 290 291 static struct pstate_funcs pstate_funcs __read_mostly; 292 293 static bool hwp_active __ro_after_init; 294 static int hwp_mode_bdw __ro_after_init; 295 static bool per_cpu_limits __ro_after_init; 296 static bool hwp_forced __ro_after_init; 297 static bool hwp_boost __read_mostly; 298 299 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 300 301 #define HYBRID_SCALING_FACTOR 78741 302 #define HYBRID_SCALING_FACTOR_MTL 80000 303 #define HYBRID_SCALING_FACTOR_LNL 86957 304 305 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR; 306 307 static inline int core_get_scaling(void) 308 { 309 return 100000; 310 } 311 312 #ifdef CONFIG_ACPI 313 static bool acpi_ppc; 314 #endif 315 316 static struct global_params global; 317 318 static DEFINE_MUTEX(intel_pstate_driver_lock); 319 static DEFINE_MUTEX(intel_pstate_limits_lock); 320 321 #ifdef CONFIG_ACPI 322 323 static bool intel_pstate_acpi_pm_profile_server(void) 324 { 325 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 326 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 327 return true; 328 329 return false; 330 } 331 332 static bool intel_pstate_get_ppc_enable_status(void) 333 { 334 if (intel_pstate_acpi_pm_profile_server()) 335 return true; 336 337 return acpi_ppc; 338 } 339 340 #ifdef CONFIG_ACPI_CPPC_LIB 341 342 /* The work item is needed to avoid CPU hotplug locking issues */ 343 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 344 { 345 sched_set_itmt_support(); 346 } 347 348 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 349 350 #define CPPC_MAX_PERF U8_MAX 351 352 static void intel_pstate_set_itmt_prio(int cpu) 353 { 354 struct cppc_perf_caps cppc_perf; 355 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 356 int ret; 357 358 ret = cppc_get_perf_caps(cpu, &cppc_perf); 359 /* 360 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0]. 361 * 362 * Also, on some systems with overclocking enabled, CPPC.highest_perf is 363 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT. 364 * Fall back to MSR_HWP_CAPABILITIES then too. 365 */ 366 if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF) 367 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached)); 368 369 /* 370 * The priorities can be set regardless of whether or not 371 * sched_set_itmt_support(true) has been called and it is valid to 372 * update them at any time after it has been called. 373 */ 374 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 375 376 if (max_highest_perf <= min_highest_perf) { 377 if (cppc_perf.highest_perf > max_highest_perf) 378 max_highest_perf = cppc_perf.highest_perf; 379 380 if (cppc_perf.highest_perf < min_highest_perf) 381 min_highest_perf = cppc_perf.highest_perf; 382 383 if (max_highest_perf > min_highest_perf) { 384 /* 385 * This code can be run during CPU online under the 386 * CPU hotplug locks, so sched_set_itmt_support() 387 * cannot be called from here. Queue up a work item 388 * to invoke it. 389 */ 390 schedule_work(&sched_itmt_work); 391 } 392 } 393 } 394 395 static int intel_pstate_get_cppc_guaranteed(int cpu) 396 { 397 struct cppc_perf_caps cppc_perf; 398 int ret; 399 400 ret = cppc_get_perf_caps(cpu, &cppc_perf); 401 if (ret) 402 return ret; 403 404 if (cppc_perf.guaranteed_perf) 405 return cppc_perf.guaranteed_perf; 406 407 return cppc_perf.nominal_perf; 408 } 409 410 static int intel_pstate_cppc_get_scaling(int cpu) 411 { 412 struct cppc_perf_caps cppc_perf; 413 int ret; 414 415 ret = cppc_get_perf_caps(cpu, &cppc_perf); 416 417 /* 418 * If the nominal frequency and the nominal performance are not 419 * zero and the ratio between them is not 100, return the hybrid 420 * scaling factor. 421 */ 422 if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq && 423 cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq) 424 return hybrid_scaling_factor; 425 426 return core_get_scaling(); 427 } 428 429 #else /* CONFIG_ACPI_CPPC_LIB */ 430 static inline void intel_pstate_set_itmt_prio(int cpu) 431 { 432 } 433 #endif /* CONFIG_ACPI_CPPC_LIB */ 434 435 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 436 { 437 struct cpudata *cpu; 438 int ret; 439 int i; 440 441 if (hwp_active) { 442 intel_pstate_set_itmt_prio(policy->cpu); 443 return; 444 } 445 446 if (!intel_pstate_get_ppc_enable_status()) 447 return; 448 449 cpu = all_cpu_data[policy->cpu]; 450 451 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 452 policy->cpu); 453 if (ret) 454 return; 455 456 /* 457 * Check if the control value in _PSS is for PERF_CTL MSR, which should 458 * guarantee that the states returned by it map to the states in our 459 * list directly. 460 */ 461 if (cpu->acpi_perf_data.control_register.space_id != 462 ACPI_ADR_SPACE_FIXED_HARDWARE) 463 goto err; 464 465 /* 466 * If there is only one entry _PSS, simply ignore _PSS and continue as 467 * usual without taking _PSS into account 468 */ 469 if (cpu->acpi_perf_data.state_count < 2) 470 goto err; 471 472 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 473 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 474 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 475 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 476 (u32) cpu->acpi_perf_data.states[i].core_frequency, 477 (u32) cpu->acpi_perf_data.states[i].power, 478 (u32) cpu->acpi_perf_data.states[i].control); 479 } 480 481 cpu->valid_pss_table = true; 482 pr_debug("_PPC limits will be enforced\n"); 483 484 return; 485 486 err: 487 cpu->valid_pss_table = false; 488 acpi_processor_unregister_performance(policy->cpu); 489 } 490 491 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 492 { 493 struct cpudata *cpu; 494 495 cpu = all_cpu_data[policy->cpu]; 496 if (!cpu->valid_pss_table) 497 return; 498 499 acpi_processor_unregister_performance(policy->cpu); 500 } 501 #else /* CONFIG_ACPI */ 502 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 503 { 504 } 505 506 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 507 { 508 } 509 510 static inline bool intel_pstate_acpi_pm_profile_server(void) 511 { 512 return false; 513 } 514 #endif /* CONFIG_ACPI */ 515 516 #ifndef CONFIG_ACPI_CPPC_LIB 517 static inline int intel_pstate_get_cppc_guaranteed(int cpu) 518 { 519 return -ENOTSUPP; 520 } 521 522 static int intel_pstate_cppc_get_scaling(int cpu) 523 { 524 return core_get_scaling(); 525 } 526 #endif /* CONFIG_ACPI_CPPC_LIB */ 527 528 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq, 529 unsigned int relation) 530 { 531 if (freq == cpu->pstate.turbo_freq) 532 return cpu->pstate.turbo_pstate; 533 534 if (freq == cpu->pstate.max_freq) 535 return cpu->pstate.max_pstate; 536 537 switch (relation) { 538 case CPUFREQ_RELATION_H: 539 return freq / cpu->pstate.scaling; 540 case CPUFREQ_RELATION_C: 541 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling); 542 } 543 544 return DIV_ROUND_UP(freq, cpu->pstate.scaling); 545 } 546 547 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq) 548 { 549 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L); 550 } 551 552 /** 553 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels. 554 * @cpu: Target CPU. 555 * 556 * On hybrid processors, HWP may expose more performance levels than there are 557 * P-states accessible through the PERF_CTL interface. If that happens, the 558 * scaling factor between HWP performance levels and CPU frequency will be less 559 * than the scaling factor between P-state values and CPU frequency. 560 * 561 * In that case, adjust the CPU parameters used in computations accordingly. 562 */ 563 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu) 564 { 565 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical; 566 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 567 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu); 568 int scaling = cpu->pstate.scaling; 569 int freq; 570 571 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys); 572 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo); 573 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling); 574 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate); 575 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate); 576 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling); 577 578 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling, 579 perf_ctl_scaling); 580 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling, 581 perf_ctl_scaling); 582 583 freq = perf_ctl_max_phys * perf_ctl_scaling; 584 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq); 585 586 freq = cpu->pstate.min_pstate * perf_ctl_scaling; 587 cpu->pstate.min_freq = freq; 588 /* 589 * Cast the min P-state value retrieved via pstate_funcs.get_min() to 590 * the effective range of HWP performance levels. 591 */ 592 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq); 593 } 594 595 static bool turbo_is_disabled(void) 596 { 597 u64 misc_en; 598 599 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 600 601 return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 602 } 603 604 static int min_perf_pct_min(void) 605 { 606 struct cpudata *cpu = all_cpu_data[0]; 607 int turbo_pstate = cpu->pstate.turbo_pstate; 608 609 return turbo_pstate ? 610 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 611 } 612 613 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 614 { 615 u64 epb; 616 int ret; 617 618 if (!boot_cpu_has(X86_FEATURE_EPB)) 619 return -ENXIO; 620 621 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 622 if (ret) 623 return (s16)ret; 624 625 return (s16)(epb & 0x0f); 626 } 627 628 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 629 { 630 s16 epp; 631 632 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 633 /* 634 * When hwp_req_data is 0, means that caller didn't read 635 * MSR_HWP_REQUEST, so need to read and get EPP. 636 */ 637 if (!hwp_req_data) { 638 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 639 &hwp_req_data); 640 if (epp) 641 return epp; 642 } 643 epp = (hwp_req_data >> 24) & 0xff; 644 } else { 645 /* When there is no EPP present, HWP uses EPB settings */ 646 epp = intel_pstate_get_epb(cpu_data); 647 } 648 649 return epp; 650 } 651 652 static int intel_pstate_set_epb(int cpu, s16 pref) 653 { 654 u64 epb; 655 int ret; 656 657 if (!boot_cpu_has(X86_FEATURE_EPB)) 658 return -ENXIO; 659 660 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 661 if (ret) 662 return ret; 663 664 epb = (epb & ~0x0f) | pref; 665 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 666 667 return 0; 668 } 669 670 /* 671 * EPP/EPB display strings corresponding to EPP index in the 672 * energy_perf_strings[] 673 * index String 674 *------------------------------------- 675 * 0 default 676 * 1 performance 677 * 2 balance_performance 678 * 3 balance_power 679 * 4 power 680 */ 681 682 enum energy_perf_value_index { 683 EPP_INDEX_DEFAULT = 0, 684 EPP_INDEX_PERFORMANCE, 685 EPP_INDEX_BALANCE_PERFORMANCE, 686 EPP_INDEX_BALANCE_POWERSAVE, 687 EPP_INDEX_POWERSAVE, 688 }; 689 690 static const char * const energy_perf_strings[] = { 691 [EPP_INDEX_DEFAULT] = "default", 692 [EPP_INDEX_PERFORMANCE] = "performance", 693 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", 694 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", 695 [EPP_INDEX_POWERSAVE] = "power", 696 NULL 697 }; 698 static unsigned int epp_values[] = { 699 [EPP_INDEX_DEFAULT] = 0, /* Unused index */ 700 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE, 701 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE, 702 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE, 703 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE, 704 }; 705 706 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 707 { 708 s16 epp; 709 int index = -EINVAL; 710 711 *raw_epp = 0; 712 epp = intel_pstate_get_epp(cpu_data, 0); 713 if (epp < 0) 714 return epp; 715 716 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 717 if (epp == epp_values[EPP_INDEX_PERFORMANCE]) 718 return EPP_INDEX_PERFORMANCE; 719 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE]) 720 return EPP_INDEX_BALANCE_PERFORMANCE; 721 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE]) 722 return EPP_INDEX_BALANCE_POWERSAVE; 723 if (epp == epp_values[EPP_INDEX_POWERSAVE]) 724 return EPP_INDEX_POWERSAVE; 725 *raw_epp = epp; 726 return 0; 727 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 728 /* 729 * Range: 730 * 0x00-0x03 : Performance 731 * 0x04-0x07 : Balance performance 732 * 0x08-0x0B : Balance power 733 * 0x0C-0x0F : Power 734 * The EPB is a 4 bit value, but our ranges restrict the 735 * value which can be set. Here only using top two bits 736 * effectively. 