1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/sysfs.h> 23 #include <linux/types.h> 24 #include <linux/fs.h> 25 #include <linux/acpi.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pm_qos.h> 28 #include <trace/events/power.h> 29 30 #include <asm/cpu.h> 31 #include <asm/div64.h> 32 #include <asm/msr.h> 33 #include <asm/cpu_device_id.h> 34 #include <asm/cpufeature.h> 35 #include <asm/intel-family.h> 36 #include "../drivers/thermal/intel/thermal_interrupt.h" 37 38 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 39 40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 43 44 #ifdef CONFIG_ACPI 45 #include <acpi/processor.h> 46 #include <acpi/cppc_acpi.h> 47 #endif 48 49 #define FRAC_BITS 8 50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 51 #define fp_toint(X) ((X) >> FRAC_BITS) 52 53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 54 55 #define EXT_BITS 6 56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 59 60 static inline int32_t mul_fp(int32_t x, int32_t y) 61 { 62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 63 } 64 65 static inline int32_t div_fp(s64 x, s64 y) 66 { 67 return div64_s64((int64_t)x << FRAC_BITS, y); 68 } 69 70 static inline int ceiling_fp(int32_t x) 71 { 72 int mask, ret; 73 74 ret = fp_toint(x); 75 mask = (1 << FRAC_BITS) - 1; 76 if (x & mask) 77 ret += 1; 78 return ret; 79 } 80 81 static inline u64 mul_ext_fp(u64 x, u64 y) 82 { 83 return (x * y) >> EXT_FRAC_BITS; 84 } 85 86 static inline u64 div_ext_fp(u64 x, u64 y) 87 { 88 return div64_u64(x << EXT_FRAC_BITS, y); 89 } 90 91 /** 92 * struct sample - Store performance sample 93 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 94 * performance during last sample period 95 * @busy_scaled: Scaled busy value which is used to calculate next 96 * P state. This can be different than core_avg_perf 97 * to account for cpu idle period 98 * @aperf: Difference of actual performance frequency clock count 99 * read from APERF MSR between last and current sample 100 * @mperf: Difference of maximum performance frequency clock count 101 * read from MPERF MSR between last and current sample 102 * @tsc: Difference of time stamp counter between last and 103 * current sample 104 * @time: Current time from scheduler 105 * 106 * This structure is used in the cpudata structure to store performance sample 107 * data for choosing next P State. 108 */ 109 struct sample { 110 int32_t core_avg_perf; 111 int32_t busy_scaled; 112 u64 aperf; 113 u64 mperf; 114 u64 tsc; 115 u64 time; 116 }; 117 118 /** 119 * struct pstate_data - Store P state data 120 * @current_pstate: Current requested P state 121 * @min_pstate: Min P state possible for this platform 122 * @max_pstate: Max P state possible for this platform 123 * @max_pstate_physical:This is physical Max P state for a processor 124 * This can be higher than the max_pstate which can 125 * be limited by platform thermal design power limits 126 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor 127 * @scaling: Scaling factor between performance and frequency 128 * @turbo_pstate: Max Turbo P state possible for this platform 129 * @min_freq: @min_pstate frequency in cpufreq units 130 * @max_freq: @max_pstate frequency in cpufreq units 131 * @turbo_freq: @turbo_pstate frequency in cpufreq units 132 * 133 * Stores the per cpu model P state limits and current P state. 134 */ 135 struct pstate_data { 136 int current_pstate; 137 int min_pstate; 138 int max_pstate; 139 int max_pstate_physical; 140 int perf_ctl_scaling; 141 int scaling; 142 int turbo_pstate; 143 unsigned int min_freq; 144 unsigned int max_freq; 145 unsigned int turbo_freq; 146 }; 147 148 /** 149 * struct vid_data - Stores voltage information data 150 * @min: VID data for this platform corresponding to 151 * the lowest P state 152 * @max: VID data corresponding to the highest P State. 153 * @turbo: VID data for turbo P state 154 * @ratio: Ratio of (vid max - vid min) / 155 * (max P state - Min P State) 156 * 157 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 158 * This data is used in Atom platforms, where in addition to target P state, 159 * the voltage data needs to be specified to select next P State. 160 */ 161 struct vid_data { 162 int min; 163 int max; 164 int turbo; 165 int32_t ratio; 166 }; 167 168 /** 169 * struct global_params - Global parameters, mostly tunable via sysfs. 170 * @no_turbo: Whether or not to use turbo P-states. 