xref: /linux/drivers/cpufreq/intel_pstate.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41 
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49 
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53 
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63 
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 	return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68 
69 static inline int ceiling_fp(int32_t x)
70 {
71 	int mask, ret;
72 
73 	ret = fp_toint(x);
74 	mask = (1 << FRAC_BITS) - 1;
75 	if (x & mask)
76 		ret += 1;
77 	return ret;
78 }
79 
80 static inline int32_t percent_fp(int percent)
81 {
82 	return div_fp(percent, 100);
83 }
84 
85 static inline u64 mul_ext_fp(u64 x, u64 y)
86 {
87 	return (x * y) >> EXT_FRAC_BITS;
88 }
89 
90 static inline u64 div_ext_fp(u64 x, u64 y)
91 {
92 	return div64_u64(x << EXT_FRAC_BITS, y);
93 }
94 
95 static inline int32_t percent_ext_fp(int percent)
96 {
97 	return div_ext_fp(percent, 100);
98 }
99 
100 /**
101  * struct sample -	Store performance sample
102  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103  *			performance during last sample period
104  * @busy_scaled:	Scaled busy value which is used to calculate next
105  *			P state. This can be different than core_avg_perf
106  *			to account for cpu idle period
107  * @aperf:		Difference of actual performance frequency clock count
108  *			read from APERF MSR between last and current sample
109  * @mperf:		Difference of maximum performance frequency clock count
110  *			read from MPERF MSR between last and current sample
111  * @tsc:		Difference of time stamp counter between last and
112  *			current sample
113  * @time:		Current time from scheduler
114  *
115  * This structure is used in the cpudata structure to store performance sample
116  * data for choosing next P State.
117  */
118 struct sample {
119 	int32_t core_avg_perf;
120 	int32_t busy_scaled;
121 	u64 aperf;
122 	u64 mperf;
123 	u64 tsc;
124 	u64 time;
125 };
126 
127 /**
128  * struct pstate_data - Store P state data
129  * @current_pstate:	Current requested P state
130  * @min_pstate:		Min P state possible for this platform
131  * @max_pstate:		Max P state possible for this platform
132  * @max_pstate_physical:This is physical Max P state for a processor
133  *			This can be higher than the max_pstate which can
134  *			be limited by platform thermal design power limits
135  * @scaling:		Scaling factor to  convert frequency to cpufreq
136  *			frequency units
137  * @turbo_pstate:	Max Turbo P state possible for this platform
138  * @max_freq:		@max_pstate frequency in cpufreq units
139  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140  *
141  * Stores the per cpu model P state limits and current P state.
142  */
143 struct pstate_data {
144 	int	current_pstate;
145 	int	min_pstate;
146 	int	max_pstate;
147 	int	max_pstate_physical;
148 	int	scaling;
149 	int	turbo_pstate;
150 	unsigned int max_freq;
151 	unsigned int turbo_freq;
152 };
153 
154 /**
155  * struct vid_data -	Stores voltage information data
156  * @min:		VID data for this platform corresponding to
157  *			the lowest P state
158  * @max:		VID data corresponding to the highest P State.
159  * @turbo:		VID data for turbo P state
160  * @ratio:		Ratio of (vid max - vid min) /
161  *			(max P state - Min P State)
162  *
163  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164  * This data is used in Atom platforms, where in addition to target P state,
165  * the voltage data needs to be specified to select next P State.
166  */
167 struct vid_data {
168 	int min;
169 	int max;
170 	int turbo;
171 	int32_t ratio;
172 };
173 
174 /**
175  * struct global_params - Global parameters, mostly tunable via sysfs.
176  * @no_turbo:		Whether or not to use turbo P-states.
177  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
178  *			based on the MSR_IA32_MISC_ENABLE value and whether or
179  *			not the maximum reported turbo P-state is different from
180  *			the maximum reported non-turbo one.
181  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
182  *			P-state capacity.
183  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
184  *			P-state capacity.
185  */
186 struct global_params {
187 	bool no_turbo;
188 	bool turbo_disabled;
189 	int max_perf_pct;
190 	int min_perf_pct;
191 };
192 
193 /**
194  * struct cpudata -	Per CPU instance data storage
195  * @cpu:		CPU number for this instance data
196  * @policy:		CPUFreq policy value
197  * @update_util:	CPUFreq utility callback information
198  * @update_util_set:	CPUFreq utility callback is set
199  * @iowait_boost:	iowait-related boost fraction
200  * @last_update:	Time of the last update.
201  * @pstate:		Stores P state limits for this CPU
202  * @vid:		Stores VID limits for this CPU
203  * @last_sample_time:	Last Sample time
204  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
205  *			This shift is a multiplier to mperf delta to
206  *			calculate CPU busy.
207  * @prev_aperf:		Last APERF value read from APERF MSR
208  * @prev_mperf:		Last MPERF value read from MPERF MSR
209  * @prev_tsc:		Last timestamp counter (TSC) value
210  * @prev_cummulative_iowait: IO Wait time difference from last and
211  *			current sample
212  * @sample:		Storage for storing last Sample data
213  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
214  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
216  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217  * @epp_powersave:	Last saved HWP energy performance preference
218  *			(EPP) or energy performance bias (EPB),
219  *			when policy switched to performance
220  * @epp_policy:		Last saved policy used to set EPP/EPB
221  * @epp_default:	Power on default HWP energy performance
222  *			preference/bias
223  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
224  *			operation
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229 	int cpu;
230 
231 	unsigned int policy;
232 	struct update_util_data update_util;
233 	bool   update_util_set;
234 
235 	struct pstate_data pstate;
236 	struct vid_data vid;
237 
238 	u64	last_update;
239 	u64	last_sample_time;
240 	u64	aperf_mperf_shift;
241 	u64	prev_aperf;
242 	u64	prev_mperf;
243 	u64	prev_tsc;
244 	u64	prev_cummulative_iowait;
245 	struct sample sample;
246 	int32_t	min_perf_ratio;
247 	int32_t	max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 	struct acpi_processor_performance acpi_perf_data;
250 	bool valid_pss_table;
251 #endif
252 	unsigned int iowait_boost;
253 	s16 epp_powersave;
254 	s16 epp_policy;
255 	s16 epp_default;
256 	s16 epp_saved;
257 };
258 
259 static struct cpudata **all_cpu_data;
260 
261 /**
262  * struct pstate_funcs - Per CPU model specific callbacks
263  * @get_max:		Callback to get maximum non turbo effective P state
264  * @get_max_physical:	Callback to get maximum non turbo physical P state
265  * @get_min:		Callback to get minimum P state
266  * @get_turbo:		Callback to get turbo P state
267  * @get_scaling:	Callback to get frequency scaling factor
268  * @get_val:		Callback to convert P state to actual MSR write value
269  * @get_vid:		Callback to get VID data for Atom platforms
270  *
271  * Core and Atom CPU models have different way to get P State limits. This
272  * structure is used to store those callbacks.
273  */
274 struct pstate_funcs {
275 	int (*get_max)(void);
276 	int (*get_max_physical)(void);
277 	int (*get_min)(void);
278 	int (*get_turbo)(void);
279 	int (*get_scaling)(void);
280 	int (*get_aperf_mperf_shift)(void);
281 	u64 (*get_val)(struct cpudata*, int pstate);
282 	void (*get_vid)(struct cpudata *);
283 };
284 
285 static struct pstate_funcs pstate_funcs __read_mostly;
286 
287 static int hwp_active __read_mostly;
288 static bool per_cpu_limits __read_mostly;
289 
290 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
291 
292 #ifdef CONFIG_ACPI
293 static bool acpi_ppc;
294 #endif
295 
296 static struct global_params global;
297 
298 static DEFINE_MUTEX(intel_pstate_driver_lock);
299 static DEFINE_MUTEX(intel_pstate_limits_lock);
300 
301 #ifdef CONFIG_ACPI
302 
303 static bool intel_pstate_get_ppc_enable_status(void)
304 {
305 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
306 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
307 		return true;
308 
309 	return acpi_ppc;
310 }
311 
312 #ifdef CONFIG_ACPI_CPPC_LIB
313 
314 /* The work item is needed to avoid CPU hotplug locking issues */
315 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
316 {
317 	sched_set_itmt_support();
318 }
319 
320 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
321 
322 static void intel_pstate_set_itmt_prio(int cpu)
323 {
324 	struct cppc_perf_caps cppc_perf;
325 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
326 	int ret;
327 
328 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
329 	if (ret)
330 		return;
331 
332 	/*
333 	 * The priorities can be set regardless of whether or not
334 	 * sched_set_itmt_support(true) has been called and it is valid to
335 	 * update them at any time after it has been called.