737 */ 738 index = (epp >> 2) + 1; 739 } 740 741 return index; 742 } 743 744 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) 745 { 746 int ret; 747 748 /* 749 * Use the cached HWP Request MSR value, because in the active mode the 750 * register itself may be updated by intel_pstate_hwp_boost_up() or 751 * intel_pstate_hwp_boost_down() at any time. 752 */ 753 u64 value = READ_ONCE(cpu->hwp_req_cached); 754 755 value &= ~GENMASK_ULL(31, 24); 756 value |= (u64)epp << 24; 757 /* 758 * The only other updater of hwp_req_cached in the active mode, 759 * intel_pstate_hwp_set(), is called under the same lock as this 760 * function, so it cannot run in parallel with the update below. 761 */ 762 WRITE_ONCE(cpu->hwp_req_cached, value); 763 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 764 if (!ret) 765 cpu->epp_cached = epp; 766 767 return ret; 768 } 769 770 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 771 int pref_index, bool use_raw, 772 u32 raw_epp) 773 { 774 int epp = -EINVAL; 775 int ret; 776 777 if (!pref_index) 778 epp = cpu_data->epp_default; 779 780 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 781 if (use_raw) 782 epp = raw_epp; 783 else if (epp == -EINVAL) 784 epp = epp_values[pref_index]; 785 786 /* 787 * To avoid confusion, refuse to set EPP to any values different 788 * from 0 (performance) if the current policy is "performance", 789 * because those values would be overridden. 790 */ 791 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 792 return -EBUSY; 793 794 ret = intel_pstate_set_epp(cpu_data, epp); 795 } else { 796 if (epp == -EINVAL) 797 epp = (pref_index - 1) << 2; 798 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 799 } 800 801 return ret; 802 } 803 804 static ssize_t show_energy_performance_available_preferences( 805 struct cpufreq_policy *policy, char *buf) 806 { 807 int i = 0; 808 int ret = 0; 809 810 while (energy_perf_strings[i] != NULL) 811 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 812 813 ret += sprintf(&buf[ret], "\n"); 814 815 return ret; 816 } 817 818 cpufreq_freq_attr_ro(energy_performance_available_preferences); 819 820 static struct cpufreq_driver intel_pstate; 821 822 static ssize_t store_energy_performance_preference( 823 struct cpufreq_policy *policy, const char *buf, size_t count) 824 { 825 struct cpudata *cpu = all_cpu_data[policy->cpu]; 826 char str_preference[21]; 827 bool raw = false; 828 ssize_t ret; 829 u32 epp = 0; 830 831 ret = sscanf(buf, "%20s", str_preference); 832 if (ret != 1) 833 return -EINVAL; 834 835 ret = match_string(energy_perf_strings, -1, str_preference); 836 if (ret < 0) { 837 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 838 return ret; 839 840 ret = kstrtouint(buf, 10, &epp); 841 if (ret) 842 return ret; 843 844 if (epp > 255) 845 return -EINVAL; 846 847 raw = true; 848 } 849 850 /* 851 * This function runs with the policy R/W semaphore held, which 852 * guarantees that the driver pointer will not change while it is 853 * running. 854 */ 855 if (!intel_pstate_driver) 856 return -EAGAIN; 857 858 mutex_lock(&intel_pstate_limits_lock); 859 860 if (intel_pstate_driver == &intel_pstate) { 861 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); 862 } else { 863 /* 864 * In the passive mode the governor needs to be stopped on the 865 * target CPU before the EPP update and restarted after it, 866 * which is super-heavy-weight, so make sure it is worth doing 867 * upfront. 868 */ 869 if (!raw) 870 epp = ret ? epp_values[ret] : cpu->epp_default; 871 872 if (cpu->epp_cached != epp) { 873 int err; 874 875 cpufreq_stop_governor(policy); 876 ret = intel_pstate_set_epp(cpu, epp); 877 err = cpufreq_start_governor(policy); 878 if (!ret) 879 ret = err; 880 } else { 881 ret = 0; 882 } 883 } 884 885 mutex_unlock(&intel_pstate_limits_lock); 886 887 return ret ?: count; 888 } 889 890 static ssize_t show_energy_performance_preference( 891 struct cpufreq_policy *policy, char *buf) 892 { 893 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 894 int preference, raw_epp; 895 896 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 897 if (preference < 0) 898 return preference; 899 900 if (raw_epp) 901 return sprintf(buf, "%d\n", raw_epp); 902 else 903 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 904 } 905 906 cpufreq_freq_attr_rw(energy_performance_preference); 907 908 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 909 { 910 struct cpudata *cpu = all_cpu_data[policy->cpu]; 911 int ratio, freq; 912 913 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu); 914 if (ratio <= 0) { 915 u64 cap; 916 917 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 918 ratio = HWP_GUARANTEED_PERF(cap); 919 } 920 921 freq = ratio * cpu->pstate.scaling; 922 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling) 923 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling); 924 925 return sprintf(buf, "%d\n", freq); 926 } 927 928 cpufreq_freq_attr_ro(base_frequency); 929 930 static struct freq_attr *hwp_cpufreq_attrs[] = { 931 &energy_performance_preference, 932 &energy_performance_available_preferences, 933 &base_frequency, 934 NULL, 935 }; 936 937 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) 938 { 939 u64 cap; 940 941 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); 942 WRITE_ONCE(cpu->hwp_cap_cached, cap); 943 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); 944 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); 945 } 946 947 static void intel_pstate_get_hwp_cap(struct cpudata *cpu) 948 { 949 int scaling = cpu->pstate.scaling; 950 951 __intel_pstate_get_hwp_cap(cpu); 952 953 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling; 954 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; 955 if (scaling != cpu->pstate.perf_ctl_scaling) { 956 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 957 958 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq, 959 perf_ctl_scaling); 960 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq, 961 perf_ctl_scaling); 962 } 963 } 964 965 static void intel_pstate_hwp_set(unsigned int cpu) 966 { 967 struct cpudata *cpu_data = all_cpu_data[cpu]; 968 int max, min; 969 u64 value; 970 s16 epp; 971 972 max = cpu_data->max_perf_ratio; 973 min = cpu_data->min_perf_ratio; 974 975 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 976 min = max; 977 978 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 979 980 value &= ~HWP_MIN_PERF(~0L); 981 value |= HWP_MIN_PERF(min); 982 983 value &= ~HWP_MAX_PERF(~0L); 984 value |= HWP_MAX_PERF(max); 985 986 if (cpu_data->epp_policy == cpu_data->policy) 987 goto skip_epp; 988 989 cpu_data->epp_policy = cpu_data->policy; 990 991 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 992 epp = intel_pstate_get_epp(cpu_data, value); 993 cpu_data->epp_powersave = epp; 994 /* If EPP read was failed, then don't try to write */ 995 if (epp < 0) 996 goto skip_epp; 997 998 epp = 0; 999 } else { 1000 /* skip setting EPP, when saved value is invalid */ 1001 if (cpu_data->epp_powersave < 0) 1002 goto skip_epp; 1003 1004 /* 1005 * No need to restore EPP when it is not zero. This 1006 * means: 1007 * - Policy is not changed 1008 * - user has manually changed 1009 * - Error reading EPB 1010 */ 1011 epp = intel_pstate_get_epp(cpu_data, value); 1012 if (epp) 1013 goto skip_epp; 1014 1015 epp = cpu_data->epp_powersave; 1016 } 1017 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1018 value &= ~GENMASK_ULL(31, 24); 1019 value |= (u64)epp << 24; 1020 } else { 1021 intel_pstate_set_epb(cpu, epp); 1022 } 1023 skip_epp: 1024 WRITE_ONCE(cpu_data->hwp_req_cached, value); 1025 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 1026 } 1027 1028 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata); 1029 1030 static void intel_pstate_hwp_offline(struct cpudata *cpu) 1031 { 1032 u64 value = READ_ONCE(cpu->hwp_req_cached); 1033 int min_perf; 1034 1035 intel_pstate_disable_hwp_interrupt(cpu); 1036 1037 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1038 /* 1039 * In case the EPP has been set to "performance" by the 1040 * active mode "performance" scaling algorithm, replace that 1041 * temporary value with the cached EPP one. 1042 */ 1043 value &= ~GENMASK_ULL(31, 24); 1044 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); 1045 /* 1046 * However, make sure that EPP will be set to "performance" when 1047 * the CPU is brought back online again and the "performance" 1048 * scaling algorithm is still in effect. 1049 */ 1050 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; 1051 } 1052 1053 /* 1054 * Clear the desired perf field in the cached HWP request value to 1055 * prevent nonzero desired values from being leaked into the active 1056 * mode. 1057 */ 1058 value &= ~HWP_DESIRED_PERF(~0L); 1059 WRITE_ONCE(cpu->hwp_req_cached, value); 1060 1061 value &= ~GENMASK_ULL(31, 0); 1062 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); 1063 1064 /* Set hwp_max = hwp_min */ 1065 value |= HWP_MAX_PERF(min_perf); 1066 value |= HWP_MIN_PERF(min_perf); 1067 1068 /* Set EPP to min */ 1069 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 1070 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 1071 1072 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 1073 } 1074 1075 #define POWER_CTL_EE_ENABLE 1 1076 #define POWER_CTL_EE_DISABLE 2 1077 1078 static int power_ctl_ee_state; 1079 1080 static void set_power_ctl_ee_state(bool input) 1081 { 1082 u64 power_ctl; 1083 1084 mutex_lock(&intel_pstate_driver_lock); 1085 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1086 if (input) { 1087 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 1088 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 1089 } else { 1090 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1091 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 1092 } 1093 wrmsrl(MSR_IA32_POWER_CTL, power_ctl); 1094 mutex_unlock(&intel_pstate_driver_lock); 1095 } 1096 1097 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 1098 1099 static void intel_pstate_hwp_reenable(struct cpudata *cpu) 1100 { 1101 intel_pstate_hwp_enable(cpu); 1102 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); 1103 } 1104 1105 static int intel_pstate_suspend(struct cpufreq_policy *policy) 1106 { 1107 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1108 1109 pr_debug("CPU %d suspending\n", cpu->cpu); 1110 1111 cpu->suspended = true; 1112 1113 /* disable HWP interrupt and cancel any pending work */ 1114 intel_pstate_disable_hwp_interrupt(cpu); 1115 1116 return 0; 1117 } 1118 1119 static int intel_pstate_resume(struct cpufreq_policy *policy) 1120 { 1121 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1122 1123 pr_debug("CPU %d resuming\n", cpu->cpu); 1124 1125 /* Only restore if the system default is changed */ 1126 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 1127 set_power_ctl_ee_state(true); 1128 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 1129 set_power_ctl_ee_state(false); 1130 1131 if (cpu->suspended && hwp_active) { 1132 mutex_lock(&intel_pstate_limits_lock); 1133 1134 /* Re-enable HWP, because "online" has not done that. */ 1135 intel_pstate_hwp_reenable(cpu); 1136 1137 mutex_unlock(&intel_pstate_limits_lock); 1138 } 1139 1140 cpu->suspended = false; 1141 1142 return 0; 1143 } 1144 1145 static void intel_pstate_update_policies(void) 1146 { 1147 int cpu; 1148 1149 for_each_possible_cpu(cpu) 1150 cpufreq_update_policy(cpu); 1151 } 1152 1153 static void __intel_pstate_update_max_freq(struct cpudata *cpudata, 1154 struct cpufreq_policy *policy) 1155 { 1156 if (hwp_active) 1157 intel_pstate_get_hwp_cap(cpudata); 1158 1159 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ? 