171 * @turbo_disabled: Whether or not turbo P-states are available at all, 172 * based on the MSR_IA32_MISC_ENABLE value and whether or 173 * not the maximum reported turbo P-state is different from 174 * the maximum reported non-turbo one. 175 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq. 176 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 177 * P-state capacity. 178 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 179 * P-state capacity. 180 */ 181 struct global_params { 182 bool no_turbo; 183 bool turbo_disabled; 184 bool turbo_disabled_mf; 185 int max_perf_pct; 186 int min_perf_pct; 187 }; 188 189 /** 190 * struct cpudata - Per CPU instance data storage 191 * @cpu: CPU number for this instance data 192 * @policy: CPUFreq policy value 193 * @update_util: CPUFreq utility callback information 194 * @update_util_set: CPUFreq utility callback is set 195 * @iowait_boost: iowait-related boost fraction 196 * @last_update: Time of the last update. 197 * @pstate: Stores P state limits for this CPU 198 * @vid: Stores VID limits for this CPU 199 * @last_sample_time: Last Sample time 200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 201 * @prev_aperf: Last APERF value read from APERF MSR 202 * @prev_mperf: Last MPERF value read from MPERF MSR 203 * @prev_tsc: Last timestamp counter (TSC) value 204 * @prev_cummulative_iowait: IO Wait time difference from last and 205 * current sample 206 * @sample: Storage for storing last Sample data 207 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 208 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 209 * @acpi_perf_data: Stores ACPI perf information read from _PSS 210 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 211 * @epp_powersave: Last saved HWP energy performance preference 212 * (EPP) or energy performance bias (EPB), 213 * when policy switched to performance 214 * @epp_policy: Last saved policy used to set EPP/EPB 215 * @epp_default: Power on default HWP energy performance 216 * preference/bias 217 * @epp_cached Cached HWP energy-performance preference value 218 * @hwp_req_cached: Cached value of the last HWP Request MSR 219 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 220 * @last_io_update: Last time when IO wake flag was set 221 * @sched_flags: Store scheduler flags for possible cross CPU update 222 * @hwp_boost_min: Last HWP boosted min performance 223 * @suspended: Whether or not the driver has been suspended. 224 * @hwp_notify_work: workqueue for HWP notifications. 225 * 226 * This structure stores per CPU instance data for all CPUs. 227 */ 228 struct cpudata { 229 int cpu; 230 231 unsigned int policy; 232 struct update_util_data update_util; 233 bool update_util_set; 234 235 struct pstate_data pstate; 236 struct vid_data vid; 237 238 u64 last_update; 239 u64 last_sample_time; 240 u64 aperf_mperf_shift; 241 u64 prev_aperf; 242 u64 prev_mperf; 243 u64 prev_tsc; 244 u64 prev_cummulative_iowait; 245 struct sample sample; 246 int32_t min_perf_ratio; 247 int32_t max_perf_ratio; 248 #ifdef CONFIG_ACPI 249 struct acpi_processor_performance acpi_perf_data; 250 bool valid_pss_table; 251 #endif 252 unsigned int iowait_boost; 253 s16 epp_powersave; 254 s16 epp_policy; 255 s16 epp_default; 256 s16 epp_cached; 257 u64 hwp_req_cached; 258 u64 hwp_cap_cached; 259 u64 last_io_update; 260 unsigned int sched_flags; 261 u32 hwp_boost_min; 262 bool suspended; 263 struct delayed_work hwp_notify_work; 264 }; 265 266 static struct cpudata **all_cpu_data; 267 268 /** 269 * struct pstate_funcs - Per CPU model specific callbacks 270 * @get_max: Callback to get maximum non turbo effective P state 271 * @get_max_physical: Callback to get maximum non turbo physical P state 272 * @get_min: Callback to get minimum P state 273 * @get_turbo: Callback to get turbo P state 274 * @get_scaling: Callback to get frequency scaling factor 275 * @get_cpu_scaling: Get frequency scaling factor for a given cpu 276 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 277 * @get_val: Callback to convert P state to actual MSR write value 278 * @get_vid: Callback to get VID data for Atom platforms 279 * 280 * Core and Atom CPU models have different way to get P State limits. This 281 * structure is used to store those callbacks. 