336 	 */
337 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
338 
339 	if (max_highest_perf <= min_highest_perf) {
340 		if (cppc_perf.highest_perf > max_highest_perf)
341 			max_highest_perf = cppc_perf.highest_perf;
342 
343 		if (cppc_perf.highest_perf < min_highest_perf)
344 			min_highest_perf = cppc_perf.highest_perf;
345 
346 		if (max_highest_perf > min_highest_perf) {
347 			/*
348 			 * This code can be run during CPU online under the
349 			 * CPU hotplug locks, so sched_set_itmt_support()
350 			 * cannot be called from here.  Queue up a work item
351 			 * to invoke it.
352 			 */
353 			schedule_work(&sched_itmt_work);
354 		}
355 	}
356 }
357 #else
358 static void intel_pstate_set_itmt_prio(int cpu)
359 {
360 }
361 #endif
362 
363 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
364 {
365 	struct cpudata *cpu;
366 	int ret;
367 	int i;
368 
369 	if (hwp_active) {
370 		intel_pstate_set_itmt_prio(policy->cpu);
371 		return;
372 	}
373 
374 	if (!intel_pstate_get_ppc_enable_status())
375 		return;
376 
377 	cpu = all_cpu_data[policy->cpu];
378 
379 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
380 						  policy->cpu);
381 	if (ret)
382 		return;
383 
384 	/*
385 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
386 	 * guarantee that the states returned by it map to the states in our
387 	 * list directly.
388 	 */
389 	if (cpu->acpi_perf_data.control_register.space_id !=
390 						ACPI_ADR_SPACE_FIXED_HARDWARE)
391 		goto err;
392 
393 	/*
394 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
395 	 * usual without taking _PSS into account
396 	 */
397 	if (cpu->acpi_perf_data.state_count < 2)
398 		goto err;
399 
400 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
401 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
402 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
403 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
404 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
405 			 (u32) cpu->acpi_perf_data.states[i].power,
406 			 (u32) cpu->acpi_perf_data.states[i].control);
407 	}
408 
409 	/*
410 	 * The _PSS table doesn't contain whole turbo frequency range.
411 	 * This just contains +1 MHZ above the max non turbo frequency,
412 	 * with control value corresponding to max turbo ratio. But
413 	 * when cpufreq set policy is called, it will call with this
414 	 * max frequency, which will cause a reduced performance as
415 	 * this driver uses real max turbo frequency as the max
416 	 * frequency. So correct this frequency in _PSS table to
417 	 * correct max turbo frequency based on the turbo state.
418 	 * Also need to convert to MHz as _PSS freq is in MHz.
419 	 */
420 	if (!global.turbo_disabled)
421 		cpu->acpi_perf_data.states[0].core_frequency =
422 					policy->cpuinfo.max_freq / 1000;
423 	cpu->valid_pss_table = true;
424 	pr_debug("_PPC limits will be enforced\n");
425 
426 	return;
427 
428  err:
429 	cpu->valid_pss_table = false;
430 	acpi_processor_unregister_performance(policy->cpu);
431 }
432 
433 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
434 {
435 	struct cpudata *cpu;
436 
437 	cpu = all_cpu_data[policy->cpu];
438 	if (!cpu->valid_pss_table)
439 		return;
440 
441 	acpi_processor_unregister_performance(policy->cpu);
442 }
443 #else
444 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
445 {
446 }
447 
448 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
449 {
450 }
451 #endif
452 
453 static inline void update_turbo_state(void)
454 {
455 	u64 misc_en;
456 	struct cpudata *cpu;
457 
458 	cpu = all_cpu_data[0];
459 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
460 	global.turbo_disabled =
461 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
462 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
463 }
464 
465 static int min_perf_pct_min(void)
466 {
467 	struct cpudata *cpu = all_cpu_data[0];
468 	int turbo_pstate = cpu->pstate.turbo_pstate;
469 
470 	return turbo_pstate ?
471 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
472 }
473 
474 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
475 {
476 	u64 epb;
477 	int ret;
478 
479 	if (!static_cpu_has(X86_FEATURE_EPB))
480 		return -ENXIO;
481 
482 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
483 	if (ret)
484 		return (s16)ret;
485 
486 	return (s16)(epb & 0x0f);
487 }
488 
489 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
490 {
491 	s16 epp;
492 
493 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
494 		/*
495 		 * When hwp_req_data is 0, means that caller didn't read
496 		 * MSR_HWP_REQUEST, so need to read and get EPP.
497 		 */
498 		if (!hwp_req_data) {
499 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
500 					    &hwp_req_data);
501 			if (epp)
502 				return epp;
503 		}
504 		epp = (hwp_req_data >> 24) & 0xff;
505 	} else {
506 		/* When there is no EPP present, HWP uses EPB settings */
507 		epp = intel_pstate_get_epb(cpu_data);
508 	}
509 
510 	return epp;
511 }
512 
513 static int intel_pstate_set_epb(int cpu, s16 pref)
514 {
515 	u64 epb;
516 	int ret;
517 
518 	if (!static_cpu_has(X86_FEATURE_EPB))
519 		return -ENXIO;
520 
521 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
522 	if (ret)
523 		return ret;
524 
525 	epb = (epb & ~0x0f) | pref;
526 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
527 
528 	return 0;
529 }
530 
531 /*
532  * EPP/EPB display strings corresponding to EPP index in the
533  * energy_perf_strings[]
534  *	index		String
535  *-------------------------------------
536  *	0		default
537  *	1		performance
538  *	2		balance_performance
539  *	3		balance_power
540  *	4		power
541  */
542 static const char * const energy_perf_strings[] = {
543 	"default",
544 	"performance",
545 	"balance_performance",
546 	"balance_power",
547 	"power",
548 	NULL
549 };
550 static const unsigned int epp_values[] = {
551 	HWP_EPP_PERFORMANCE,
552 	HWP_EPP_BALANCE_PERFORMANCE,
553 	HWP_EPP_BALANCE_POWERSAVE,
554 	HWP_EPP_POWERSAVE
555 };
556 
557 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
558 {
559 	s16 epp;
560 	int index = -EINVAL;
561 
562 	epp = intel_pstate_get_epp(cpu_data, 0);
563 	if (epp < 0)
564 		return epp;
565 
566 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
567 		if (epp == HWP_EPP_PERFORMANCE)
568 			return 1;
569 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
570 			return 2;
571 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
572 			return 3;
573 		else
574 			return 4;
575 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
576 		/*
577 		 * Range:
578 		 *	0x00-0x03	:	Performance
579 		 *	0x04-0x07	:	Balance performance
580 		 *	0x08-0x0B	:	Balance power
581 		 *	0x0C-0x0F	:	Power
582 		 * The EPB is a 4 bit value, but our ranges restrict the
583 		 * value which can be set. Here only using top two bits
584 		 * effectively.