1160 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 1161 1162 refresh_frequency_limits(policy); 1163 } 1164 1165 static void intel_pstate_update_limits(unsigned int cpu) 1166 { 1167 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 1168 1169 if (!policy) 1170 return; 1171 1172 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy); 1173 1174 cpufreq_cpu_release(policy); 1175 } 1176 1177 static void intel_pstate_update_limits_for_all(void) 1178 { 1179 int cpu; 1180 1181 for_each_possible_cpu(cpu) 1182 intel_pstate_update_limits(cpu); 1183 } 1184 1185 /************************** sysfs begin ************************/ 1186 #define show_one(file_name, object) \ 1187 static ssize_t show_##file_name \ 1188 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 1189 { \ 1190 return sprintf(buf, "%u\n", global.object); \ 1191 } 1192 1193 static ssize_t intel_pstate_show_status(char *buf); 1194 static int intel_pstate_update_status(const char *buf, size_t size); 1195 1196 static ssize_t show_status(struct kobject *kobj, 1197 struct kobj_attribute *attr, char *buf) 1198 { 1199 ssize_t ret; 1200 1201 mutex_lock(&intel_pstate_driver_lock); 1202 ret = intel_pstate_show_status(buf); 1203 mutex_unlock(&intel_pstate_driver_lock); 1204 1205 return ret; 1206 } 1207 1208 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1209 const char *buf, size_t count) 1210 { 1211 char *p = memchr(buf, '\n', count); 1212 int ret; 1213 1214 mutex_lock(&intel_pstate_driver_lock); 1215 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1216 mutex_unlock(&intel_pstate_driver_lock); 1217 1218 return ret < 0 ? ret : count; 1219 } 1220 1221 static ssize_t show_turbo_pct(struct kobject *kobj, 1222 struct kobj_attribute *attr, char *buf) 1223 { 1224 struct cpudata *cpu; 1225 int total, no_turbo, turbo_pct; 1226 uint32_t turbo_fp; 1227 1228 mutex_lock(&intel_pstate_driver_lock); 1229 1230 if (!intel_pstate_driver) { 1231 mutex_unlock(&intel_pstate_driver_lock); 1232 return -EAGAIN; 1233 } 1234 1235 cpu = all_cpu_data[0]; 1236 1237 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1238 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1239 turbo_fp = div_fp(no_turbo, total); 1240 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1241 1242 mutex_unlock(&intel_pstate_driver_lock); 1243 1244 return sprintf(buf, "%u\n", turbo_pct); 1245 } 1246 1247 static ssize_t show_num_pstates(struct kobject *kobj, 1248 struct kobj_attribute *attr, char *buf) 1249 { 1250 struct cpudata *cpu; 1251 int total; 1252 1253 mutex_lock(&intel_pstate_driver_lock); 1254 1255 if (!intel_pstate_driver) { 1256 mutex_unlock(&intel_pstate_driver_lock); 1257 return -EAGAIN; 1258 } 1259 1260 cpu = all_cpu_data[0]; 1261 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1262 1263 mutex_unlock(&intel_pstate_driver_lock); 1264 1265 return sprintf(buf, "%u\n", total); 1266 } 1267 1268 static ssize_t show_no_turbo(struct kobject *kobj, 1269 struct kobj_attribute *attr, char *buf) 1270 { 1271 ssize_t ret; 1272 1273 mutex_lock(&intel_pstate_driver_lock); 1274 1275 if (!intel_pstate_driver) { 1276 mutex_unlock(&intel_pstate_driver_lock); 1277 return -EAGAIN; 1278 } 1279 1280 ret = sprintf(buf, "%u\n", global.no_turbo); 1281 1282 mutex_unlock(&intel_pstate_driver_lock); 1283 1284 return ret; 1285 } 1286 1287 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1288 const char *buf, size_t count) 1289 { 1290 unsigned int input; 1291 bool no_turbo; 1292 1293 if (sscanf(buf, "%u", &input) != 1) 1294 return -EINVAL; 1295 1296 mutex_lock(&intel_pstate_driver_lock); 1297 1298 if (!intel_pstate_driver) { 1299 count = -EAGAIN; 1300 goto unlock_driver; 1301 } 1302 1303 no_turbo = !!clamp_t(int, input, 0, 1); 1304 1305 WRITE_ONCE(global.turbo_disabled, turbo_is_disabled()); 1306 if (global.turbo_disabled && !no_turbo) { 1307 pr_notice("Turbo disabled by BIOS or unavailable on processor\n"); 1308 count = -EPERM; 1309 if (global.no_turbo) 1310 goto unlock_driver; 1311 else 1312 no_turbo = 1; 1313 } 1314 1315 if (no_turbo == global.no_turbo) { 1316 goto unlock_driver; 1317 } 1318 1319 WRITE_ONCE(global.no_turbo, no_turbo); 1320 1321 mutex_lock(&intel_pstate_limits_lock); 1322 1323 if (no_turbo) { 1324 struct cpudata *cpu = all_cpu_data[0]; 1325 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1326 1327 /* Squash the global minimum into the permitted range. */ 1328 if (global.min_perf_pct > pct) 1329 global.min_perf_pct = pct; 1330 } 1331 1332 mutex_unlock(&intel_pstate_limits_lock); 1333 1334 intel_pstate_update_limits_for_all(); 1335 arch_set_max_freq_ratio(no_turbo); 1336 1337 unlock_driver: 1338 mutex_unlock(&intel_pstate_driver_lock); 1339 1340 return count; 1341 } 1342 1343 static void update_qos_request(enum freq_qos_req_type type) 1344 { 1345 struct freq_qos_request *req; 1346 struct cpufreq_policy *policy; 1347 int i; 1348 1349 for_each_possible_cpu(i) { 1350 struct cpudata *cpu = all_cpu_data[i]; 1351 unsigned int freq, perf_pct; 1352 1353 policy = cpufreq_cpu_get(i); 1354 if (!policy) 1355 continue; 1356 1357 req = policy->driver_data; 1358 cpufreq_cpu_put(policy); 1359 1360 if (!req) 1361 continue; 1362 1363 if (hwp_active) 1364 intel_pstate_get_hwp_cap(cpu); 1365 1366 if (type == FREQ_QOS_MIN) { 1367 perf_pct = global.min_perf_pct; 1368 } else { 1369 req++; 1370 perf_pct = global.max_perf_pct; 1371 } 1372 1373 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); 1374 1375 if (freq_qos_update_request(req, freq) < 0) 1376 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1377 } 1378 } 1379 1380 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1381 const char *buf, size_t count) 1382 { 1383 unsigned int input; 1384 int ret; 1385 1386 ret = sscanf(buf, "%u", &input); 1387 if (ret != 1) 1388 return -EINVAL; 1389 1390 mutex_lock(&intel_pstate_driver_lock); 1391 1392 if (!intel_pstate_driver) { 1393 mutex_unlock(&intel_pstate_driver_lock); 1394 return -EAGAIN; 1395 } 1396 1397 mutex_lock(&intel_pstate_limits_lock); 1398 1399 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1400 1401 mutex_unlock(&intel_pstate_limits_lock); 1402 1403 if (intel_pstate_driver == &intel_pstate) 1404 intel_pstate_update_policies(); 1405 else 1406 update_qos_request(FREQ_QOS_MAX); 1407 1408 mutex_unlock(&intel_pstate_driver_lock); 1409 1410 return count; 1411 } 1412 1413 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1414 const char *buf, size_t count) 1415 { 1416 unsigned int input; 1417 int ret; 1418 1419 ret = sscanf(buf, "%u", &input); 1420 if (ret != 1) 1421 return -EINVAL; 1422 1423 mutex_lock(&intel_pstate_driver_lock); 1424 1425 if (!intel_pstate_driver) { 1426 mutex_unlock(&intel_pstate_driver_lock); 1427 return -EAGAIN; 1428 } 1429 1430 mutex_lock(&intel_pstate_limits_lock); 1431 1432 global.min_perf_pct = clamp_t(int, input, 1433 min_perf_pct_min(), global.max_perf_pct); 1434 1435 mutex_unlock(&intel_pstate_limits_lock); 1436 1437 if (intel_pstate_driver == &intel_pstate) 1438 intel_pstate_update_policies(); 1439 else 1440 update_qos_request(FREQ_QOS_MIN); 1441 1442 mutex_unlock(&intel_pstate_driver_lock); 1443 1444 return count; 1445 } 1446 1447 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1448 struct kobj_attribute *attr, char *buf) 1449 { 1450 return sprintf(buf, "%u\n", hwp_boost); 1451 } 1452 1453 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1454 struct kobj_attribute *b, 1455 const char *buf, size_t count) 1456 { 1457 unsigned int input; 1458 int ret; 1459 1460 ret = kstrtouint(buf, 10, &input); 1461 if (ret) 1462 return ret; 1463 1464 mutex_lock(&intel_pstate_driver_lock); 1465 hwp_boost = !!input; 1466 intel_pstate_update_policies(); 1467 mutex_unlock(&intel_pstate_driver_lock); 1468 1469 return count; 1470 } 1471 1472 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1473 char *buf) 1474 { 1475 u64 power_ctl; 1476 int enable; 1477 1478 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1479 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1480 return sprintf(buf, "%d\n", !enable); 1481 } 1482 1483 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1484 const char *buf, size_t count) 1485 { 1486 bool input; 1487 int ret; 1488 1489 ret = kstrtobool(buf, &input); 1490 if (ret) 1491 return ret; 1492 1493 set_power_ctl_ee_state(input); 1494 1495 return count; 1496 } 1497 1498 show_one(max_perf_pct, max_perf_pct); 1499 show_one(min_perf_pct, min_perf_pct); 1500 1501 define_one_global_rw(status); 1502 define_one_global_rw(no_turbo); 1503 define_one_global_rw(max_perf_pct); 1504 define_one_global_rw(min_perf_pct); 1505 define_one_global_ro(turbo_pct); 1506 define_one_global_ro(num_pstates); 1507 define_one_global_rw(hwp_dynamic_boost); 1508 define_one_global_rw(energy_efficiency); 1509 1510 static struct attribute *intel_pstate_attributes[] = { 1511 &status.attr, 1512 &no_turbo.attr, 1513 NULL 1514 }; 1515 1516 static const struct attribute_group intel_pstate_attr_group = { 1517 .attrs = intel_pstate_attributes, 1518 }; 1519 1520 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1521 1522 static struct kobject *intel_pstate_kobject; 1523 1524 static void __init intel_pstate_sysfs_expose_params(void) 1525 { 1526 struct device *dev_root = bus_get_dev_root(&cpu_subsys); 1527 int rc; 1528 1529 if (dev_root) { 1530 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj); 1531 put_device(dev_root); 1532 } 1533 if (WARN_ON(!intel_pstate_kobject)) 1534 return; 1535 1536 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1537 if (WARN_ON(rc)) 1538 return; 1539 1540 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1541 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr); 1542 WARN_ON(rc); 1543 1544 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr); 1545 WARN_ON(rc); 1546 } 1547 1548 /* 1549 * If per cpu limits are enforced there are no global limits, so 1550 * return without creating max/min_perf_pct attributes 1551 */ 1552 if (per_cpu_limits) 1553 return; 1554 1555 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1556 WARN_ON(rc); 1557 1558 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1559 WARN_ON(rc); 1560 1561 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1562 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1563 WARN_ON(rc); 1564 } 1565 } 1566 1567 static void __init intel_pstate_sysfs_remove(void) 1568 { 1569 if (!intel_pstate_kobject) 1570 return; 1571 1572 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); 1573 1574 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1575 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr); 1576 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr); 1577 } 1578 1579 if (!per_cpu_limits) { 1580 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); 1581 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); 1582 1583 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) 1584 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); 1585 } 1586 1587 kobject_put(intel_pstate_kobject); 1588 } 1589 1590 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) 1591 { 1592 int rc; 1593 1594 if (!hwp_active) 1595 return; 1596 1597 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1598 WARN_ON_ONCE(rc); 1599 } 1600 1601 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) 1602 { 1603 if (!hwp_active) 1604 return; 1605 1606 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1607 } 1608 1609 /************************** sysfs end ************************/ 1610 1611 static void intel_pstate_notify_work(struct work_struct *work) 1612 { 1613 struct cpudata *cpudata = 1614 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work); 1615 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu); 1616 1617 if (policy) { 1618 __intel_pstate_update_max_freq(cpudata, policy); 1619 1620 cpufreq_cpu_release(policy); 1621 } 1622 1623 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1624 } 1625 1626 static DEFINE_SPINLOCK(hwp_notify_lock); 1627 static cpumask_t hwp_intr_enable_mask; 1628 1629 #define HWP_GUARANTEED_PERF_CHANGE_STATUS BIT(0) 1630 #define HWP_HIGHEST_PERF_CHANGE_STATUS BIT(3) 1631 1632 void notify_hwp_interrupt(void) 1633 { 1634 unsigned int this_cpu = smp_processor_id(); 1635 u64 value, status_mask; 1636 unsigned long flags; 1637 1638 if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY)) 1639 return; 1640 1641 status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS; 1642 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE)) 1643 status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS; 1644 1645 rdmsrl_safe(MSR_HWP_STATUS, &value); 1646 if (!