282 */ 283 struct pstate_funcs { 284 int (*get_max)(int cpu); 285 int (*get_max_physical)(int cpu); 286 int (*get_min)(int cpu); 287 int (*get_turbo)(int cpu); 288 int (*get_scaling)(void); 289 int (*get_cpu_scaling)(int cpu); 290 int (*get_aperf_mperf_shift)(void); 291 u64 (*get_val)(struct cpudata*, int pstate); 292 void (*get_vid)(struct cpudata *); 293 }; 294 295 static struct pstate_funcs pstate_funcs __read_mostly; 296 297 static int hwp_active __read_mostly; 298 static int hwp_mode_bdw __read_mostly; 299 static bool per_cpu_limits __read_mostly; 300 static bool hwp_boost __read_mostly; 301 static bool hwp_forced __read_mostly; 302 303 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 304 305 #define HYBRID_SCALING_FACTOR 78741 306 307 static inline int core_get_scaling(void) 308 { 309 return 100000; 310 } 311 312 #ifdef CONFIG_ACPI 313 static bool acpi_ppc; 314 #endif 315 316 static struct global_params global; 317 318 static DEFINE_MUTEX(intel_pstate_driver_lock); 319 static DEFINE_MUTEX(intel_pstate_limits_lock); 320 321 #ifdef CONFIG_ACPI 322 323 static bool intel_pstate_acpi_pm_profile_server(void) 324 { 325 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 326 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 327 return true; 328 329 return false; 330 } 331 332 static bool intel_pstate_get_ppc_enable_status(void) 333 { 334 if (intel_pstate_acpi_pm_profile_server()) 335 return true; 336 337 return acpi_ppc; 338 } 339 340 #ifdef CONFIG_ACPI_CPPC_LIB 341 342 /* The work item is needed to avoid CPU hotplug locking issues */ 343 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 344 { 345 sched_set_itmt_support(); 346 } 347 348 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 349 350 #define CPPC_MAX_PERF U8_MAX 351 352 static void intel_pstate_set_itmt_prio(int cpu) 353 { 354 struct cppc_perf_caps cppc_perf; 355 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 356 int ret; 357 358 ret = cppc_get_perf_caps(cpu, &cppc_perf); 359 if (ret) 360 return; 361 362 /* 363 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff. 364 * In this case we can't use CPPC.highest_perf to enable ITMT. 365 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide. 366 */ 367 if (cppc_perf.highest_perf == CPPC_MAX_PERF) 368 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached)); 369 370 /* 371 * The priorities can be set regardless of whether or not 372 * sched_set_itmt_support(true) has been called and it is valid to 373 * update them at any time after it has been called. 374 */ 375 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 376 377 if (max_highest_perf <= min_highest_perf) { 378 if (cppc_perf.highest_perf > max_highest_perf) 379 max_highest_perf = cppc_perf.highest_perf; 380 381 if (cppc_perf.highest_perf < min_highest_perf) 382 min_highest_perf = cppc_perf.highest_perf; 383 384 if (max_highest_perf > min_highest_perf) { 385 /* 386 * This code can be run during CPU online under the 387 * CPU hotplug locks, so sched_set_itmt_support() 388 * cannot be called from here. Queue up a work item 389 * to invoke it. 390 */ 391 schedule_work(&sched_itmt_work); 392 } 393 } 394 } 395 396 static int intel_pstate_get_cppc_guaranteed(int cpu) 397 { 398 struct cppc_perf_caps cppc_perf; 399 int ret; 400 401 ret = cppc_get_perf_caps(cpu, &cppc_perf); 402 if (ret) 403 return ret; 404 405 if (cppc_perf.guaranteed_perf) 406 return cppc_perf.guaranteed_perf; 407 408 return cppc_perf.nominal_perf; 409 } 410 411 static int intel_pstate_cppc_get_scaling(int cpu) 412 { 413 struct cppc_perf_caps cppc_perf; 414 int ret; 415 416 ret = cppc_get_perf_caps(cpu, &cppc_perf); 417 418 /* 419 * If the nominal frequency and the nominal performance are not 420 * zero and the ratio between them is not 100, return the hybrid 421 * scaling factor. 422 */ 423 if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq && 424 cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq) 425 return HYBRID_SCALING_FACTOR; 426 427 return core_get_scaling(); 428 } 429 430 #else /* CONFIG_ACPI_CPPC_LIB */ 431 static inline void intel_pstate_set_itmt_prio(int cpu) 432 { 433 } 434 #endif /* CONFIG_ACPI_CPPC_LIB */ 435 436 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 437 { 438 struct cpudata *cpu; 439 int ret; 440 int i; 441 442 if (hwp_active) { 443 intel_pstate_set_itmt_prio(policy->cpu); 444 return; 445 } 446 447 if (!intel_pstate_get_ppc_enable_status()) 448 return; 449 450 cpu = all_cpu_data[policy->cpu]; 451 452 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 453 policy->cpu); 454 if (ret) 455 return; 456 457 /* 458 * Check if the control value in _PSS is for PERF_CTL MSR, which should 459 * guarantee that the states returned by it map to the states in our 460 * list directly. 