585 		 */
586 		index = (epp >> 2) + 1;
587 	}
588 
589 	return index;
590 }
591 
592 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
593 					      int pref_index)
594 {
595 	int epp = -EINVAL;
596 	int ret;
597 
598 	if (!pref_index)
599 		epp = cpu_data->epp_default;
600 
601 	mutex_lock(&intel_pstate_limits_lock);
602 
603 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
604 		u64 value;
605 
606 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
607 		if (ret)
608 			goto return_pref;
609 
610 		value &= ~GENMASK_ULL(31, 24);
611 
612 		if (epp == -EINVAL)
613 			epp = epp_values[pref_index - 1];
614 
615 		value |= (u64)epp << 24;
616 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
617 	} else {
618 		if (epp == -EINVAL)
619 			epp = (pref_index - 1) << 2;
620 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
621 	}
622 return_pref:
623 	mutex_unlock(&intel_pstate_limits_lock);
624 
625 	return ret;
626 }
627 
628 static ssize_t show_energy_performance_available_preferences(
629 				struct cpufreq_policy *policy, char *buf)
630 {
631 	int i = 0;
632 	int ret = 0;
633 
634 	while (energy_perf_strings[i] != NULL)
635 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
636 
637 	ret += sprintf(&buf[ret], "\n");
638 
639 	return ret;
640 }
641 
642 cpufreq_freq_attr_ro(energy_performance_available_preferences);
643 
644 static ssize_t store_energy_performance_preference(
645 		struct cpufreq_policy *policy, const char *buf, size_t count)
646 {
647 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
648 	char str_preference[21];
649 	int ret, i = 0;
650 
651 	ret = sscanf(buf, "%20s", str_preference);
652 	if (ret != 1)
653 		return -EINVAL;
654 
655 	while (energy_perf_strings[i] != NULL) {
656 		if (!strcmp(str_preference, energy_perf_strings[i])) {
657 			intel_pstate_set_energy_pref_index(cpu_data, i);
658 			return count;
659 		}
660 		++i;
661 	}
662 
663 	return -EINVAL;
664 }
665 
666 static ssize_t show_energy_performance_preference(
667 				struct cpufreq_policy *policy, char *buf)
668 {
669 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
670 	int preference;
671 
672 	preference = intel_pstate_get_energy_pref_index(cpu_data);
673 	if (preference < 0)
674 		return preference;
675 
676 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
677 }
678 
679 cpufreq_freq_attr_rw(energy_performance_preference);
680 
681 static struct freq_attr *hwp_cpufreq_attrs[] = {
682 	&energy_performance_preference,
683 	&energy_performance_available_preferences,
684 	NULL,
685 };
686 
687 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
688 				     int *current_max)
689 {
690 	u64 cap;
691 
692 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
693 	if (global.no_turbo)
694 		*current_max = HWP_GUARANTEED_PERF(cap);
695 	else
696 		*current_max = HWP_HIGHEST_PERF(cap);
697 
698 	*phy_max = HWP_HIGHEST_PERF(cap);
699 }
700 
701 static void intel_pstate_hwp_set(unsigned int cpu)
702 {
703 	struct cpudata *cpu_data = all_cpu_data[cpu];
704 	int max, min;
705 	u64 value;
706 	s16 epp;
707 
708 	max = cpu_data->max_perf_ratio;
709 	min = cpu_data->min_perf_ratio;
710 
711 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
712 		min = max;
713 
714 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
715 
716 	value &= ~HWP_MIN_PERF(~0L);
717 	value |= HWP_MIN_PERF(min);
718 
719 	value &= ~HWP_MAX_PERF(~0L);
720 	value |= HWP_MAX_PERF(max);
721 
722 	if (cpu_data->epp_policy == cpu_data->policy)
723 		goto skip_epp;
724 
725 	cpu_data->epp_policy = cpu_data->policy;
726 
727 	if (cpu_data->epp_saved >= 0) {
728 		epp = cpu_data->epp_saved;
729 		cpu_data->epp_saved = -EINVAL;
730 		goto update_epp;
731 	}
732 
733 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
734 		epp = intel_pstate_get_epp(cpu_data, value);
735 		cpu_data->epp_powersave = epp;
736 		/* If EPP read was failed, then don't try to write */
737 		if (epp < 0)
738 			goto skip_epp;
739 
740 		epp = 0;
741 	} else {
742 		/* skip setting EPP, when saved value is invalid */
743 		if (cpu_data->epp_powersave < 0)
744 			goto skip_epp;
745 
746 		/*
747 		 * No need to restore EPP when it is not zero. This
748 		 * means:
749 		 *  - Policy is not changed
750 		 *  - user has manually changed
751 		 *  - Error reading EPB
752 		 */
753 		epp = intel_pstate_get_epp(cpu_data, value);
754 		if (epp)
755 			goto skip_epp;
756 
757 		epp = cpu_data->epp_powersave;
758 	}
759 update_epp:
760 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
761 		value &= ~GENMASK_ULL(31, 24);
762 		value |= (u64)epp << 24;
763 	} else {
764 		intel_pstate_set_epb(cpu, epp);
765 	}
766 skip_epp:
767 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
768 }
769 
770 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
771 {
772 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
773 
774 	if (!hwp_active)
775 		return 0;
776 
777 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
778 
779 	return 0;
780 }
781 
782 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
783 
784 static int intel_pstate_resume(struct cpufreq_policy *policy)
785 {
786 	if (!hwp_active)
787 		return 0;
788 
789 	mutex_lock(&intel_pstate_limits_lock);
790 
791 	if (policy->cpu == 0)
792 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
793 
794 	all_cpu_data[policy->cpu]->epp_policy = 0;
795 	intel_pstate_hwp_set(policy->cpu);
796 
797 	mutex_unlock(&intel_pstate_limits_lock);
798 
799 	return 0;
800 }
801 
802 static void intel_pstate_update_policies(void)
803 {
804 	int cpu;
805 
806 	for_each_possible_cpu(cpu)
807 		cpufreq_update_policy(cpu);
808 }
809 
810 /************************** sysfs begin ************************/
811 #define show_one(file_name, object)					\
812 	static ssize_t show_##file_name					\
813 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
814 	{								\
815 		return sprintf(buf, "%u\n", global.object);		\
816 	}
817 
818 static ssize_t intel_pstate_show_status(char *buf);
819 static int intel_pstate_update_status(const char *buf, size_t size);
820 
821 static ssize_t show_status(struct kobject *kobj,
822 			   struct attribute *attr, char *buf)
823 {
824 	ssize_t ret;
825 
826 	mutex_lock(&intel_pstate_driver_lock);
827 	ret = intel_pstate_show_status(buf);
828 	mutex_unlock(&intel_pstate_driver_lock);
829 
830 	return ret;
831 }
832 
833 static ssize_t store_status(struct kobject *a, struct attribute *b,
834 			    const char *buf, size_t count)
835 {
836 	char *p = memchr(buf, '\n', count);
837 	int ret;
838 
839 	mutex_lock(&intel_pstate_driver_lock);
840 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
841 	mutex_unlock(&intel_pstate_driver_lock);
842 
843 	return ret < 0 ? ret : count;
844 }
845 
846 static ssize_t show_turbo_pct(struct kobject *kobj,
847 				struct attribute *attr, char *buf)
848 {
849 	struct cpudata *cpu;
850 	int total, no_turbo, turbo_pct;
851 	uint32_t turbo_fp;
852 
853 	mutex_lock(&intel_pstate_driver_lock);
854 
855 	if (!intel_pstate_driver) {
856 		mutex_unlock(&intel_pstate_driver_lock);
857 		return -EAGAIN;
858 	}
859 
860 	cpu = all_cpu_data[0];
861 
862 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
863 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
864 	turbo_fp = div_fp(no_turbo, total);
865 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
866 
867 	mutex_unlock(&intel_pstate_driver_lock);
868 
869 	return sprintf(buf, "%u\n", turbo_pct);
870 }
871 
872 static ssize_t show_num_pstates(struct kobject *kobj,
873 				struct attribute *attr, char *buf)
874 {
875 	struct cpudata *cpu;
876 	int total;
877 
878 	mutex_lock(&intel_pstate_driver_lock);
879 
880 	if (!intel_pstate_driver) {
881 		mutex_unlock(&intel_pstate_driver_lock);
882 		return -EAGAIN;
883 	}
884 
885 	cpu = all_cpu_data[0];
886 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
887 
888 	mutex_unlock(&intel_pstate_driver_lock);
889 
890 	return sprintf(buf, "%u\n", total);
891 }