(value & status_mask)) 1647 return; 1648 1649 spin_lock_irqsave(&hwp_notify_lock, flags); 1650 1651 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask)) 1652 goto ack_intr; 1653 1654 schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work, 1655 msecs_to_jiffies(10)); 1656 1657 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1658 1659 return; 1660 1661 ack_intr: 1662 wrmsrl_safe(MSR_HWP_STATUS, 0); 1663 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1664 } 1665 1666 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata) 1667 { 1668 bool cancel_work; 1669 1670 if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY)) 1671 return; 1672 1673 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1674 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1675 1676 spin_lock_irq(&hwp_notify_lock); 1677 cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask); 1678 spin_unlock_irq(&hwp_notify_lock); 1679 1680 if (cancel_work) 1681 cancel_delayed_work_sync(&cpudata->hwp_notify_work); 1682 } 1683 1684 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0) 1685 #define HWP_HIGHEST_PERF_CHANGE_REQ BIT(2) 1686 1687 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata) 1688 { 1689 /* Enable HWP notification interrupt for performance change */ 1690 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) { 1691 u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ; 1692 1693 spin_lock_irq(&hwp_notify_lock); 1694 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work); 1695 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask); 1696 spin_unlock_irq(&hwp_notify_lock); 1697 1698 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE)) 1699 interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ; 1700 1701 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1702 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask); 1703 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1704 } 1705 } 1706 1707 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata) 1708 { 1709 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1710 1711 /* 1712 * If the EPP is set by firmware, which means that firmware enabled HWP 1713 * - Is equal or less than 0x80 (default balance_perf EPP) 1714 * - But less performance oriented than performance EPP 1715 * then use this as new balance_perf EPP. 1716 */ 1717 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE && 1718 cpudata->epp_default > HWP_EPP_PERFORMANCE) { 1719 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default; 1720 return; 1721 } 1722 1723 /* 1724 * If this CPU gen doesn't call for change in balance_perf 1725 * EPP return. 1726 */ 1727 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) 1728 return; 1729 1730 /* 1731 * Use hard coded value per gen to update the balance_perf 1732 * and default EPP. 1733 */ 1734 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE]; 1735 intel_pstate_set_epp(cpudata, cpudata->epp_default); 1736 } 1737 1738 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1739 { 1740 /* First disable HWP notification interrupt till we activate again */ 1741 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1742 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1743 1744 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1745 1746 intel_pstate_enable_hwp_interrupt(cpudata); 1747 1748 if (cpudata->epp_default >= 0) 1749 return; 1750 1751 intel_pstate_update_epp_defaults(cpudata); 1752 } 1753 1754 static int atom_get_min_pstate(int not_used) 1755 { 1756 u64 value; 1757 1758 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1759 return (value >> 8) & 0x7F; 1760 } 1761 1762 static int atom_get_max_pstate(int not_used) 1763 { 1764 u64 value; 1765 1766 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1767 return (value >> 16) & 0x7F; 1768 } 1769 1770 static int atom_get_turbo_pstate(int not_used) 1771 { 1772 u64 value; 1773 1774 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1775 return value & 0x7F; 1776 } 1777 1778 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1779 { 1780 u64 val; 1781 int32_t vid_fp; 1782 u32 vid; 1783 1784 val = (u64)pstate << 8; 1785 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled)) 1786 val |= (u64)1 << 32; 1787 1788 vid_fp = cpudata->vid.min + mul_fp( 1789 int_tofp(pstate - cpudata->pstate.min_pstate), 1790 cpudata->vid.ratio); 1791 1792 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1793 vid = ceiling_fp(vid_fp); 1794 1795 if (pstate > cpudata->pstate.max_pstate) 1796 vid = cpudata->vid.turbo; 1797 1798 return val | vid; 1799 } 1800 1801 static int silvermont_get_scaling(void) 1802 { 1803 u64 value; 1804 int i; 1805 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1806 static int silvermont_freq_table[] = { 1807 83300, 100000, 133300, 116700, 80000}; 1808 1809 rdmsrl(MSR_FSB_FREQ, value); 1810 i = value & 0x7; 1811 WARN_ON(i > 4); 1812 1813 return silvermont_freq_table[i]; 1814 } 1815 1816 static int airmont_get_scaling(void) 1817 { 1818 u64 value; 1819 int i; 1820 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1821 static int airmont_freq_table[] = { 1822 83300, 100000, 133300, 116700, 80000, 1823 93300, 90000, 88900, 87500}; 1824 1825 rdmsrl(MSR_FSB_FREQ, value); 1826 i = value & 0xF; 1827 WARN_ON(i > 8); 1828 1829 return airmont_freq_table[i]; 1830 } 1831 1832 static void atom_get_vid(struct cpudata *cpudata) 1833 { 1834 u64 value; 1835 1836 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1837 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1838 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1839 cpudata->vid.ratio = div_fp( 1840 cpudata->vid.max - cpudata->vid.min, 1841 int_tofp(cpudata->pstate.max_pstate - 1842 cpudata->pstate.min_pstate)); 1843 1844 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1845 cpudata->vid.turbo = value & 0x7f; 1846 } 1847 1848 static int core_get_min_pstate(int cpu) 1849 { 1850 u64 value; 1851 1852 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1853 return (value >> 40) & 0xFF; 1854 } 1855 1856 static int core_get_max_pstate_physical(int cpu) 1857 { 1858 u64 value; 1859 1860 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1861 return (value >> 8) & 0xFF; 1862 } 1863 1864 static int core_get_tdp_ratio(int cpu, u64 plat_info) 1865 { 1866 /* Check how many TDP levels present */ 1867 if (plat_info & 0x600000000) { 1868 u64 tdp_ctrl; 1869 u64 tdp_ratio; 1870 int tdp_msr; 1871 int err; 1872 1873 /* Get the TDP level (0, 1, 2) to get ratios */ 1874 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1875 if (err) 1876 return err; 1877 1878 /* TDP MSR are continuous starting at 0x648 */ 1879 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1880 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio); 1881 if (err) 1882 return err; 1883 1884 /* For level 1 and 2, bits[23:16] contain the ratio */ 1885 if (tdp_ctrl & 0x03) 1886 tdp_ratio >>= 16; 1887 1888 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1889 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1890 1891 return (int)tdp_ratio; 1892 } 1893 1894 return -ENXIO; 1895 } 1896 1897 static int core_get_max_pstate(int cpu) 1898 { 1899 u64 tar; 1900 u64 plat_info; 1901 int max_pstate; 1902 int tdp_ratio; 1903 int err; 1904 1905 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info); 1906 max_pstate = (plat_info >> 8) & 0xFF; 1907 1908 tdp_ratio = core_get_tdp_ratio(cpu, plat_info); 1909 if (tdp_ratio <= 0) 1910 return max_pstate; 1911 1912 if (hwp_active) { 1913 /* Turbo activation ratio is not used on HWP platforms */ 1914 return tdp_ratio; 1915 } 1916 1917 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar); 1918 if (!err) { 1919 int tar_levels; 1920 1921 /* Do some sanity checking for safety */ 1922 tar_levels = tar & 0xff; 1923 if (tdp_ratio - 1 == tar_levels) { 1924 max_pstate = tar_levels; 1925 pr_debug("max_pstate=TAC %x\n", max_pstate); 1926 } 1927 } 1928 1929 return max_pstate; 1930 } 1931 1932 static int core_get_turbo_pstate(int cpu) 1933 { 1934 u64 value; 1935 int nont, ret; 1936 1937 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1938 nont = core_get_max_pstate(cpu); 1939 ret = (value) & 255; 1940 if (ret <= nont) 1941 ret = nont; 1942 return ret; 1943 } 1944 1945 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1946 { 1947 u64 val; 1948 1949 val = (u64)pstate << 8; 1950 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled)) 1951 val |= (u64)1 << 32; 1952 1953 return val; 1954 } 1955 1956 static int knl_get_aperf_mperf_shift(void) 1957 { 1958 return 10; 1959 } 1960 1961 static int knl_get_turbo_pstate(int cpu) 1962 { 1963 u64 value; 1964 int nont, ret; 1965 1966 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1967 nont = core_get_max_pstate(cpu); 1968 ret = (((value) >> 8) & 0xFF); 1969 if (ret <= nont) 1970 ret = nont; 1971 return ret; 1972 } 1973 1974 static void hybrid_get_type(void *data) 1975 { 1976 u8 *cpu_type = data; 1977 1978 *cpu_type = get_this_hybrid_cpu_type(); 1979 } 1980 1981 static int hwp_get_cpu_scaling(int cpu) 1982 { 1983 u8 cpu_type = 0; 1984 1985 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1); 1986 /* P-cores have a smaller perf level-to-freqency scaling factor. */ 1987 if (cpu_type == 0x40) 1988 return hybrid_scaling_factor; 1989 1990 /* Use default core scaling for E-cores */ 1991 if (cpu_type == 0x20) 1992 return core_get_scaling(); 1993 1994 /* 1995 * If reached here, this system is either non-hybrid (like Tiger 1996 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with 1997 * no E cores (in which case CPUID for hybrid support is 0). 