461 */ 462 if (cpu->acpi_perf_data.control_register.space_id != 463 ACPI_ADR_SPACE_FIXED_HARDWARE) 464 goto err; 465 466 /* 467 * If there is only one entry _PSS, simply ignore _PSS and continue as 468 * usual without taking _PSS into account 469 */ 470 if (cpu->acpi_perf_data.state_count < 2) 471 goto err; 472 473 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 474 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 475 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 476 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 477 (u32) cpu->acpi_perf_data.states[i].core_frequency, 478 (u32) cpu->acpi_perf_data.states[i].power, 479 (u32) cpu->acpi_perf_data.states[i].control); 480 } 481 482 cpu->valid_pss_table = true; 483 pr_debug("_PPC limits will be enforced\n"); 484 485 return; 486 487 err: 488 cpu->valid_pss_table = false; 489 acpi_processor_unregister_performance(policy->cpu); 490 } 491 492 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 493 { 494 struct cpudata *cpu; 495 496 cpu = all_cpu_data[policy->cpu]; 497 if (!cpu->valid_pss_table) 498 return; 499 500 acpi_processor_unregister_performance(policy->cpu); 501 } 502 #else /* CONFIG_ACPI */ 503 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 504 { 505 } 506 507 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 508 { 509 } 510 511 static inline bool intel_pstate_acpi_pm_profile_server(void) 512 { 513 return false; 514 } 515 #endif /* CONFIG_ACPI */ 516 517 #ifndef CONFIG_ACPI_CPPC_LIB 518 static inline int intel_pstate_get_cppc_guaranteed(int cpu) 519 { 520 return -ENOTSUPP; 521 } 522 523 static int intel_pstate_cppc_get_scaling(int cpu) 524 { 525 return core_get_scaling(); 526 } 527 #endif /* CONFIG_ACPI_CPPC_LIB */ 528 529 /** 530 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels. 531 * @cpu: Target CPU. 532 * 533 * On hybrid processors, HWP may expose more performance levels than there are 534 * P-states accessible through the PERF_CTL interface. If that happens, the 535 * scaling factor between HWP performance levels and CPU frequency will be less 536 * than the scaling factor between P-state values and CPU frequency. 537 * 538 * In that case, adjust the CPU parameters used in computations accordingly. 539 */ 540 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu) 541 { 542 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical; 543 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 544 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu); 545 int scaling = cpu->pstate.scaling; 546 547 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys); 548 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo); 549 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling); 550 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate); 551 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate); 552 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling); 553 554 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling, 555 perf_ctl_scaling); 556 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling, 557 perf_ctl_scaling); 558 559 cpu->pstate.max_pstate_physical = 560 DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling, 561 scaling); 562 563 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 564 /* 565 * Cast the min P-state value retrieved via pstate_funcs.get_min() to 566 * the effective range of HWP performance levels. 567 */ 568 cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling); 569 } 570 571 static inline void update_turbo_state(void) 572 { 573 u64 misc_en; 574 575 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 576 global.turbo_disabled = misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE; 577 } 578 579 static int min_perf_pct_min(void) 580 { 581 struct cpudata *cpu = all_cpu_data[0]; 582 int turbo_pstate = cpu->pstate.turbo_pstate; 583 584 return turbo_pstate ? 585 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 586 } 587 588 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 589 { 590 u64 epb; 591 int ret; 592 593 if (!boot_cpu_has(X86_FEATURE_EPB)) 594 return -ENXIO; 595 596 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 597 if (ret) 598 return (s16)ret; 599 600 return (s16)(epb & 0x0f); 601 } 602 603 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 604 { 605 s16 epp; 606 607 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 608 /* 609 * When hwp_req_data is 0, means that caller didn't read 610 * MSR_HWP_REQUEST, so need to read and get EPP. 611 */ 612 if (!hwp_req_data) { 613 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 