892 
893 static ssize_t show_no_turbo(struct kobject *kobj,
894 			     struct attribute *attr, char *buf)
895 {
896 	ssize_t ret;
897 
898 	mutex_lock(&intel_pstate_driver_lock);
899 
900 	if (!intel_pstate_driver) {
901 		mutex_unlock(&intel_pstate_driver_lock);
902 		return -EAGAIN;
903 	}
904 
905 	update_turbo_state();
906 	if (global.turbo_disabled)
907 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
908 	else
909 		ret = sprintf(buf, "%u\n", global.no_turbo);
910 
911 	mutex_unlock(&intel_pstate_driver_lock);
912 
913 	return ret;
914 }
915 
916 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
917 			      const char *buf, size_t count)
918 {
919 	unsigned int input;
920 	int ret;
921 
922 	ret = sscanf(buf, "%u", &input);
923 	if (ret != 1)
924 		return -EINVAL;
925 
926 	mutex_lock(&intel_pstate_driver_lock);
927 
928 	if (!intel_pstate_driver) {
929 		mutex_unlock(&intel_pstate_driver_lock);
930 		return -EAGAIN;
931 	}
932 
933 	mutex_lock(&intel_pstate_limits_lock);
934 
935 	update_turbo_state();
936 	if (global.turbo_disabled) {
937 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
938 		mutex_unlock(&intel_pstate_limits_lock);
939 		mutex_unlock(&intel_pstate_driver_lock);
940 		return -EPERM;
941 	}
942 
943 	global.no_turbo = clamp_t(int, input, 0, 1);
944 
945 	if (global.no_turbo) {
946 		struct cpudata *cpu = all_cpu_data[0];
947 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
948 
949 		/* Squash the global minimum into the permitted range. */
950 		if (global.min_perf_pct > pct)
951 			global.min_perf_pct = pct;
952 	}
953 
954 	mutex_unlock(&intel_pstate_limits_lock);
955 
956 	intel_pstate_update_policies();
957 
958 	mutex_unlock(&intel_pstate_driver_lock);
959 
960 	return count;
961 }
962 
963 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
964 				  const char *buf, size_t count)
965 {
966 	unsigned int input;
967 	int ret;
968 
969 	ret = sscanf(buf, "%u", &input);
970 	if (ret != 1)
971 		return -EINVAL;
972 
973 	mutex_lock(&intel_pstate_driver_lock);
974 
975 	if (!intel_pstate_driver) {
976 		mutex_unlock(&intel_pstate_driver_lock);
977 		return -EAGAIN;
978 	}
979 
980 	mutex_lock(&intel_pstate_limits_lock);
981 
982 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
983 
984 	mutex_unlock(&intel_pstate_limits_lock);
985 
986 	intel_pstate_update_policies();
987 
988 	mutex_unlock(&intel_pstate_driver_lock);
989 
990 	return count;
991 }
992 
993 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
994 				  const char *buf, size_t count)
995 {
996 	unsigned int input;
997 	int ret;
998 
999 	ret = sscanf(buf, "%u", &input);
1000 	if (ret != 1)
1001 		return -EINVAL;
1002 
1003 	mutex_lock(&intel_pstate_driver_lock);
1004 
1005 	if (!intel_pstate_driver) {
1006 		mutex_unlock(&intel_pstate_driver_lock);
1007 		return -EAGAIN;
1008 	}
1009 
1010 	mutex_lock(&intel_pstate_limits_lock);
1011 
1012 	global.min_perf_pct = clamp_t(int, input,
1013 				      min_perf_pct_min(), global.max_perf_pct);
1014 
1015 	mutex_unlock(&intel_pstate_limits_lock);
1016 
1017 	intel_pstate_update_policies();
1018 
1019 	mutex_unlock(&intel_pstate_driver_lock);
1020 
1021 	return count;
1022 }
1023 
1024 show_one(max_perf_pct, max_perf_pct);
1025 show_one(min_perf_pct, min_perf_pct);
1026 
1027 define_one_global_rw(status);
1028 define_one_global_rw(no_turbo);
1029 define_one_global_rw(max_perf_pct);
1030 define_one_global_rw(min_perf_pct);
1031 define_one_global_ro(turbo_pct);
1032 define_one_global_ro(num_pstates);
1033 
1034 static struct attribute *intel_pstate_attributes[] = {
1035 	&status.attr,
1036 	&no_turbo.attr,
1037 	&turbo_pct.attr,
1038 	&num_pstates.attr,
1039 	NULL
1040 };
1041 
1042 static const struct attribute_group intel_pstate_attr_group = {
1043 	.attrs = intel_pstate_attributes,
1044 };
1045 
1046 static void __init intel_pstate_sysfs_expose_params(void)
1047 {
1048 	struct kobject *intel_pstate_kobject;
1049 	int rc;
1050 
1051 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1052 						&cpu_subsys.dev_root->kobj);
1053 	if (WARN_ON(!intel_pstate_kobject))
1054 		return;
1055 
1056 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1057 	if (WARN_ON(rc))
1058 		return;
1059 
1060 	/*
1061 	 * If per cpu limits are enforced there are no global limits, so
1062 	 * return without creating max/min_perf_pct attributes
1063 	 */
1064 	if (per_cpu_limits)
1065 		return;
1066 
1067 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1068 	WARN_ON(rc);
1069 
1070 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1071 	WARN_ON(rc);
1072 
1073 }
1074 /************************** sysfs end ************************/
1075 
1076 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1077 {
1078 	/* First disable HWP notification interrupt as we don't process them */
1079 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1080 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1081 
1082 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1083 	cpudata->epp_policy = 0;
1084 	if (cpudata->epp_default == -EINVAL)
1085 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1086 }
1087 
1088 #define MSR_IA32_POWER_CTL_BIT_EE	19
1089 
1090 /* Disable energy efficiency optimization */
1091 static void intel_pstate_disable_ee(int cpu)
1092 {
1093 	u64 power_ctl;
1094 	int ret;
1095 
1096 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1097 	if (ret)
1098 		return;
1099 
1100 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1101 		pr_info("Disabling energy efficiency optimization\n");
1102 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1103 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1104 	}
1105 }
1106 
1107 static int atom_get_min_pstate(void)
1108 {
1109 	u64 value;
1110 
1111 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1112 	return (value >> 8) & 0x7F;
1113 }
1114 
1115 static int atom_get_max_pstate(void)
1116 {
1117 	u64 value;
1118 
1119 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1120 	return (value >> 16) & 0x7F;
1121 }
1122 
1123 static int atom_get_turbo_pstate(void)
1124 {
1125 	u64 value;
1126 
1127 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1128 	return value & 0x7F;
1129 }
1130 
1131 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1132 {
1133 	u64 val;
1134 	int32_t vid_fp;
1135 	u32 vid;
1136 
1137 	val = (u64)pstate << 8;
1138 	if (global.no_turbo && !global.turbo_disabled)
1139 		val |= (u64)1 << 32;
1140 
1141 	vid_fp = cpudata->vid.min + mul_fp(
1142 		int_tofp(pstate - cpudata->pstate.min_pstate),
1143 		cpudata->vid.ratio);
1144 
1145 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1146 	vid = ceiling_fp(vid_fp);
1147 
1148 	if (pstate > cpudata->pstate.max_pstate)
1149 		vid = cpudata->vid.turbo;
1150 
1151 	return val | vid;
1152 }
1153 
1154 static int silvermont_get_scaling(void)
1155 {
1156 	u64 value;
1157 	int i;
1158 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1159 	static int silvermont_freq_table[] = {
1160 		83300, 100000, 133300, 116700, 80000};
1161 
1162 	rdmsrl(MSR_FSB_FREQ, value);
1163 	i = value & 0x7;
1164 	WARN_ON(i > 4);
1165 
1166 	return silvermont_freq_table[i];
1167 }
1168 
1169 static int airmont_get_scaling(void)
1170 {
1171 	u64 value;
1172 	int i;
1173 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1174 	static int airmont_freq_table[] = {
1175 		83300, 100000, 133300, 116700, 80000,
1176 		93300, 90000, 88900, 87500};
1177 
1178 	rdmsrl(MSR_FSB_FREQ, value);
1179 	i = value & 0xF;
1180 	WARN_ON(i > 8);
1181 
1182 	return airmont_freq_table[i];
1183 }
1184 
1185 static void atom_get_vid(struct cpudata *cpudata)
1186 {
1187 	u64 value;
1188 
1189 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1190 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1191 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1192 	cpudata->vid.ratio = div_fp(
1193 		cpudata->vid.max - cpudata->vid.min,
1194 		int_tofp(cpudata->pstate.max_pstate -