1998 * 1999 * The CPPC nominal_frequency field is 0 for non-hybrid systems, 2000 * so the default core scaling will be used for them. 2001 */ 2002 return intel_pstate_cppc_get_scaling(cpu); 2003 } 2004 2005 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 2006 { 2007 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 2008 cpu->pstate.current_pstate = pstate; 2009 /* 2010 * Generally, there is no guarantee that this code will always run on 2011 * the CPU being updated, so force the register update to run on the 2012 * right CPU. 2013 */ 2014 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2015 pstate_funcs.get_val(cpu, pstate)); 2016 } 2017 2018 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 2019 { 2020 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 2021 } 2022 2023 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 2024 { 2025 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu); 2026 int perf_ctl_scaling = pstate_funcs.get_scaling(); 2027 2028 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu); 2029 cpu->pstate.max_pstate_physical = perf_ctl_max_phys; 2030 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling; 2031 2032 if (hwp_active && !hwp_mode_bdw) { 2033 __intel_pstate_get_hwp_cap(cpu); 2034 2035 if (pstate_funcs.get_cpu_scaling) { 2036 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu); 2037 if (cpu->pstate.scaling != perf_ctl_scaling) 2038 intel_pstate_hybrid_hwp_adjust(cpu); 2039 } else { 2040 cpu->pstate.scaling = perf_ctl_scaling; 2041 } 2042 } else { 2043 cpu->pstate.scaling = perf_ctl_scaling; 2044 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu); 2045 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu); 2046 } 2047 2048 if (cpu->pstate.scaling == perf_ctl_scaling) { 2049 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 2050 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling; 2051 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling; 2052 } 2053 2054 if (pstate_funcs.get_aperf_mperf_shift) 2055 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 2056 2057 if (pstate_funcs.get_vid) 2058 pstate_funcs.get_vid(cpu); 2059 2060 intel_pstate_set_min_pstate(cpu); 2061 } 2062 2063 /* 2064 * Long hold time will keep high perf limits for long time, 2065 * which negatively impacts perf/watt for some workloads, 2066 * like specpower. 3ms is based on experiements on some 2067 * workoads. 2068 */ 2069 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 2070 2071 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 2072 { 2073 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 2074 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2075 u32 max_limit = (hwp_req & 0xff00) >> 8; 2076 u32 min_limit = (hwp_req & 0xff); 2077 u32 boost_level1; 2078 2079 /* 2080 * Cases to consider (User changes via sysfs or boot time): 2081 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 2082 * No boost, return. 2083 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 2084 * Should result in one level boost only for P0. 2085 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 2086 * Should result in two level boost: 2087 * (min + p1)/2 and P1. 2088 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 2089 * Should result in three level boost: 2090 * (min + p1)/2, P1 and P0. 2091 */ 2092 2093 /* If max and min are equal or already at max, nothing to boost */ 2094 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 2095 return; 2096 2097 if (!cpu->hwp_boost_min) 2098 cpu->hwp_boost_min = min_limit; 2099 2100 /* level at half way mark between min and guranteed */ 2101 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; 2102 2103 if (cpu->hwp_boost_min < boost_level1) 2104 cpu->hwp_boost_min = boost_level1; 2105 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) 2106 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); 2107 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && 2108 max_limit != HWP_GUARANTEED_PERF(hwp_cap)) 2109 cpu->hwp_boost_min = max_limit; 2110 else 2111 return; 2112 2113 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 2114 wrmsrl(MSR_HWP_REQUEST, hwp_req); 2115 cpu->last_update = cpu->sample.time; 2116 } 2117 2118 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 2119 { 2120 if (cpu->hwp_boost_min) { 2121 bool expired; 2122 2123 /* Check if we are idle for hold time to boost down */ 2124 expired = time_after64(cpu->sample.time, cpu->last_update + 2125 hwp_boost_hold_time_ns); 2126 if (expired) { 2127 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); 2128 cpu->hwp_boost_min = 0; 2129 } 2130 } 2131 cpu->last_update = cpu->sample.time; 2132 } 2133 2134 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 2135 u64 time) 2136 { 2137 cpu->sample.time = time; 2138 2139 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 2140 bool do_io = false; 2141 2142 cpu->sched_flags = 0; 2143 /* 2144 * Set iowait_boost flag and update time. Since IO WAIT flag 2145 * is set all the time, we can't just conclude that there is 2146 * some IO bound activity is scheduled on this CPU with just 2147 * one occurrence. If we receive at least two in two 2148 * consecutive ticks, then we treat as boost candidate. 2149 */ 2150 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 2151 do_io = true; 2152 2153 cpu->last_io_update = time; 2154 2155 if (do_io) 2156 intel_pstate_hwp_boost_up(cpu); 2157 2158 } else { 2159 intel_pstate_hwp_boost_down(cpu); 2160 } 2161 } 2162 2163 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 2164 u64 time, unsigned int flags) 2165 { 2166 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2167 2168 cpu->sched_flags |= flags; 2169 2170 if (smp_processor_id() == cpu->cpu) 2171 intel_pstate_update_util_hwp_local(cpu, time); 2172 } 2173 2174 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 2175 { 2176 struct sample *sample = &cpu->sample; 2177 2178 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 2179 } 2180 2181 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 2182 { 2183 u64 aperf, mperf; 2184 unsigned long flags; 2185 u64 tsc; 2186 2187 local_irq_save(flags); 2188 rdmsrl(MSR_IA32_APERF, aperf); 2189 rdmsrl(MSR_IA32_MPERF, mperf); 2190 tsc = rdtsc(); 2191 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 2192 local_irq_restore(flags); 2193 return false; 2194 } 2195 local_irq_restore(flags); 2196 2197 cpu->last_sample_time = cpu->sample.time; 2198 cpu->sample.time = time; 2199 cpu->sample.aperf = aperf; 2200 cpu->sample.mperf = mperf; 2201 cpu->sample.tsc = tsc; 2202 cpu->sample.aperf -= cpu->prev_aperf; 2203 cpu->sample.mperf -= cpu->prev_mperf; 2204 cpu->sample.tsc -= cpu->prev_tsc; 2205 2206 cpu->prev_aperf = aperf; 2207 cpu->prev_mperf = mperf; 2208 cpu->prev_tsc = tsc; 2209 /* 2210 * First time this function is invoked in a given cycle, all of the 2211 * previous sample data fields are equal to zero or stale and they must 2212 * be populated with meaningful numbers for things to work, so assume 2213 * that sample.time will always be reset before setting the utilization 2214 * update hook and make the caller skip the sample then. 2215 */ 2216 if (cpu->last_sample_time) { 2217 intel_pstate_calc_avg_perf(cpu); 2218 return true; 2219 } 2220 return false; 2221 } 2222 2223 static inline int32_t get_avg_frequency(struct cpudata *cpu) 2224 { 2225 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 2226 } 2227 2228 static inline int32_t get_avg_pstate(struct cpudata *cpu) 2229 { 2230 return mul_ext_fp(cpu->pstate.max_pstate_physical, 2231 cpu->sample.core_avg_perf); 2232 } 2233 2234 static inline int32_t get_target_pstate(struct cpudata *cpu) 2235 { 2236 struct sample *sample = &cpu->sample; 2237 int32_t busy_frac; 2238 int target, avg_pstate; 2239 2240 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 2241 sample->tsc); 2242 2243 if (busy_frac < cpu->iowait_boost) 2244 busy_frac = cpu->iowait_boost; 2245 2246 sample->busy_scaled = busy_frac * 100; 2247 2248 target = READ_ONCE(global.no_turbo) ? 2249 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2250 target += target >> 2; 2251 target = mul_fp(target, busy_frac); 2252 if (target < cpu->pstate.min_pstate) 2253 target = cpu->pstate.min_pstate; 2254 2255 /* 2256 * If the average P-state during the previous cycle was higher than the 2257 * current target, add 50% of the difference to the target to reduce 2258 * possible performance oscillations and offset possible performance 2259 * loss related to moving the workload from one CPU to another within 2260 * a package/module. 2261 */ 2262 avg_pstate = get_avg_pstate(cpu); 2263 if (avg_pstate > target) 2264 target += (avg_pstate - target) >> 1; 2265 2266 return target; 2267 } 2268 2269 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 2270 { 2271 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 2272 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 2273 2274 return clamp_t(int, pstate, min_pstate, max_pstate); 2275 } 2276 2277 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 2278 { 2279 if (pstate == cpu->pstate.current_pstate) 2280 return; 2281 2282 cpu->pstate.current_pstate = pstate; 2283 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 2284 } 2285 2286 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 2287 { 2288 int from = cpu->pstate.current_pstate; 2289 struct sample *sample; 2290 int target_pstate; 2291 2292 target_pstate = get_target_pstate(cpu); 2293 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2294 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 2295 intel_pstate_update_pstate(cpu, target_pstate); 2296 2297 sample = &cpu->sample; 2298 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 2299 fp_toint(sample->busy_scaled), 2300 from, 2301 cpu->pstate.current_pstate, 2302 sample->mperf, 2303 sample->aperf, 2304 sample->tsc, 2305 get_avg_frequency(cpu), 2306 fp_toint(cpu->iowait_boost * 100)); 2307 } 2308 2309 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 2310 unsigned int flags) 2311 { 2312 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2313 u64 delta_ns; 2314 2315 /* Don't allow remote callbacks */ 2316 if (smp_processor_id() != cpu->cpu) 2317 return; 2318 2319 delta_ns = time - cpu->last_update; 2320 if (flags & SCHED_CPUFREQ_IOWAIT) { 2321 /* Start over if the CPU may have been idle. */ 2322 if (delta_ns > TICK_NSEC) { 2323 cpu->iowait_boost = ONE_EIGHTH_FP; 2324 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 2325 cpu->iowait_boost <<= 1; 2326 if (cpu->iowait_boost > int_tofp(1)) 2327 cpu->iowait_boost = int_tofp(1); 2328 } else { 2329 cpu->iowait_boost = ONE_EIGHTH_FP; 2330 } 2331 } else if (cpu->iowait_boost) { 2332 /* Clear iowait_boost if the CPU may have been idle. */ 2333 if (delta_ns > TICK_NSEC) 2334 cpu->iowait_boost = 0; 2335 else 2336 cpu->iowait_boost >>= 1; 2337 } 2338 cpu->last_update = time; 2339 delta_ns = time - cpu->sample.time; 2340 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 2341 return; 2342 2343 if (intel_pstate_sample(cpu, time)) 2344 intel_pstate_adjust_pstate(cpu); 2345 } 2346 2347 static struct pstate_funcs core_funcs = { 2348 .get_max = core_get_max_pstate, 2349 .get_max_physical = core_get_max_pstate_physical, 2350 .get_min = core_get_min_pstate, 2351 .get_turbo = core_get_turbo_pstate, 2352 .get_scaling = core_get_scaling, 2353 .get_val = core_get_val, 2354 }; 2355 2356 static const struct pstate_funcs silvermont_funcs = { 2357 .get_max = atom_get_max_pstate, 2358 .get_max_physical = atom_get_max_pstate, 2359 .get_min = atom_get_min_pstate, 2360 .get_turbo = atom_get_turbo_pstate, 2361 .get_val = atom_get_val, 2362 .get_scaling = silvermont_get_scaling, 2363 .get_vid = atom_get_vid, 2364 }; 2365 2366 static const struct pstate_funcs airmont_funcs = { 2367 .get_max = atom_get_max_pstate, 2368 .get_max_physical = atom_get_max_pstate, 2369 .get_min = atom_get_min_pstate, 2370 .get_turbo = atom_get_turbo_pstate, 2371 .get_val = atom_get_val, 2372 .get_scaling = airmont_get_scaling, 2373 .get_vid = atom_get_vid, 2374 }; 2375 2376 static const struct pstate_funcs knl_funcs = { 2377 .get_max = core_get_max_pstate, 2378 .get_max_physical = core_get_max_pstate_physical, 2379 .get_min = core_get_min_pstate, 2380 .get_turbo = knl_get_turbo_pstate, 2381 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 2382 .get_scaling = core_get_scaling, 2383 .get_val = core_get_val, 2384 }; 2385 2386 #define X86_MATCH(vfm, policy) \ 2387 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy) 