614 &hwp_req_data); 615 if (epp) 616 return epp; 617 } 618 epp = (hwp_req_data >> 24) & 0xff; 619 } else { 620 /* When there is no EPP present, HWP uses EPB settings */ 621 epp = intel_pstate_get_epb(cpu_data); 622 } 623 624 return epp; 625 } 626 627 static int intel_pstate_set_epb(int cpu, s16 pref) 628 { 629 u64 epb; 630 int ret; 631 632 if (!boot_cpu_has(X86_FEATURE_EPB)) 633 return -ENXIO; 634 635 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 636 if (ret) 637 return ret; 638 639 epb = (epb & ~0x0f) | pref; 640 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 641 642 return 0; 643 } 644 645 /* 646 * EPP/EPB display strings corresponding to EPP index in the 647 * energy_perf_strings[] 648 * index String 649 *------------------------------------- 650 * 0 default 651 * 1 performance 652 * 2 balance_performance 653 * 3 balance_power 654 * 4 power 655 */ 656 657 enum energy_perf_value_index { 658 EPP_INDEX_DEFAULT = 0, 659 EPP_INDEX_PERFORMANCE, 660 EPP_INDEX_BALANCE_PERFORMANCE, 661 EPP_INDEX_BALANCE_POWERSAVE, 662 EPP_INDEX_POWERSAVE, 663 }; 664 665 static const char * const energy_perf_strings[] = { 666 [EPP_INDEX_DEFAULT] = "default", 667 [EPP_INDEX_PERFORMANCE] = "performance", 668 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", 669 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", 670 [EPP_INDEX_POWERSAVE] = "power", 671 NULL 672 }; 673 static unsigned int epp_values[] = { 674 [EPP_INDEX_DEFAULT] = 0, /* Unused index */ 675 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE, 676 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE, 677 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE, 678 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE, 679 }; 680 681 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 682 { 683 s16 epp; 684 int index = -EINVAL; 685 686 *raw_epp = 0; 687 epp = intel_pstate_get_epp(cpu_data, 0); 688 if (epp < 0) 689 return epp; 690 691 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 692 if (epp == epp_values[EPP_INDEX_PERFORMANCE]) 693 return EPP_INDEX_PERFORMANCE; 694 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE]) 695 return EPP_INDEX_BALANCE_PERFORMANCE; 696 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE]) 697 return EPP_INDEX_BALANCE_POWERSAVE; 698 if (epp == epp_values[EPP_INDEX_POWERSAVE]) 699 return EPP_INDEX_POWERSAVE; 700 *raw_epp = epp; 701 return 0; 702 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 703 /* 704 * Range: 705 * 0x00-0x03 : Performance 706 * 0x04-0x07 : Balance performance 707 * 0x08-0x0B : Balance power 708 * 0x0C-0x0F : Power 709 * The EPB is a 4 bit value, but our ranges restrict the 710 * value which can be set. Here only using top two bits 711 * effectively. 712 */ 713 index = (epp >> 2) + 1; 714 } 715 716 return index; 717 } 718 719 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) 720 { 721 int ret; 722 723 /* 724 * Use the cached HWP Request MSR value, because in the active mode the 725 * register itself may be updated by intel_pstate_hwp_boost_up() or 726 * intel_pstate_hwp_boost_down() at any time. 727 */ 728 u64 value = READ_ONCE(cpu->hwp_req_cached); 729 730 value &= ~GENMASK_ULL(31, 24); 731 value |= (u64)epp << 24; 732 /* 733 * The only other updater of hwp_req_cached in the active mode, 734 * intel_pstate_hwp_set(), is called under the same lock as this 735 * function, so it cannot run in parallel with the update below. 736 */ 737 WRITE_ONCE(cpu->hwp_req_cached, value); 738 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 739 if (!ret) 740 cpu->epp_cached = epp; 741 742 return ret; 743 } 744 745 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 746 int pref_index, bool use_raw, 747 u32 raw_epp) 748 { 749 int epp = -EINVAL; 750 int ret; 751 752 if (!pref_index) 753 epp = cpu_data->epp_default; 754 755 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 756 if (use_raw) 757 epp = raw_epp; 758 else if (epp == -EINVAL) 759 epp = epp_values[pref_index]; 760 761 /* 762 * To avoid confusion, refuse to set EPP to any values different 763 * from 0 (performance) if the current policy is "performance", 764 * because those values would be overridden. 