1195 			cpudata->pstate.min_pstate));
1196 
1197 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1198 	cpudata->vid.turbo = value & 0x7f;
1199 }
1200 
1201 static int core_get_min_pstate(void)
1202 {
1203 	u64 value;
1204 
1205 	rdmsrl(MSR_PLATFORM_INFO, value);
1206 	return (value >> 40) & 0xFF;
1207 }
1208 
1209 static int core_get_max_pstate_physical(void)
1210 {
1211 	u64 value;
1212 
1213 	rdmsrl(MSR_PLATFORM_INFO, value);
1214 	return (value >> 8) & 0xFF;
1215 }
1216 
1217 static int core_get_tdp_ratio(u64 plat_info)
1218 {
1219 	/* Check how many TDP levels present */
1220 	if (plat_info & 0x600000000) {
1221 		u64 tdp_ctrl;
1222 		u64 tdp_ratio;
1223 		int tdp_msr;
1224 		int err;
1225 
1226 		/* Get the TDP level (0, 1, 2) to get ratios */
1227 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1228 		if (err)
1229 			return err;
1230 
1231 		/* TDP MSR are continuous starting at 0x648 */
1232 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1233 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1234 		if (err)
1235 			return err;
1236 
1237 		/* For level 1 and 2, bits[23:16] contain the ratio */
1238 		if (tdp_ctrl & 0x03)
1239 			tdp_ratio >>= 16;
1240 
1241 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1242 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1243 
1244 		return (int)tdp_ratio;
1245 	}
1246 
1247 	return -ENXIO;
1248 }
1249 
1250 static int core_get_max_pstate(void)
1251 {
1252 	u64 tar;
1253 	u64 plat_info;
1254 	int max_pstate;
1255 	int tdp_ratio;
1256 	int err;
1257 
1258 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1259 	max_pstate = (plat_info >> 8) & 0xFF;
1260 
1261 	tdp_ratio = core_get_tdp_ratio(plat_info);
1262 	if (tdp_ratio <= 0)
1263 		return max_pstate;
1264 
1265 	if (hwp_active) {
1266 		/* Turbo activation ratio is not used on HWP platforms */
1267 		return tdp_ratio;
1268 	}
1269 
1270 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1271 	if (!err) {
1272 		int tar_levels;
1273 
1274 		/* Do some sanity checking for safety */
1275 		tar_levels = tar & 0xff;
1276 		if (tdp_ratio - 1 == tar_levels) {
1277 			max_pstate = tar_levels;
1278 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1279 		}
1280 	}
1281 
1282 	return max_pstate;
1283 }
1284 
1285 static int core_get_turbo_pstate(void)
1286 {
1287 	u64 value;
1288 	int nont, ret;
1289 
1290 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1291 	nont = core_get_max_pstate();
1292 	ret = (value) & 255;
1293 	if (ret <= nont)
1294 		ret = nont;
1295 	return ret;
1296 }
1297 
1298 static inline int core_get_scaling(void)
1299 {
1300 	return 100000;
1301 }
1302 
1303 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1304 {
1305 	u64 val;
1306 
1307 	val = (u64)pstate << 8;
1308 	if (global.no_turbo && !global.turbo_disabled)
1309 		val |= (u64)1 << 32;
1310 
1311 	return val;
1312 }
1313 
1314 static int knl_get_aperf_mperf_shift(void)
1315 {
1316 	return 10;
1317 }
1318 
1319 static int knl_get_turbo_pstate(void)
1320 {
1321 	u64 value;
1322 	int nont, ret;
1323 
1324 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1325 	nont = core_get_max_pstate();
1326 	ret = (((value) >> 8) & 0xFF);
1327 	if (ret <= nont)
1328 		ret = nont;
1329 	return ret;
1330 }
1331 
1332 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1333 {
1334 	return global.no_turbo || global.turbo_disabled ?
1335 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1336 }
1337 
1338 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1339 {
1340 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1341 	cpu->pstate.current_pstate = pstate;
1342 	/*
1343 	 * Generally, there is no guarantee that this code will always run on
1344 	 * the CPU being updated, so force the register update to run on the
1345 	 * right CPU.
1346 	 */
1347 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1348 		      pstate_funcs.get_val(cpu, pstate));
1349 }
1350 
1351 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1352 {
1353 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1354 }
1355 
1356 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1357 {
1358 	int pstate;
1359 
1360 	update_turbo_state();
1361 	pstate = intel_pstate_get_base_pstate(cpu);
1362 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1363 	intel_pstate_set_pstate(cpu, pstate);
1364 }
1365 
1366 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1367 {
1368 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1369 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1370 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1371 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1372 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1373 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1374 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1375 
1376 	if (pstate_funcs.get_aperf_mperf_shift)
1377 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1378 
1379 	if (pstate_funcs.get_vid)
1380 		pstate_funcs.get_vid(cpu);
1381 
1382 	intel_pstate_set_min_pstate(cpu);
1383 }
1384 
1385 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1386 {
1387 	struct sample *sample = &cpu->sample;
1388 
1389 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1390 }
1391 
1392 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1393 {
1394 	u64 aperf, mperf;
1395 	unsigned long flags;
1396 	u64 tsc;
1397 
1398 	local_irq_save(flags);
1399 	rdmsrl(MSR_IA32_APERF, aperf);
1400 	rdmsrl(MSR_IA32_MPERF, mperf);
1401 	tsc = rdtsc();
1402 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1403 		local_irq_restore(flags);
1404 		return false;
1405 	}
1406 	local_irq_restore(flags);
1407 
1408 	cpu->last_sample_time = cpu->sample.time;
1409 	cpu->sample.time = time;
1410 	cpu->sample.aperf = aperf;
1411 	cpu->sample.mperf = mperf;
1412 	cpu->sample.tsc =  tsc;
1413 	cpu->sample.aperf -= cpu->prev_aperf;
1414 	cpu->sample.mperf -= cpu->prev_mperf;
1415 	cpu->sample.tsc -= cpu->prev_tsc;
1416 
1417 	cpu->prev_aperf = aperf;
1418 	cpu->prev_mperf = mperf;
1419 	cpu->prev_tsc = tsc;
1420 	/*
1421 	 * First time this function is invoked in a given cycle, all of the
1422 	 * previous sample data fields are equal to zero or stale and they must
1423 	 * be populated with meaningful numbers for things to work, so assume
1424 	 * that sample.time will always be reset before setting the utilization
1425 	 * update hook and make the caller skip the sample then.
1426 	 */
1427 	if (cpu->last_sample_time) {
1428 		intel_pstate_calc_avg_perf(cpu);
1429 		return true;
1430 	}
1431 	return false;
1432 }
1433 
1434 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1435 {
1436 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1437 }
1438 
1439 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1440 {
1441 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1442 			  cpu->sample.core_avg_perf);
1443 }
1444 
1445 static inline int32_t get_target_pstate(struct cpudata *cpu)
1446 {
1447 	struct sample *sample = &cpu->sample;
1448 	int32_t busy_frac, boost;
1449 	int target, avg_pstate;
1450 
1451 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1452 			   sample->tsc);
1453 
1454 	boost = cpu->iowait_boost;
1455 	cpu->iowait_boost >>= 1;
1456 
1457 	if (busy_frac < boost)
1458 		busy_frac = boost;
1459 
1460 	sample->busy_scaled = busy_frac * 100;
1461 
1462 	target = global.no_turbo || global.turbo_disabled ?
1463 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1464 	target += target >> 2;
1465 	target = mul_fp(target, busy_frac);
1466 	if (target < cpu->pstate.min_pstate)
1467 		target = cpu->pstate.min_pstate;
1468 
1469 	/*
1470 	 * If the average P-state during the previous cycle was higher than the
1471 	 * current target, add 50% of the difference to the target to reduce
1472 	 * possible performance oscillations and offset possible performance
1473 	 * loss related to moving the workload from one CPU to another within
1474 	 * a package/module.