2388 2389 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 2390 X86_MATCH(INTEL_SANDYBRIDGE, core_funcs), 2391 X86_MATCH(INTEL_SANDYBRIDGE_X, core_funcs), 2392 X86_MATCH(INTEL_ATOM_SILVERMONT, silvermont_funcs), 2393 X86_MATCH(INTEL_IVYBRIDGE, core_funcs), 2394 X86_MATCH(INTEL_HASWELL, core_funcs), 2395 X86_MATCH(INTEL_BROADWELL, core_funcs), 2396 X86_MATCH(INTEL_IVYBRIDGE_X, core_funcs), 2397 X86_MATCH(INTEL_HASWELL_X, core_funcs), 2398 X86_MATCH(INTEL_HASWELL_L, core_funcs), 2399 X86_MATCH(INTEL_HASWELL_G, core_funcs), 2400 X86_MATCH(INTEL_BROADWELL_G, core_funcs), 2401 X86_MATCH(INTEL_ATOM_AIRMONT, airmont_funcs), 2402 X86_MATCH(INTEL_SKYLAKE_L, core_funcs), 2403 X86_MATCH(INTEL_BROADWELL_X, core_funcs), 2404 X86_MATCH(INTEL_SKYLAKE, core_funcs), 2405 X86_MATCH(INTEL_BROADWELL_D, core_funcs), 2406 X86_MATCH(INTEL_XEON_PHI_KNL, knl_funcs), 2407 X86_MATCH(INTEL_XEON_PHI_KNM, knl_funcs), 2408 X86_MATCH(INTEL_ATOM_GOLDMONT, core_funcs), 2409 X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS, core_funcs), 2410 X86_MATCH(INTEL_SKYLAKE_X, core_funcs), 2411 X86_MATCH(INTEL_COMETLAKE, core_funcs), 2412 X86_MATCH(INTEL_ICELAKE_X, core_funcs), 2413 X86_MATCH(INTEL_TIGERLAKE, core_funcs), 2414 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs), 2415 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs), 2416 {} 2417 }; 2418 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2419 2420 #ifdef CONFIG_ACPI 2421 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2422 X86_MATCH(INTEL_BROADWELL_D, core_funcs), 2423 X86_MATCH(INTEL_BROADWELL_X, core_funcs), 2424 X86_MATCH(INTEL_SKYLAKE_X, core_funcs), 2425 X86_MATCH(INTEL_ICELAKE_X, core_funcs), 2426 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs), 2427 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs), 2428 {} 2429 }; 2430 #endif 2431 2432 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2433 X86_MATCH(INTEL_KABYLAKE, core_funcs), 2434 {} 2435 }; 2436 2437 static int intel_pstate_init_cpu(unsigned int cpunum) 2438 { 2439 struct cpudata *cpu; 2440 2441 cpu = all_cpu_data[cpunum]; 2442 2443 if (!cpu) { 2444 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2445 if (!cpu) 2446 return -ENOMEM; 2447 2448 WRITE_ONCE(all_cpu_data[cpunum], cpu); 2449 2450 cpu->cpu = cpunum; 2451 2452 cpu->epp_default = -EINVAL; 2453 2454 if (hwp_active) { 2455 intel_pstate_hwp_enable(cpu); 2456 2457 if (intel_pstate_acpi_pm_profile_server()) 2458 hwp_boost = true; 2459 } 2460 } else if (hwp_active) { 2461 /* 2462 * Re-enable HWP in case this happens after a resume from ACPI 2463 * S3 if the CPU was offline during the whole system/resume 2464 * cycle. 2465 */ 2466 intel_pstate_hwp_reenable(cpu); 2467 } 2468 2469 cpu->epp_powersave = -EINVAL; 2470 cpu->epp_policy = 0; 2471 2472 intel_pstate_get_cpu_pstates(cpu); 2473 2474 pr_debug("controlling: cpu %d\n", cpunum); 2475 2476 return 0; 2477 } 2478 2479 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2480 { 2481 struct cpudata *cpu = all_cpu_data[cpu_num]; 2482 2483 if (hwp_active && !hwp_boost) 2484 return; 2485 2486 if (cpu->update_util_set) 2487 return; 2488 2489 /* Prevent intel_pstate_update_util() from using stale data. */ 2490 cpu->sample.time = 0; 2491 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2492 (hwp_active ? 2493 intel_pstate_update_util_hwp : 2494 intel_pstate_update_util)); 2495 cpu->update_util_set = true; 2496 } 2497 2498 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2499 { 2500 struct cpudata *cpu_data = all_cpu_data[cpu]; 2501 2502 if (!cpu_data->update_util_set) 2503 return; 2504 2505 cpufreq_remove_update_util_hook(cpu); 2506 cpu_data->update_util_set = false; 2507 synchronize_rcu(); 2508 } 2509 2510 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2511 { 2512 return READ_ONCE(global.no_turbo) ? 2513 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2514 } 2515 2516 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2517 unsigned int policy_min, 2518 unsigned int policy_max) 2519 { 2520 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 2521 int32_t max_policy_perf, min_policy_perf; 2522 2523 max_policy_perf = policy_max / perf_ctl_scaling; 2524 if (policy_max == policy_min) { 2525 min_policy_perf = max_policy_perf; 2526 } else { 2527 min_policy_perf = policy_min / perf_ctl_scaling; 2528 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2529 0, max_policy_perf); 2530 } 2531 2532 /* 2533 * HWP needs some special consideration, because HWP_REQUEST uses 2534 * abstract values to represent performance rather than pure ratios. 2535 */ 2536 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) { 2537 int freq; 2538 2539 freq = max_policy_perf * perf_ctl_scaling; 2540 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); 2541 freq = min_policy_perf * perf_ctl_scaling; 2542 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); 2543 } 2544 2545 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", 2546 cpu->cpu, min_policy_perf, max_policy_perf); 2547 2548 /* Normalize user input to [min_perf, max_perf] */ 2549 if (per_cpu_limits) { 2550 cpu->min_perf_ratio = min_policy_perf; 2551 cpu->max_perf_ratio = max_policy_perf; 2552 } else { 2553 int turbo_max = cpu->pstate.turbo_pstate; 2554 int32_t global_min, global_max; 2555 2556 /* Global limits are in percent of the maximum turbo P-state. */ 2557 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2558 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2559 global_min = clamp_t(int32_t, global_min, 0, global_max); 2560 2561 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2562 global_min, global_max); 2563 2564 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2565 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2566 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2567 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2568 2569 /* Make sure min_perf <= max_perf */ 2570 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2571 cpu->max_perf_ratio); 2572 2573 } 2574 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2575 cpu->max_perf_ratio, 2576 cpu->min_perf_ratio); 2577 } 2578 2579 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2580 { 2581 struct cpudata *cpu; 2582 2583 if (!policy->cpuinfo.max_freq) 2584 return -ENODEV; 2585 2586 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2587 policy->cpuinfo.max_freq, policy->max); 2588 2589 cpu = all_cpu_data[policy->cpu]; 2590 cpu->policy = policy->policy; 2591 2592 mutex_lock(&intel_pstate_limits_lock); 2593 2594 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2595 2596 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2597 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 2598 2599 /* 2600 * NOHZ_FULL CPUs need this as the governor callback may not 2601 * be invoked on them. 2602 */ 2603 intel_pstate_clear_update_util_hook(policy->cpu); 2604 intel_pstate_set_pstate(cpu, pstate); 2605 } else { 2606 intel_pstate_set_update_util_hook(policy->cpu); 2607 } 2608 2609 if (hwp_active) { 2610 /* 2611 * When hwp_boost was active before and dynamically it 2612 * was turned off, in that case we need to clear the 2613 * update util hook. 2614 */ 2615 if (!hwp_boost) 2616 intel_pstate_clear_update_util_hook(policy->cpu); 2617 intel_pstate_hwp_set(policy->cpu); 2618 } 2619 /* 2620 * policy->cur is never updated with the intel_pstate driver, but it 2621 * is used as a stale frequency value. So, keep it within limits. 2622 */ 2623 policy->cur = policy->min; 2624 2625 mutex_unlock(&intel_pstate_limits_lock); 2626 2627 return 0; 2628 } 2629 2630 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2631 struct cpufreq_policy_data *policy) 2632 { 2633 if (!hwp_active && 2634 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2635 policy->max < policy->cpuinfo.max_freq && 2636 policy->max > cpu->pstate.max_freq) { 2637 pr_debug("policy->max > max non turbo frequency\n"); 2638 policy->max = policy->cpuinfo.max_freq; 2639 } 2640 } 2641 2642 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 2643 struct cpufreq_policy_data *policy) 2644 { 2645 int max_freq; 2646 2647 if (hwp_active) { 2648 intel_pstate_get_hwp_cap(cpu); 2649 max_freq = READ_ONCE(global.no_turbo) ? 2650 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2651 } else { 2652 max_freq = intel_pstate_get_max_freq(cpu); 2653 } 2654 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); 2655 2656 intel_pstate_adjust_policy_max(cpu, policy); 2657 } 2658 2659 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 2660 { 2661 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 2662 2663 return 0; 2664 } 2665 2666 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy) 2667 { 2668 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2669 2670 pr_debug("CPU %d going offline\n", cpu->cpu); 2671 2672 if (cpu->suspended) 2673 return 0; 2674 2675 /* 2676 * If the CPU is an SMT thread and it goes offline with the performance 2677 * settings different from the minimum, it will prevent its sibling 2678 * from getting to lower performance levels, so force the minimum 2679 * performance on CPU offline to prevent that from happening. 2680 */ 2681 if (hwp_active) 2682 intel_pstate_hwp_offline(cpu); 2683 else 2684 intel_pstate_set_min_pstate(cpu); 2685 2686 intel_pstate_exit_perf_limits(policy); 2687 2688 return 0; 2689 } 2690 2691 static int intel_pstate_cpu_online(struct cpufreq_policy *policy) 2692 { 2693 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2694 2695 pr_debug("CPU %d going online\n", cpu->cpu); 2696 2697 intel_pstate_init_acpi_perf_limits(policy); 2698 2699 if (hwp_active) { 2700 /* 2701 * Re-enable HWP and clear the "suspended" flag to let "resume" 2702 * know that it need not do that. 2703 */ 2704 intel_pstate_hwp_reenable(cpu); 2705 cpu->suspended = false; 2706 } 2707 2708 return 0; 2709 } 2710 2711 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) 2712 { 2713 intel_pstate_clear_update_util_hook(policy->cpu); 2714 2715 return intel_cpufreq_cpu_offline(policy); 2716 } 2717 2718 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2719 { 2720 pr_debug("CPU %d exiting\n", policy->cpu); 2721 2722 policy->fast_switch_possible = false; 2723 } 2724 2725 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2726 { 2727 struct cpudata *cpu; 2728 int rc; 2729 2730 rc = intel_pstate_init_cpu(policy->cpu); 2731 if (rc) 2732 return rc; 2733 2734 cpu = all_cpu_data[policy->cpu]; 2735 2736 cpu->max_perf_ratio = 0xFF; 2737 cpu->min_perf_ratio = 0; 2738 2739 /* cpuinfo and default policy values */ 2740 policy->cpuinfo.min_freq = cpu->pstate.min_freq; 2741 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ? 2742 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2743 2744 policy->min = policy->cpuinfo.min_freq; 2745 policy->max = policy->cpuinfo.max_freq; 2746 2747 intel_pstate_init_acpi_perf_limits(policy); 2748 2749 policy->fast_switch_possible = true; 2750 2751 return 0; 2752 } 2753 2754 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2755 { 2756 int ret = __intel_pstate_cpu_init(policy); 2757 2758 if (ret) 2759 return ret; 2760 2761 /* 2762 * Set the policy to powersave to provide a valid fallback value in case 2763 * the default cpufreq governor is neither powersave nor performance. 