765 */ 766 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 767 return -EBUSY; 768 769 ret = intel_pstate_set_epp(cpu_data, epp); 770 } else { 771 if (epp == -EINVAL) 772 epp = (pref_index - 1) << 2; 773 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 774 } 775 776 return ret; 777 } 778 779 static ssize_t show_energy_performance_available_preferences( 780 struct cpufreq_policy *policy, char *buf) 781 { 782 int i = 0; 783 int ret = 0; 784 785 while (energy_perf_strings[i] != NULL) 786 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 787 788 ret += sprintf(&buf[ret], "\n"); 789 790 return ret; 791 } 792 793 cpufreq_freq_attr_ro(energy_performance_available_preferences); 794 795 static struct cpufreq_driver intel_pstate; 796 797 static ssize_t store_energy_performance_preference( 798 struct cpufreq_policy *policy, const char *buf, size_t count) 799 { 800 struct cpudata *cpu = all_cpu_data[policy->cpu]; 801 char str_preference[21]; 802 bool raw = false; 803 ssize_t ret; 804 u32 epp = 0; 805 806 ret = sscanf(buf, "%20s", str_preference); 807 if (ret != 1) 808 return -EINVAL; 809 810 ret = match_string(energy_perf_strings, -1, str_preference); 811 if (ret < 0) { 812 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 813 return ret; 814 815 ret = kstrtouint(buf, 10, &epp); 816 if (ret) 817 return ret; 818 819 if (epp > 255) 820 return -EINVAL; 821 822 raw = true; 823 } 824 825 /* 826 * This function runs with the policy R/W semaphore held, which 827 * guarantees that the driver pointer will not change while it is 828 * running. 829 */ 830 if (!intel_pstate_driver) 831 return -EAGAIN; 832 833 mutex_lock(&intel_pstate_limits_lock); 834 835 if (intel_pstate_driver == &intel_pstate) { 836 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); 837 } else { 838 /* 839 * In the passive mode the governor needs to be stopped on the 840 * target CPU before the EPP update and restarted after it, 841 * which is super-heavy-weight, so make sure it is worth doing 842 * upfront. 843 */ 844 if (!raw) 845 epp = ret ? epp_values[ret] : cpu->epp_default; 846 847 if (cpu->epp_cached != epp) { 848 int err; 849 850 cpufreq_stop_governor(policy); 851 ret = intel_pstate_set_epp(cpu, epp); 852 err = cpufreq_start_governor(policy); 853 if (!ret) 854 ret = err; 855 } else { 856 ret = 0; 857 } 858 } 859 860 mutex_unlock(&intel_pstate_limits_lock); 861 862 return ret ?: count; 863 } 864 865 static ssize_t show_energy_performance_preference( 866 struct cpufreq_policy *policy, char *buf) 867 { 868 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 869 int preference, raw_epp; 870 871 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 872 if (preference < 0) 873 return preference; 874 875 if (raw_epp) 876 return sprintf(buf, "%d\n", raw_epp); 877 else 878 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 879 } 880 881 cpufreq_freq_attr_rw(energy_performance_preference); 882 883 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 884 { 885 struct cpudata *cpu = all_cpu_data[policy->cpu]; 886 int ratio, freq; 887 888 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu); 889 if (ratio <= 0) { 890 u64 cap; 891 892 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 893 ratio = HWP_GUARANTEED_PERF(cap); 894 } 895 896 freq = ratio * cpu->pstate.scaling; 897 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling) 898 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling); 899 900 return sprintf(buf, "%d\n", freq); 901 } 902 903 cpufreq_freq_attr_ro(base_frequency); 904 905 static struct freq_attr *hwp_cpufreq_attrs[] = { 906 &energy_performance_preference, 907 &energy_performance_available_preferences, 908 &base_frequency, 909 NULL, 910 }; 911 912 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) 913 { 914 u64 cap; 915 916 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); 917 WRITE_ONCE(cpu->hwp_cap_cached, cap); 918 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); 919 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); 920 } 921 922 static void intel_pstate_get_hwp_cap(struct cpudata *cpu) 923 { 924 int scaling = cpu->pstate.scaling; 925 926 __intel_pstate_get_hwp_cap(cpu); 927 928 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling; 929 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; 930 if (scaling != cpu->pstate.perf_ctl_scaling) { 931 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 932 933 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq, 934 perf_ctl_scaling); 935 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq, 936 perf_ctl_scaling); 937 } 938 } 939 940 static void intel_pstate_hwp_set(unsigned int cpu) 941 { 942 struct cpudata *cpu_data = all_cpu_data[cpu]; 943 int max, min; 944 u64 value; 945 s16 epp; 946 947 max = cpu_data->max_perf_ratio; 948 min = cpu_data->min_perf_ratio; 949 950 