1475 	 */
1476 	avg_pstate = get_avg_pstate(cpu);
1477 	if (avg_pstate > target)
1478 		target += (avg_pstate - target) >> 1;
1479 
1480 	return target;
1481 }
1482 
1483 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1484 {
1485 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1486 	int min_pstate;
1487 
1488 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1489 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1490 	return clamp_t(int, pstate, min_pstate, max_pstate);
1491 }
1492 
1493 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1494 {
1495 	if (pstate == cpu->pstate.current_pstate)
1496 		return;
1497 
1498 	cpu->pstate.current_pstate = pstate;
1499 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1500 }
1501 
1502 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1503 {
1504 	int from = cpu->pstate.current_pstate;
1505 	struct sample *sample;
1506 	int target_pstate;
1507 
1508 	update_turbo_state();
1509 
1510 	target_pstate = get_target_pstate(cpu);
1511 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1512 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1513 	intel_pstate_update_pstate(cpu, target_pstate);
1514 
1515 	sample = &cpu->sample;
1516 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1517 		fp_toint(sample->busy_scaled),
1518 		from,
1519 		cpu->pstate.current_pstate,
1520 		sample->mperf,
1521 		sample->aperf,
1522 		sample->tsc,
1523 		get_avg_frequency(cpu),
1524 		fp_toint(cpu->iowait_boost * 100));
1525 }
1526 
1527 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1528 				     unsigned int flags)
1529 {
1530 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1531 	u64 delta_ns;
1532 
1533 	/* Don't allow remote callbacks */
1534 	if (smp_processor_id() != cpu->cpu)
1535 		return;
1536 
1537 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1538 		cpu->iowait_boost = int_tofp(1);
1539 		cpu->last_update = time;
1540 		/*
1541 		 * The last time the busy was 100% so P-state was max anyway
1542 		 * so avoid overhead of computation.
1543 		 */
1544 		if (fp_toint(cpu->sample.busy_scaled) == 100)
1545 			return;
1546 
1547 		goto set_pstate;
1548 	} else if (cpu->iowait_boost) {
1549 		/* Clear iowait_boost if the CPU may have been idle. */
1550 		delta_ns = time - cpu->last_update;
1551 		if (delta_ns > TICK_NSEC)
1552 			cpu->iowait_boost = 0;
1553 	}
1554 	cpu->last_update = time;
1555 	delta_ns = time - cpu->sample.time;
1556 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1557 		return;
1558 
1559 set_pstate:
1560 	if (intel_pstate_sample(cpu, time))
1561 		intel_pstate_adjust_pstate(cpu);
1562 }
1563 
1564 static struct pstate_funcs core_funcs = {
1565 	.get_max = core_get_max_pstate,
1566 	.get_max_physical = core_get_max_pstate_physical,
1567 	.get_min = core_get_min_pstate,
1568 	.get_turbo = core_get_turbo_pstate,
1569 	.get_scaling = core_get_scaling,
1570 	.get_val = core_get_val,
1571 };
1572 
1573 static const struct pstate_funcs silvermont_funcs = {
1574 	.get_max = atom_get_max_pstate,
1575 	.get_max_physical = atom_get_max_pstate,
1576 	.get_min = atom_get_min_pstate,
1577 	.get_turbo = atom_get_turbo_pstate,
1578 	.get_val = atom_get_val,
1579 	.get_scaling = silvermont_get_scaling,
1580 	.get_vid = atom_get_vid,
1581 };
1582 
1583 static const struct pstate_funcs airmont_funcs = {
1584 	.get_max = atom_get_max_pstate,
1585 	.get_max_physical = atom_get_max_pstate,
1586 	.get_min = atom_get_min_pstate,
1587 	.get_turbo = atom_get_turbo_pstate,
1588 	.get_val = atom_get_val,
1589 	.get_scaling = airmont_get_scaling,
1590 	.get_vid = atom_get_vid,
1591 };
1592 
1593 static const struct pstate_funcs knl_funcs = {
1594 	.get_max = core_get_max_pstate,
1595 	.get_max_physical = core_get_max_pstate_physical,
1596 	.get_min = core_get_min_pstate,
1597 	.get_turbo = knl_get_turbo_pstate,
1598 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1599 	.get_scaling = core_get_scaling,
1600 	.get_val = core_get_val,
1601 };
1602 
1603 #define ICPU(model, policy) \
1604 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1605 			(unsigned long)&policy }
1606 
1607 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1608 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1609 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1610 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1611 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1612 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1613 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1614 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1615 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1616 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1617 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1618 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1619 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1620 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1621 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1622 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1623 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1624 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1625 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1626 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1627 	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1628 	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1629 	{}
1630 };
1631 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1632 
1633 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1634 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1635 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1636 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1637 	{}
1638 };
1639 
1640 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1641 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1642 	{}
1643 };
1644 
1645 static int intel_pstate_init_cpu(unsigned int cpunum)
1646 {
1647 	struct cpudata *cpu;
1648 
1649 	cpu = all_cpu_data[cpunum];
1650 
1651 	if (!cpu) {
1652 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1653 		if (!cpu)
1654 			return -ENOMEM;
1655 
1656 		all_cpu_data[cpunum] = cpu;
1657 
1658 		cpu->epp_default = -EINVAL;
1659 		cpu->epp_powersave = -EINVAL;
1660 		cpu->epp_saved = -EINVAL;
1661 	}
1662 
1663 	cpu = all_cpu_data[cpunum];
1664 
1665 	cpu->cpu = cpunum;
1666 
1667 	if (hwp_active) {
1668 		const struct x86_cpu_id *id;
1669 
1670 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1671 		if (id)
1672 			intel_pstate_disable_ee(cpunum);
1673 
1674 		intel_pstate_hwp_enable(cpu);
1675 	}
1676 
1677 	intel_pstate_get_cpu_pstates(cpu);
1678 
1679 	pr_debug("controlling: cpu %d\n", cpunum);
1680 
1681 	return 0;
1682 }
1683 
1684 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1685 {
1686 	struct cpudata *cpu = all_cpu_data[cpu_num];
1687 
1688 	if (hwp_active)
1689 		return;
1690 
1691 	if (cpu->update_util_set)
1692 		return;
1693 
1694 	/* Prevent intel_pstate_update_util() from using stale data. */
1695 	cpu->sample.time = 0;
1696 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1697 				     intel_pstate_update_util);
1698 	cpu->update_util_set = true;
1699 }
1700 
1701 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1702 {
1703 	struct cpudata *cpu_data = all_cpu_data[cpu];
1704 
1705 	if (!cpu_data->update_util_set)
1706 		return;
1707 
1708 	cpufreq_remove_update_util_hook(cpu);
1709 	cpu_data->update_util_set = false;
1710 	synchronize_sched();
1711 }
1712 
1713 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1714 {
1715 	return global.turbo_disabled || global.no_turbo ?
1716 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1717 }
1718 
1719 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1720 					    struct cpudata *cpu)
1721 {
1722 	int max_freq = intel_pstate_get_max_freq(cpu);
1723 	int32_t max_policy_perf, min_policy_perf;
1724 	int max_state, turbo_max;
1725 
1726 	/*
1727 	 * HWP needs some special consideration, because on BDX the
1728 	 * HWP_REQUEST uses abstract value to represent performance
1729 	 * rather than pure ratios.
1730 	 */
1731 	if (hwp_active) {
1732 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1733 	} else {
1734 		max_state = intel_pstate_get_base_pstate(cpu);
1735 		turbo_max = cpu->pstate.turbo_pstate;
1736 	}
1737 
1738 	max_policy_perf = max_state * policy->max / max_freq;
1739 	if (policy->max == policy->min) {
1740 		min_policy_perf = max_policy_perf;
1741 	} else {
1742 		min_policy_perf = max_state * policy->min / max_freq;
1743 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1744 					  0, max_policy_perf);
1745 	}
1746 
1747 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1748 		 policy->cpu, max_state,
1749 		 min_policy_perf, max_policy_perf);
1750 
1751 	/* Normalize user input to [min_perf, max_perf] */
1752 	if (per_cpu_limits) {
1753 		cpu->min_perf_ratio = min_policy_perf;
1754 		cpu->max_perf_ratio = max_policy_perf;
1755 	} else {
1756 		int32_t global_min, global_max;
1757 
1758 		/* Global limits are in percent of the maximum turbo P-state. */
1759 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1760 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1761 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1762 
1763 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1764 			 global_min, global_max);
1765 
1766 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1767 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1768 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
1769 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1770 
1771 		/* Make sure min_perf <= max_perf */
1772 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1773 					  cpu->max_perf_ratio);
1774 
1775 	}
1776 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1777 		 cpu->max_perf_ratio,
1778 		 cpu->min_perf_ratio);
1779 }
1780 
1781 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1782 {
1783 	struct cpudata *cpu;
1784 
1785 	if (!policy->cpuinfo.max_freq)
1786 		return -ENODEV;
1787 
1788 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1789 		 policy->cpuinfo.max_freq, policy->max);
1790 
1791 	cpu = all_cpu_data[policy->cpu];
1792 	cpu->policy = policy->policy;
1793 
1794 	mutex_lock(&intel_pstate_limits_lock);
1795 
1796 	intel_pstate_update_perf_limits(policy, cpu);
1797 
1798 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1799 		/*
1800 		 * NOHZ_FULL CPUs need this as the governor callback may not
1801 		 * be invoked on them.