2764 */ 2765 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2766 2767 if (hwp_active) { 2768 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2769 2770 cpu->epp_cached = intel_pstate_get_epp(cpu, 0); 2771 } 2772 2773 return 0; 2774 } 2775 2776 static struct cpufreq_driver intel_pstate = { 2777 .flags = CPUFREQ_CONST_LOOPS, 2778 .verify = intel_pstate_verify_policy, 2779 .setpolicy = intel_pstate_set_policy, 2780 .suspend = intel_pstate_suspend, 2781 .resume = intel_pstate_resume, 2782 .init = intel_pstate_cpu_init, 2783 .exit = intel_pstate_cpu_exit, 2784 .offline = intel_pstate_cpu_offline, 2785 .online = intel_pstate_cpu_online, 2786 .update_limits = intel_pstate_update_limits, 2787 .name = "intel_pstate", 2788 }; 2789 2790 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 2791 { 2792 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2793 2794 intel_pstate_verify_cpu_policy(cpu, policy); 2795 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2796 2797 return 0; 2798 } 2799 2800 /* Use of trace in passive mode: 2801 * 2802 * In passive mode the trace core_busy field (also known as the 2803 * performance field, and lablelled as such on the graphs; also known as 2804 * core_avg_perf) is not needed and so is re-assigned to indicate if the 2805 * driver call was via the normal or fast switch path. Various graphs 2806 * output from the intel_pstate_tracer.py utility that include core_busy 2807 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 2808 * so we use 10 to indicate the normal path through the driver, and 2809 * 90 to indicate the fast switch path through the driver. 2810 * The scaled_busy field is not used, and is set to 0. 2811 */ 2812 2813 #define INTEL_PSTATE_TRACE_TARGET 10 2814 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 2815 2816 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 2817 { 2818 struct sample *sample; 2819 2820 if (!trace_pstate_sample_enabled()) 2821 return; 2822 2823 if (!intel_pstate_sample(cpu, ktime_get())) 2824 return; 2825 2826 sample = &cpu->sample; 2827 trace_pstate_sample(trace_type, 2828 0, 2829 old_pstate, 2830 cpu->pstate.current_pstate, 2831 sample->mperf, 2832 sample->aperf, 2833 sample->tsc, 2834 get_avg_frequency(cpu), 2835 fp_toint(cpu->iowait_boost * 100)); 2836 } 2837 2838 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, 2839 u32 desired, bool fast_switch) 2840 { 2841 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; 2842 2843 value &= ~HWP_MIN_PERF(~0L); 2844 value |= HWP_MIN_PERF(min); 2845 2846 value &= ~HWP_MAX_PERF(~0L); 2847 value |= HWP_MAX_PERF(max); 2848 2849 value &= ~HWP_DESIRED_PERF(~0L); 2850 value |= HWP_DESIRED_PERF(desired); 2851 2852 if (value == prev) 2853 return; 2854 2855 WRITE_ONCE(cpu->hwp_req_cached, value); 2856 if (fast_switch) 2857 wrmsrl(MSR_HWP_REQUEST, value); 2858 else 2859 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 2860 } 2861 2862 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, 2863 u32 target_pstate, bool fast_switch) 2864 { 2865 if (fast_switch) 2866 wrmsrl(MSR_IA32_PERF_CTL, 2867 pstate_funcs.get_val(cpu, target_pstate)); 2868 else 2869 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2870 pstate_funcs.get_val(cpu, target_pstate)); 2871 } 2872 2873 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, 2874 int target_pstate, bool fast_switch) 2875 { 2876 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2877 int old_pstate = cpu->pstate.current_pstate; 2878 2879 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2880 if (hwp_active) { 2881 int max_pstate = policy->strict_target ? 2882 target_pstate : cpu->max_perf_ratio; 2883 2884 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, 2885 fast_switch); 2886 } else if (target_pstate != old_pstate) { 2887 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); 2888 } 2889 2890 cpu->pstate.current_pstate = target_pstate; 2891 2892 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : 2893 INTEL_PSTATE_TRACE_TARGET, old_pstate); 2894 2895 return target_pstate; 2896 } 2897 2898 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2899 unsigned int target_freq, 2900 unsigned int relation) 2901 { 2902 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2903 struct cpufreq_freqs freqs; 2904 int target_pstate; 2905 2906 freqs.old = policy->cur; 2907 freqs.new = target_freq; 2908 2909 cpufreq_freq_transition_begin(policy, &freqs); 2910 2911 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation); 2912 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); 2913 2914 freqs.new = target_pstate * cpu->pstate.scaling; 2915 2916 cpufreq_freq_transition_end(policy, &freqs, false); 2917 2918 return 0; 2919 } 2920 2921 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2922 unsigned int target_freq) 2923 { 2924 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2925 int target_pstate; 2926 2927 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq); 2928 2929 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); 2930 2931 return target_pstate * cpu->pstate.scaling; 2932 } 2933 2934 static void intel_cpufreq_adjust_perf(unsigned int cpunum, 2935 unsigned long min_perf, 2936 unsigned long target_perf, 2937 unsigned long capacity) 2938 { 2939 struct cpudata *cpu = all_cpu_data[cpunum]; 2940 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2941 int old_pstate = cpu->pstate.current_pstate; 2942 int cap_pstate, min_pstate, max_pstate, target_pstate; 2943 2944 cap_pstate = READ_ONCE(global.no_turbo) ? 2945 HWP_GUARANTEED_PERF(hwp_cap) : 2946 HWP_HIGHEST_PERF(hwp_cap); 2947 2948 /* Optimization: Avoid unnecessary divisions. */ 2949 2950 target_pstate = cap_pstate; 2951 if (target_perf < capacity) 2952 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); 2953 2954 min_pstate = cap_pstate; 2955 if (min_perf < capacity) 2956 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); 2957 2958 if (min_pstate < cpu->pstate.min_pstate) 2959 min_pstate = cpu->pstate.min_pstate; 2960 2961 if (min_pstate < cpu->min_perf_ratio) 2962 min_pstate = cpu->min_perf_ratio; 2963 2964 if (min_pstate > cpu->max_perf_ratio) 2965 min_pstate = cpu->max_perf_ratio; 2966 2967 max_pstate = min(cap_pstate, cpu->max_perf_ratio); 2968 if (max_pstate < min_pstate) 2969 max_pstate = min_pstate; 2970 2971 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); 2972 2973 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); 2974 2975 cpu->pstate.current_pstate = target_pstate; 2976 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 2977 } 2978 2979 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 2980 { 2981 struct freq_qos_request *req; 2982 struct cpudata *cpu; 2983 struct device *dev; 2984 int ret, freq; 2985 2986 dev = get_cpu_device(policy->cpu); 2987 if (!dev) 2988 return -ENODEV; 2989 2990 ret = __intel_pstate_cpu_init(policy); 2991 if (ret) 2992 return ret; 2993 2994 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 2995 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 2996 policy->cur = policy->cpuinfo.min_freq; 2997 2998 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 2999 if (!req) { 3000 ret = -ENOMEM; 3001 goto pstate_exit; 3002 } 3003 3004 cpu = all_cpu_data[policy->cpu]; 3005 3006 if (hwp_active) { 3007 u64 value; 3008 3009 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; 3010 3011 intel_pstate_get_hwp_cap(cpu); 3012 3013 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); 3014 WRITE_ONCE(cpu->hwp_req_cached, value); 3015 3016 cpu->epp_cached = intel_pstate_get_epp(cpu, value); 3017 } else { 3018 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 3019 } 3020 3021 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); 3022 3023 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 3024 freq); 3025 if (ret < 0) { 3026 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 3027 goto free_req; 3028 } 3029 3030 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); 3031 3032 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 3033 freq); 3034 if (ret < 0) { 3035 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 3036 goto remove_min_req; 3037 } 3038 3039 policy->driver_data = req; 3040 3041 return 0; 3042 3043 remove_min_req: 3044 freq_qos_remove_request(req); 3045 free_req: 3046 kfree(req); 3047 pstate_exit: 3048 intel_pstate_exit_perf_limits(policy); 3049 3050 return ret; 3051 } 3052 3053 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 3054 { 3055 struct freq_qos_request *req; 3056 3057 req = policy->driver_data; 3058 3059 freq_qos_remove_request(req + 1); 3060 freq_qos_remove_request(req); 3061 kfree(req); 3062 3063 intel_pstate_cpu_exit(policy); 3064 } 3065 3066 static int intel_cpufreq_suspend(struct cpufreq_policy *policy) 3067 { 3068 intel_pstate_suspend(policy); 3069 3070 if (hwp_active) { 3071 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3072 u64 value = READ_ONCE(cpu->hwp_req_cached); 3073 3074 /* 3075 * Clear the desired perf field in MSR_HWP_REQUEST in case 3076 * intel_cpufreq_adjust_perf() is in use and the last value 3077 * written by it may not be suitable. 3078 */ 3079 value &= ~HWP_DESIRED_PERF(~0L); 3080 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 3081 WRITE_ONCE(cpu->hwp_req_cached, value); 3082 } 3083 3084 return 0; 3085 } 3086 3087 static struct cpufreq_driver intel_cpufreq = { 3088 .flags = CPUFREQ_CONST_LOOPS, 3089 .verify = intel_cpufreq_verify_policy, 3090 .target = intel_cpufreq_target, 3091 .fast_switch = intel_cpufreq_fast_switch, 3092 .init = intel_cpufreq_cpu_init, 3093 .exit = intel_cpufreq_cpu_exit, 3094 .offline = intel_cpufreq_cpu_offline, 3095 .online = intel_pstate_cpu_online, 3096 .suspend = intel_cpufreq_suspend, 3097 .resume = intel_pstate_resume, 3098 .update_limits = intel_pstate_update_limits, 3099 .name = "intel_cpufreq", 3100 }; 3101 3102 static struct cpufreq_driver *default_driver; 3103 3104 static void intel_pstate_driver_cleanup(void) 3105 { 3106 unsigned int cpu; 3107 3108 cpus_read_lock(); 3109 for_each_online_cpu(cpu) { 3110 if (all_cpu_data[cpu]) { 3111 if (intel_pstate_driver == &intel_pstate) 3112 intel_pstate_clear_update_util_hook(cpu); 3113 3114 kfree(all_cpu_data[cpu]); 3115 WRITE_ONCE(all_cpu_data[cpu], NULL); 3116 } 3117 } 3118 cpus_read_unlock(); 3119 3120 intel_pstate_driver = NULL; 3121 } 3122 3123 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 3124 { 3125 int ret; 3126 3127 if (driver == &intel_pstate) 3128 intel_pstate_sysfs_expose_hwp_dynamic_boost(); 3129 3130 memset(&global, 0, sizeof(global)); 3131 global.max_perf_pct = 100; 3132 global.turbo_disabled = turbo_is_disabled(); 3133 global.no_turbo = global.turbo_disabled; 3134 3135 arch_set_max_freq_ratio(global.turbo_disabled); 3136 3137 intel_pstate_driver = driver; 3138 ret = cpufreq_register_driver(intel_pstate_driver); 3139 if (ret) { 3140 intel_pstate_driver_cleanup(); 3141 return ret; 3142 } 3143 3144 global.min_perf_pct = min_perf_pct_min(); 3145 3146 return 0; 3147 } 3148 3149 static ssize_t intel_pstate_show_status(char *buf) 3150 { 3151 if (!intel_pstate_driver) 3152 return sprintf(buf, "off\n"); 3153 3154 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 3155 "active" : "passive"); 3156 } 3157 3158 static int intel_pstate_update_status(const char *buf, size_t size) 3159 { 3160 if (size == 3 && !strncmp(buf, "off", size)) { 3161 if (!intel_pstate_driver) 3162 return -EINVAL; 3163 3164 if (hwp_active) 3165 return -EBUSY; 3166 3167 cpufreq_unregister_driver(intel_pstate_driver); 3168 intel_pstate_driver_cleanup(); 3169 return 0; 3170 } 3171 3172 if (size == 6 && !strncmp(buf, "active", size)) { 3173 if (intel_pstate_driver) { 3174 if (intel_pstate_driver == &intel_pstate) 3175 return 0; 3176 3177 cpufreq_unregister_driver(intel_pstate_driver); 3178 } 3179 3180 return intel_pstate_register_driver(&intel_pstate); 3181 } 3182 3183 if (size == 7 && !strncmp(buf, "passive", size)) { 3184 if (intel_pstate_driver) { 3185 if (intel_pstate_driver == &intel_cpufreq) 3186 return 0; 3187 3188 cpufreq_unregister_driver(intel_pstate_driver); 3189 intel_pstate_sysfs_hide_hwp_dynamic_boost(); 3190 } 3191 3192 return intel_pstate_register_driver(&intel_cpufreq); 3193 } 3194 3195 return -EINVAL; 3196 } 3197 3198 static int no_load __initdata; 3199 static int no_hwp __initdata; 3200 static int