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 951 min = max; 952 953 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 954 955 value &= ~HWP_MIN_PERF(~0L); 956 value |= HWP_MIN_PERF(min); 957 958 value &= ~HWP_MAX_PERF(~0L); 959 value |= HWP_MAX_PERF(max); 960 961 if (cpu_data->epp_policy == cpu_data->policy) 962 goto skip_epp; 963 964 cpu_data->epp_policy = cpu_data->policy; 965 966 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 967 epp = intel_pstate_get_epp(cpu_data, value); 968 cpu_data->epp_powersave = epp; 969 /* If EPP read was failed, then don't try to write */ 970 if (epp < 0) 971 goto skip_epp; 972 973 epp = 0; 974 } else { 975 /* skip setting EPP, when saved value is invalid */ 976 if (cpu_data->epp_powersave < 0) 977 goto skip_epp; 978 979 /* 980 * No need to restore EPP when it is not zero. This 981 * means: 982 * - Policy is not changed 983 * - user has manually changed 984 * - Error reading EPB 985 */ 986 epp = intel_pstate_get_epp(cpu_data, value); 987 if (epp) 988 goto skip_epp; 989 990 epp = cpu_data->epp_powersave; 991 } 992 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 993 value &= ~GENMASK_ULL(31, 24); 994 value |= (u64)epp << 24; 995 } else { 996 intel_pstate_set_epb(cpu, epp); 997 } 998 skip_epp: 999 WRITE_ONCE(cpu_data->hwp_req_cached, value); 1000 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 1001 } 1002 1003 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata); 1004 1005 static void intel_pstate_hwp_offline(struct cpudata *cpu) 1006 { 1007 u64 value = READ_ONCE(cpu->hwp_req_cached); 1008 int min_perf; 1009 1010 intel_pstate_disable_hwp_interrupt(cpu); 1011 1012 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1013 /* 1014 * In case the EPP has been set to "performance" by the 1015 * active mode "performance" scaling algorithm, replace that 1016 * temporary value with the cached EPP one. 1017 */ 1018 value &= ~GENMASK_ULL(31, 24); 1019 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); 1020 /* 1021 * However, make sure that EPP will be set to "performance" when 1022 * the CPU is brought back online again and the "performance" 1023 * scaling algorithm is still in effect. 1024 */ 1025 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; 1026 } 1027 1028 /* 1029 * Clear the desired perf field in the cached HWP request value to 1030 * prevent nonzero desired values from being leaked into the active 1031 * mode. 1032 */ 1033 value &= ~HWP_DESIRED_PERF(~0L); 1034 WRITE_ONCE(cpu->hwp_req_cached, value); 1035 1036 value &= ~GENMASK_ULL(31, 0); 1037 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); 1038 1039 /* Set hwp_max = hwp_min */ 1040 value |= HWP_MAX_PERF(min_perf); 1041 value |= HWP_MIN_PERF(min_perf); 1042 1043 /* Set EPP to min */ 1044 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 1045 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 1046 1047 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 1048 } 1049 1050 #define POWER_CTL_EE_ENABLE 1 1051 #define POWER_CTL_EE_DISABLE 2 1052 1053 static int power_ctl_ee_state; 1054 1055 static void set_power_ctl_ee_state(bool input) 1056 { 1057 u64 power_ctl; 1058 1059 mutex_lock(&intel_pstate_driver_lock); 1060 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1061 if (input) { 1062 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 1063 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 1064 } else { 1065 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1066 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 1067 } 1068 wrmsrl(MSR_IA32_POWER_CTL, power_ctl); 1069 mutex_unlock(&intel_pstate_driver_lock); 1070 } 1071 1072 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 1073 1074 static void intel_pstate_hwp_reenable(struct cpudata *cpu) 1075 { 1076 intel_pstate_hwp_enable(cpu); 1077 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); 1078 } 1079 1080 static int intel_pstate_suspend(struct cpufreq_policy *policy) 1081 { 1082 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1083 1084 pr_debug("CPU %d suspending\n", cpu->cpu); 1085 1086 cpu->suspended = true; 1087 1088 /* disable HWP interrupt and cancel any pending work */ 1089 intel_pstate_disable_hwp_interrupt(cpu); 1090 1091 return 0; 1092 } 1093 1094 static int intel_pstate_resume(struct cpufreq_policy *policy) 1095 { 1096 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1097 1098 pr_debug("CPU %d resuming\n", cpu->cpu); 1099 1100 /* Only restore if the system default is changed */ 1101 