1802 		 */
1803 		intel_pstate_clear_update_util_hook(policy->cpu);
1804 		intel_pstate_max_within_limits(cpu);
1805 	} else {
1806 		intel_pstate_set_update_util_hook(policy->cpu);
1807 	}
1808 
1809 	if (hwp_active)
1810 		intel_pstate_hwp_set(policy->cpu);
1811 
1812 	mutex_unlock(&intel_pstate_limits_lock);
1813 
1814 	return 0;
1815 }
1816 
1817 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1818 					 struct cpudata *cpu)
1819 {
1820 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1821 	    policy->max < policy->cpuinfo.max_freq &&
1822 	    policy->max > cpu->pstate.max_freq) {
1823 		pr_debug("policy->max > max non turbo frequency\n");
1824 		policy->max = policy->cpuinfo.max_freq;
1825 	}
1826 }
1827 
1828 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1829 {
1830 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1831 
1832 	update_turbo_state();
1833 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1834 				     intel_pstate_get_max_freq(cpu));
1835 
1836 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1837 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1838 		return -EINVAL;
1839 
1840 	intel_pstate_adjust_policy_max(policy, cpu);
1841 
1842 	return 0;
1843 }
1844 
1845 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1846 {
1847 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1848 }
1849 
1850 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1851 {
1852 	pr_debug("CPU %d exiting\n", policy->cpu);
1853 
1854 	intel_pstate_clear_update_util_hook(policy->cpu);
1855 	if (hwp_active)
1856 		intel_pstate_hwp_save_state(policy);
1857 	else
1858 		intel_cpufreq_stop_cpu(policy);
1859 }
1860 
1861 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1862 {
1863 	intel_pstate_exit_perf_limits(policy);
1864 
1865 	policy->fast_switch_possible = false;
1866 
1867 	return 0;
1868 }
1869 
1870 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1871 {
1872 	struct cpudata *cpu;
1873 	int rc;
1874 
1875 	rc = intel_pstate_init_cpu(policy->cpu);
1876 	if (rc)
1877 		return rc;
1878 
1879 	cpu = all_cpu_data[policy->cpu];
1880 
1881 	cpu->max_perf_ratio = 0xFF;
1882 	cpu->min_perf_ratio = 0;
1883 
1884 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1885 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1886 
1887 	/* cpuinfo and default policy values */
1888 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1889 	update_turbo_state();
1890 	policy->cpuinfo.max_freq = global.turbo_disabled ?
1891 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1892 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1893 
1894 	intel_pstate_init_acpi_perf_limits(policy);
1895 
1896 	policy->fast_switch_possible = true;
1897 
1898 	return 0;
1899 }
1900 
1901 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1902 {
1903 	int ret = __intel_pstate_cpu_init(policy);
1904 
1905 	if (ret)
1906 		return ret;
1907 
1908 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1909 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1910 	else
1911 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1912 
1913 	return 0;
1914 }
1915 
1916 static struct cpufreq_driver intel_pstate = {
1917 	.flags		= CPUFREQ_CONST_LOOPS,
1918 	.verify		= intel_pstate_verify_policy,
1919 	.setpolicy	= intel_pstate_set_policy,
1920 	.suspend	= intel_pstate_hwp_save_state,
1921 	.resume		= intel_pstate_resume,
1922 	.init		= intel_pstate_cpu_init,
1923 	.exit		= intel_pstate_cpu_exit,
1924 	.stop_cpu	= intel_pstate_stop_cpu,
1925 	.name		= "intel_pstate",
1926 };
1927 
1928 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1929 {
1930 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1931 
1932 	update_turbo_state();
1933 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1934 				     intel_pstate_get_max_freq(cpu));
1935 
1936 	intel_pstate_adjust_policy_max(policy, cpu);
1937 
1938 	intel_pstate_update_perf_limits(policy, cpu);
1939 
1940 	return 0;
1941 }
1942 
1943 static int intel_cpufreq_target(struct cpufreq_policy *policy,
1944 				unsigned int target_freq,
1945 				unsigned int relation)
1946 {
1947 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1948 	struct cpufreq_freqs freqs;
1949 	int target_pstate;
1950 
1951 	update_turbo_state();
1952 
1953 	freqs.old = policy->cur;
1954 	freqs.new = target_freq;
1955 
1956 	cpufreq_freq_transition_begin(policy, &freqs);
1957 	switch (relation) {
1958 	case CPUFREQ_RELATION_L:
1959 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1960 		break;
1961 	case CPUFREQ_RELATION_H:
1962 		target_pstate = freqs.new / cpu->pstate.scaling;
1963 		break;
1964 	default:
1965 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1966 		break;
1967 	}
1968 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1969 	if (target_pstate != cpu->pstate.current_pstate) {
1970 		cpu->pstate.current_pstate = target_pstate;
1971 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1972 			      pstate_funcs.get_val(cpu, target_pstate));
1973 	}
1974 	freqs.new = target_pstate * cpu->pstate.scaling;
1975 	cpufreq_freq_transition_end(policy, &freqs, false);
1976 
1977 	return 0;
1978 }
1979 
1980 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1981 					      unsigned int target_freq)
1982 {
1983 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1984 	int target_pstate;
1985 
1986 	update_turbo_state();
1987 
1988 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1989 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1990 	intel_pstate_update_pstate(cpu, target_pstate);
1991 	return target_pstate * cpu->pstate.scaling;
1992 }
1993 
1994 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1995 {
1996 	int ret = __intel_pstate_cpu_init(policy);
1997 
1998 	if (ret)
1999 		return ret;
2000 
2001 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2002 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2003 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2004 	policy->cur = policy->cpuinfo.min_freq;
2005 
2006 	return 0;
2007 }
2008 
2009 static struct cpufreq_driver intel_cpufreq = {
2010 	.flags		= CPUFREQ_CONST_LOOPS,
2011 	.verify		= intel_cpufreq_verify_policy,
2012 	.target		= intel_cpufreq_target,
2013 	.fast_switch	= intel_cpufreq_fast_switch,
2014 	.init		= intel_cpufreq_cpu_init,
2015 	.exit		= intel_pstate_cpu_exit,
2016 	.stop_cpu	= intel_cpufreq_stop_cpu,
2017 	.name		= "intel_cpufreq",
2018 };
2019 
2020 static struct cpufreq_driver *default_driver = &intel_pstate;
2021 
2022 static void intel_pstate_driver_cleanup(void)
2023 {
2024 	unsigned int cpu;
2025 
2026 	get_online_cpus();
2027 	for_each_online_cpu(cpu) {
2028 		if (all_cpu_data[cpu]) {
2029 			if (intel_pstate_driver == &intel_pstate)
2030 				intel_pstate_clear_update_util_hook(cpu);
2031 
2032 			kfree(all_cpu_data[cpu]);
2033 			all_cpu_data[cpu] = NULL;
2034 		}
2035 	}
2036 	put_online_cpus();
2037 	intel_pstate_driver = NULL;
2038 }
2039 
2040 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2041 {
2042 	int ret;
2043 
2044 	memset(&global, 0, sizeof(global));
2045 	global.max_perf_pct = 100;
2046 
2047 	intel_pstate_driver = driver;
2048 	ret = cpufreq_register_driver(intel_pstate_driver);
2049 	if (ret) {
2050 		intel_pstate_driver_cleanup();
2051 		return ret;
2052 	}
2053 
2054 	global.min_perf_pct = min_perf_pct_min();
2055 
2056 	return 0;
2057 }
2058 
2059 static int intel_pstate_unregister_driver(void)
2060 {
2061 	if (hwp_active)
2062 		return -EBUSY;
2063 
2064 	cpufreq_unregister_driver(intel_pstate_driver);
2065 	intel_pstate_driver_cleanup();
2066 
2067 	return 0;
2068 }
2069 
2070 static ssize_t intel_pstate_show_status(char *buf)
2071 {
2072 	if (!intel_pstate_driver)
2073 		return sprintf(buf, "off\n");
2074 
2075 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2076 					"active" : "passive");
2077 }
2078 
2079 static int intel_pstate_update_status(const char *buf, size_t size)
2080 {
2081 	int ret;
2082 
2083 	if (size == 3 && !strncmp(buf, "off", size))
2084 		return intel_pstate_driver ?