hwp_only __initdata; 3201 static unsigned int force_load __initdata; 3202 3203 static int __init intel_pstate_msrs_not_valid(void) 3204 { 3205 if (!pstate_funcs.get_max(0) || 3206 !pstate_funcs.get_min(0) || 3207 !pstate_funcs.get_turbo(0)) 3208 return -ENODEV; 3209 3210 return 0; 3211 } 3212 3213 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 3214 { 3215 pstate_funcs.get_max = funcs->get_max; 3216 pstate_funcs.get_max_physical = funcs->get_max_physical; 3217 pstate_funcs.get_min = funcs->get_min; 3218 pstate_funcs.get_turbo = funcs->get_turbo; 3219 pstate_funcs.get_scaling = funcs->get_scaling; 3220 pstate_funcs.get_val = funcs->get_val; 3221 pstate_funcs.get_vid = funcs->get_vid; 3222 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 3223 } 3224 3225 #ifdef CONFIG_ACPI 3226 3227 static bool __init intel_pstate_no_acpi_pss(void) 3228 { 3229 int i; 3230 3231 for_each_possible_cpu(i) { 3232 acpi_status status; 3233 union acpi_object *pss; 3234 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 3235 struct acpi_processor *pr = per_cpu(processors, i); 3236 3237 if (!pr) 3238 continue; 3239 3240 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 3241 if (ACPI_FAILURE(status)) 3242 continue; 3243 3244 pss = buffer.pointer; 3245 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 3246 kfree(pss); 3247 return false; 3248 } 3249 3250 kfree(pss); 3251 } 3252 3253 pr_debug("ACPI _PSS not found\n"); 3254 return true; 3255 } 3256 3257 static bool __init intel_pstate_no_acpi_pcch(void) 3258 { 3259 acpi_status status; 3260 acpi_handle handle; 3261 3262 status = acpi_get_handle(NULL, "\\_SB", &handle); 3263 if (ACPI_FAILURE(status)) 3264 goto not_found; 3265 3266 if (acpi_has_method(handle, "PCCH")) 3267 return false; 3268 3269 not_found: 3270 pr_debug("ACPI PCCH not found\n"); 3271 return true; 3272 } 3273 3274 static bool __init intel_pstate_has_acpi_ppc(void) 3275 { 3276 int i; 3277 3278 for_each_possible_cpu(i) { 3279 struct acpi_processor *pr = per_cpu(processors, i); 3280 3281 if (!pr) 3282 continue; 3283 if (acpi_has_method(pr->handle, "_PPC")) 3284 return true; 3285 } 3286 pr_debug("ACPI _PPC not found\n"); 3287 return false; 3288 } 3289 3290 enum { 3291 PSS, 3292 PPC, 3293 }; 3294 3295 /* Hardware vendor-specific info that has its own power management modes */ 3296 static struct acpi_platform_list plat_info[] __initdata = { 3297 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 3298 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3299 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3300 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3301 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3302 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3303 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3304 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3305 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3306 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3307 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3308 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3309 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3310 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3311 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3312 { } /* End */ 3313 }; 3314 3315 #define BITMASK_OOB (BIT(8) | BIT(18)) 3316 3317 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 3318 { 3319 const struct x86_cpu_id *id; 3320 u64 misc_pwr; 3321 int idx; 3322 3323 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 3324 if (id) { 3325 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 3326 if (misc_pwr & BITMASK_OOB) { 3327 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 3328 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 3329 return true; 3330 } 3331 } 3332 3333 idx = acpi_match_platform_list(plat_info); 3334 if (idx < 0) 3335 return false; 3336 3337 switch (plat_info[idx].data) { 3338 case PSS: 3339 if (!intel_pstate_no_acpi_pss()) 3340 return false; 3341 3342 return intel_pstate_no_acpi_pcch(); 3343 case PPC: 3344 return intel_pstate_has_acpi_ppc() && !force_load; 3345 } 3346 3347 return false; 3348 } 3349 3350 static void intel_pstate_request_control_from_smm(void) 3351 { 3352 /* 3353 * It may be unsafe to request P-states control from SMM if _PPC support 3354 * has not been enabled. 3355 */ 3356 if (acpi_ppc) 3357 acpi_processor_pstate_control(); 3358 } 3359 #else /* CONFIG_ACPI not enabled */ 3360 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 3361 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 3362 static inline void intel_pstate_request_control_from_smm(void) {} 3363 #endif /* CONFIG_ACPI */ 3364 3365 #define INTEL_PSTATE_HWP_BROADWELL 0x01 3366 3367 #define X86_MATCH_HWP(vfm, hwp_mode) \ 3368 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode) 3369 3370 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 3371 X86_MATCH_HWP(INTEL_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 3372 X86_MATCH_HWP(INTEL_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 3373 X86_MATCH_HWP(INTEL_ANY, 0), 3374 {} 3375 }; 3376 3377 static bool intel_pstate_hwp_is_enabled(void) 3378 { 3379 u64 value; 3380 3381 rdmsrl(MSR_PM_ENABLE, value); 3382 return !!(value & 0x1); 3383 } 3384 3385 #define POWERSAVE_MASK GENMASK(7, 0) 3386 #define BALANCE_POWER_MASK GENMASK(15, 8) 3387 #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16) 3388 #define PERFORMANCE_MASK GENMASK(31, 24) 3389 3390 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \ 3391 (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\ 3392 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\ 3393 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\ 3394 FIELD_PREP_CONST(PERFORMANCE_MASK, performance)) 3395 3396 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \ 3397 (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\ 3398 balance_perf, HWP_EPP_PERFORMANCE)) 3399 3400 static const struct x86_cpu_id intel_epp_default[] = { 3401 /* 3402 * Set EPP value as 102, this is the max suggested EPP 3403 * which can result in one core turbo frequency for 3404 * AlderLake Mobile CPUs. 3405 */ 3406 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)), 3407 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)), 3408 X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, 3409 179, 64, 16)), 3410 X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, 3411 179, 64, 16)), 3412 {} 3413 }; 3414 3415 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = { 3416 X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL), 3417 X86_MATCH_VFM(INTEL_ARROWLAKE, HYBRID_SCALING_FACTOR_MTL), 3418 X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL), 3419 {} 3420 }; 3421 3422 static int __init intel_pstate_init(void) 3423 { 3424 static struct cpudata **_all_cpu_data; 3425 const struct x86_cpu_id *id; 3426 int rc; 3427 3428 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 3429 return -ENODEV; 3430 3431 id = x86_match_cpu(hwp_support_ids); 3432 if (id) { 3433 hwp_forced = intel_pstate_hwp_is_enabled(); 3434 3435 if (hwp_forced) 3436 pr_info("HWP enabled by BIOS\n"); 3437 else if (no_load) 3438 return -ENODEV; 3439 3440 copy_cpu_funcs(&core_funcs); 3441 /* 3442 * Avoid enabling HWP for processors without EPP support, 3443 * because that means incomplete HWP implementation which is a 3444 * corner case and supporting it is generally problematic. 3445 * 3446 * If HWP is enabled already, though, there is no choice but to 3447 * deal with it. 3448 */ 3449 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { 3450 hwp_active = true; 3451 hwp_mode_bdw = id->driver_data; 3452 intel_pstate.attr = hwp_cpufreq_attrs; 3453 intel_cpufreq.attr = hwp_cpufreq_attrs; 3454 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; 3455 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; 3456 if (!default_driver) 3457 default_driver = &intel_pstate; 3458 3459 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling; 3460 3461 goto hwp_cpu_matched; 3462 } 3463 pr_info("HWP not enabled\n"); 3464 } else { 3465 if (no_load) 3466 return -ENODEV; 3467 3468 id = x86_match_cpu(intel_pstate_cpu_ids); 3469 if (!id) { 3470 pr_info("CPU model not supported\n"); 3471 return -ENODEV; 3472 } 3473 3474 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 3475 } 3476 3477 if (intel_pstate_msrs_not_valid()) { 3478 pr_info("Invalid MSRs\n"); 3479 return -ENODEV; 3480 } 3481 /* Without HWP start in the passive mode. */ 3482 if (!default_driver) 3483 default_driver = &intel_cpufreq; 3484 3485 hwp_cpu_matched: 3486 /* 3487 * The Intel pstate driver will be ignored if the platform 3488 * firmware has its own power management modes. 3489 */ 3490 if (intel_pstate_platform_pwr_mgmt_exists()) { 3491 pr_info("P-states controlled by the platform\n"); 3492 return -ENODEV; 3493 } 3494 3495 if (!hwp_active && hwp_only) 3496 return -ENOTSUPP; 3497 3498 pr_info("Intel P-state driver initializing\n"); 3499 3500 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 3501 if (!_all_cpu_data) 3502 return -ENOMEM; 3503 3504 WRITE_ONCE(all_cpu_data, _all_cpu_data); 3505 3506 intel_pstate_request_control_from_smm(); 3507 3508 intel_pstate_sysfs_expose_params(); 3509 3510 if (hwp_active) { 3511 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default); 3512 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor); 3513 3514 if (id) { 3515 epp_values[EPP_INDEX_POWERSAVE] = 3516 FIELD_GET(POWERSAVE_MASK, id->driver_data); 3517 epp_values[EPP_INDEX_BALANCE_POWERSAVE] = 3518 FIELD_GET(BALANCE_POWER_MASK, id->driver_data); 3519 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = 3520 FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data); 3521 epp_values[EPP_INDEX_PERFORMANCE] = 3522 FIELD_GET(PERFORMANCE_MASK, id->driver_data); 3523 pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n", 3524 epp_values[EPP_INDEX_POWERSAVE], 3525 epp_values[EPP_INDEX_BALANCE_POWERSAVE], 3526 epp_values[EPP_INDEX_BALANCE_PERFORMANCE], 3527 epp_values[EPP_INDEX_PERFORMANCE]); 3528 } 3529 3530 if (hybrid_id) { 3531 hybrid_scaling_factor = hybrid_id->driver_data; 3532 pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor); 3533 } 3534 3535 } 3536 3537 mutex_lock(&intel_pstate_driver_lock); 3538 rc = intel_pstate_register_driver(default_driver); 3539 mutex_unlock(&intel_pstate_driver_lock); 3540 if (rc) { 3541 intel_pstate_sysfs_remove(); 3542 return rc; 3543 } 3544 3545 if (hwp_active) { 3546 const struct x86_cpu_id *id; 3547 3548 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 3549 if (id) { 3550 set_power_ctl_ee_state(false); 3551 pr_info("Disabling energy efficiency optimization\n"); 3552 } 3553 3554 pr_info("HWP enabled\n"); 3555 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 3556 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n"); 3557 } 3558 3559 return 0; 3560 } 3561 device_initcall(intel_pstate_init); 3562 3563 static int __init intel_pstate_setup(char *str) 3564 { 3565 if (!str) 3566 return -EINVAL; 3567 3568 if (!strcmp(str, "disable")) 3569 no_load = 1; 3570 else if (!strcmp(str, "active")) 3571 default_driver = &intel_pstate; 3572 else if (!strcmp(str, "passive")) 3573 default_driver = &intel_cpufreq; 3574 3575 if (!strcmp(str, "no_hwp")) 3576 no_hwp = 1; 3577 3578 if (!strcmp(str, "force")) 3579 force_load = 1; 3580 if (!strcmp(str, "hwp_only")) 3581 hwp_only = 1; 3582 if (!strcmp(str, "per_cpu_perf_limits")) 3583 per_cpu_limits = true; 3584 3585 #ifdef CONFIG_ACPI 3586 if (!strcmp(str, "support_acpi_ppc")) 3587 acpi_ppc = true; 3588 #endif 3589 3590 return 0; 3591 } 3592 early_param("intel_pstate", intel_pstate_setup); 3593 3594 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 3595 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 3596