2085 			intel_pstate_unregister_driver() : -EINVAL;
2086 
2087 	if (size == 6 && !strncmp(buf, "active", size)) {
2088 		if (intel_pstate_driver) {
2089 			if (intel_pstate_driver == &intel_pstate)
2090 				return 0;
2091 
2092 			ret = intel_pstate_unregister_driver();
2093 			if (ret)
2094 				return ret;
2095 		}
2096 
2097 		return intel_pstate_register_driver(&intel_pstate);
2098 	}
2099 
2100 	if (size == 7 && !strncmp(buf, "passive", size)) {
2101 		if (intel_pstate_driver) {
2102 			if (intel_pstate_driver == &intel_cpufreq)
2103 				return 0;
2104 
2105 			ret = intel_pstate_unregister_driver();
2106 			if (ret)
2107 				return ret;
2108 		}
2109 
2110 		return intel_pstate_register_driver(&intel_cpufreq);
2111 	}
2112 
2113 	return -EINVAL;
2114 }
2115 
2116 static int no_load __initdata;
2117 static int no_hwp __initdata;
2118 static int hwp_only __initdata;
2119 static unsigned int force_load __initdata;
2120 
2121 static int __init intel_pstate_msrs_not_valid(void)
2122 {
2123 	if (!pstate_funcs.get_max() ||
2124 	    !pstate_funcs.get_min() ||
2125 	    !pstate_funcs.get_turbo())
2126 		return -ENODEV;
2127 
2128 	return 0;
2129 }
2130 
2131 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2132 {
2133 	pstate_funcs.get_max   = funcs->get_max;
2134 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2135 	pstate_funcs.get_min   = funcs->get_min;
2136 	pstate_funcs.get_turbo = funcs->get_turbo;
2137 	pstate_funcs.get_scaling = funcs->get_scaling;
2138 	pstate_funcs.get_val   = funcs->get_val;
2139 	pstate_funcs.get_vid   = funcs->get_vid;
2140 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2141 }
2142 
2143 #ifdef CONFIG_ACPI
2144 
2145 static bool __init intel_pstate_no_acpi_pss(void)
2146 {
2147 	int i;
2148 
2149 	for_each_possible_cpu(i) {
2150 		acpi_status status;
2151 		union acpi_object *pss;
2152 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2153 		struct acpi_processor *pr = per_cpu(processors, i);
2154 
2155 		if (!pr)
2156 			continue;
2157 
2158 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2159 		if (ACPI_FAILURE(status))
2160 			continue;
2161 
2162 		pss = buffer.pointer;
2163 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2164 			kfree(pss);
2165 			return false;
2166 		}
2167 
2168 		kfree(pss);
2169 	}
2170 
2171 	return true;
2172 }
2173 
2174 static bool __init intel_pstate_has_acpi_ppc(void)
2175 {
2176 	int i;
2177 
2178 	for_each_possible_cpu(i) {
2179 		struct acpi_processor *pr = per_cpu(processors, i);
2180 
2181 		if (!pr)
2182 			continue;
2183 		if (acpi_has_method(pr->handle, "_PPC"))
2184 			return true;
2185 	}
2186 	return false;
2187 }
2188 
2189 enum {
2190 	PSS,
2191 	PPC,
2192 };
2193 
2194 /* Hardware vendor-specific info that has its own power management modes */
2195 static struct acpi_platform_list plat_info[] __initdata = {
2196 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2197 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2198 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2199 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2200 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2201 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2202 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2203 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2204 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2205 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2206 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2207 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2208 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2209 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2210 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2211 	{ } /* End */
2212 };
2213 
2214 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2215 {
2216 	const struct x86_cpu_id *id;
2217 	u64 misc_pwr;
2218 	int idx;
2219 
2220 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2221 	if (id) {
2222 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2223 		if ( misc_pwr & (1 << 8))
2224 			return true;
2225 	}
2226 
2227 	idx = acpi_match_platform_list(plat_info);
2228 	if (idx < 0)
2229 		return false;
2230 
2231 	switch (plat_info[idx].data) {
2232 	case PSS:
2233 		return intel_pstate_no_acpi_pss();
2234 	case PPC:
2235 		return intel_pstate_has_acpi_ppc() && !force_load;
2236 	}
2237 
2238 	return false;
2239 }
2240 
2241 static void intel_pstate_request_control_from_smm(void)
2242 {
2243 	/*
2244 	 * It may be unsafe to request P-states control from SMM if _PPC support
2245 	 * has not been enabled.
2246 	 */
2247 	if (acpi_ppc)
2248 		acpi_processor_pstate_control();
2249 }
2250 #else /* CONFIG_ACPI not enabled */
2251 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2252 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2253 static inline void intel_pstate_request_control_from_smm(void) {}
2254 #endif /* CONFIG_ACPI */
2255 
2256 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2257 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2258 	{}
2259 };
2260 
2261 static int __init intel_pstate_init(void)
2262 {
2263 	int rc;
2264 
2265 	if (no_load)
2266 		return -ENODEV;
2267 
2268 	if (x86_match_cpu(hwp_support_ids)) {
2269 		copy_cpu_funcs(&core_funcs);
2270 		if (!no_hwp) {
2271 			hwp_active++;
2272 			intel_pstate.attr = hwp_cpufreq_attrs;
2273 			goto hwp_cpu_matched;
2274 		}
2275 	} else {
2276 		const struct x86_cpu_id *id;
2277 
2278 		id = x86_match_cpu(intel_pstate_cpu_ids);
2279 		if (!id)
2280 			return -ENODEV;
2281 
2282 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2283 	}
2284 
2285 	if (intel_pstate_msrs_not_valid())
2286 		return -ENODEV;
2287 
2288 hwp_cpu_matched:
2289 	/*
2290 	 * The Intel pstate driver will be ignored if the platform
2291 	 * firmware has its own power management modes.
2292 	 */
2293 	if (intel_pstate_platform_pwr_mgmt_exists())
2294 		return -ENODEV;
2295 
2296 	if (!hwp_active && hwp_only)
2297 		return -ENOTSUPP;
2298 
2299 	pr_info("Intel P-state driver initializing\n");
2300 
2301 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2302 	if (!all_cpu_data)
2303 		return -ENOMEM;
2304 
2305 	intel_pstate_request_control_from_smm();
2306 
2307 	intel_pstate_sysfs_expose_params();
2308 
2309 	mutex_lock(&intel_pstate_driver_lock);
2310 	rc = intel_pstate_register_driver(default_driver);
2311 	mutex_unlock(&intel_pstate_driver_lock);
2312 	if (rc)
2313 		return rc;
2314 
2315 	if (hwp_active)
2316 		pr_info("HWP enabled\n");
2317 
2318 	return 0;
2319 }
2320 device_initcall(intel_pstate_init);
2321 
2322 static int __init intel_pstate_setup(char *str)
2323 {
2324 	if (!str)
2325 		return -EINVAL;
2326 
2327 	if (!strcmp(str, "disable")) {
2328 		no_load = 1;
2329 	} else if (!strcmp(str, "passive")) {
2330 		pr_info("Passive mode enabled\n");
2331 		default_driver = &intel_cpufreq;
2332 		no_hwp = 1;
2333 	}
2334 	if (!strcmp(str, "no_hwp")) {
2335 		pr_info("HWP disabled\n");
2336 		no_hwp = 1;
2337 	}
2338 	if (!strcmp(str, "force"))
2339 		force_load = 1;
2340 	if (!strcmp(str, "hwp_only"))
2341 		hwp_only = 1;
2342 	if (!strcmp(str, "per_cpu_perf_limits"))
2343 		per_cpu_limits = true;
2344 
2345 #ifdef CONFIG_ACPI
2346 	if (!strcmp(str, "support_acpi_ppc"))
2347 		acpi_ppc = true;
2348 #endif
2349 
2350 	return 0;
2351 }
2352 early_param("intel_pstate", intel_pstate_setup);
2353 
2354 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2355 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2356 MODULE_LICENSE("GPL");
2357