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 1102 set_power_ctl_ee_state(true); 1103 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 1104 set_power_ctl_ee_state(false); 1105 1106 if (cpu->suspended && hwp_active) { 1107 mutex_lock(&intel_pstate_limits_lock); 1108 1109 /* Re-enable HWP, because "online" has not done that. */ 1110 intel_pstate_hwp_reenable(cpu); 1111 1112 mutex_unlock(&intel_pstate_limits_lock); 1113 } 1114 1115 cpu->suspended = false; 1116 1117 return 0; 1118 } 1119 1120 static void intel_pstate_update_policies(void) 1121 { 1122 int cpu; 1123 1124 for_each_possible_cpu(cpu) 1125 cpufreq_update_policy(cpu); 1126 } 1127 1128 static void __intel_pstate_update_max_freq(struct cpudata *cpudata, 1129 struct cpufreq_policy *policy) 1130 { 1131 policy->cpuinfo.max_freq = global.turbo_disabled_mf ? 1132 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 1133 refresh_frequency_limits(policy); 1134 } 1135 1136 static void intel_pstate_update_max_freq(unsigned int cpu) 1137 { 1138 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 1139 1140 if (!policy) 1141 return; 1142 1143 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy); 1144 1145 cpufreq_cpu_release(policy); 1146 } 1147 1148 static void intel_pstate_update_limits(unsigned int cpu) 1149 { 1150 mutex_lock(&intel_pstate_driver_lock); 1151 1152 update_turbo_state(); 1153 /* 1154 * If turbo has been turned on or off globally, policy limits for 1155 * all CPUs need to be updated to reflect that. 1156 */ 1157 if (global.turbo_disabled_mf != global.turbo_disabled) { 1158 global.turbo_disabled_mf = global.turbo_disabled; 1159 arch_set_max_freq_ratio(global.turbo_disabled); 1160 for_each_possible_cpu(cpu) 1161 intel_pstate_update_max_freq(cpu); 1162 } else { 1163 cpufreq_update_policy(cpu); 1164 } 1165 1166 mutex_unlock(&intel_pstate_driver_lock); 1167 } 1168 1169 /************************** sysfs begin ************************/ 1170 #define show_one(file_name, object) \ 1171 static ssize_t show_##file_name \ 1172 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 1173 { \ 1174 return sprintf(buf, "%u\n", global.object); \ 1175 } 1176 1177 static ssize_t intel_pstate_show_status(char *buf); 1178 static int intel_pstate_update_status(const char *buf, size_t size); 1179 1180 static ssize_t show_status(struct kobject *kobj, 1181 struct kobj_attribute *attr, char *buf) 1182 { 1183 ssize_t ret; 1184 1185 mutex_lock(&intel_pstate_driver_lock); 1186 ret = intel_pstate_show_status(buf); 1187 mutex_unlock(&intel_pstate_driver_lock); 1188 1189 return ret; 1190 } 1191 1192 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1193 const char *buf, size_t count) 1194 { 1195 char *p = memchr(buf, '\n', count); 1196 int ret; 1197 1198 mutex_lock(&intel_pstate_driver_lock); 1199 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1200 mutex_unlock(&intel_pstate_driver_lock); 1201 1202 return ret < 0 ? ret : count; 1203 } 1204 1205 static ssize_t show_turbo_pct(struct kobject *kobj, 1206 struct kobj_attribute *attr, char *buf) 1207 { 1208 struct cpudata *cpu; 1209 int total, no_turbo, turbo_pct; 1210 uint32_t turbo_fp; 1211 1212 mutex_lock(&intel_pstate_driver_lock); 1213 1214 if (!intel_pstate_driver) { 1215 mutex_unlock(&intel_pstate_driver_lock); 1216 return -EAGAIN; 1217 } 1218 1219 cpu = all_cpu_data[0]; 1220 1221 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1222 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1223 turbo_fp = div_fp(no_turbo, total); 1224 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1225 1226 mutex_unlock(&intel_pstate_driver_lock); 1227 1228 return sprintf(buf, "%u\n", turbo_pct); 1229 } 1230 1231 static ssize_t show_num_pstates(struct kobject *kobj, 1232 struct kobj_attribute *attr, char *buf) 1233 { 1234 struct cpudata *cpu; 1235 int total; 1236 1237 mutex_lock(&intel_pstate_driver_lock); 1238 1239 if (!intel_pstate_driver) { 1240 mutex_unlock(&intel_pstate_driver_lock); 1241 return -EAGAIN; 1242 } 1243 1244 cpu = all_cpu_data[0]; 1245 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1246 1247 mutex_unlock(&intel_pstate_driver_lock); 1248 1249 return sprintf(buf, "%u\n", total); 1250 } 1251 1252 static ssize_t show_no_turbo(struct kobject *kobj, 1253 struct kobj_attribute *attr, char *buf) 1254 { 1255 ssize_t ret; 1256 1257 mutex_lock(&intel_pstate_driver_lock); 1258 1259 if (!intel_pstate_driver) { 1260 mutex_unlock(&intel_pstate_driver_lock); 1261 return -EAGAIN; 1262 } 1263 1264 update_turbo_state(); 1265 if (global.turbo_disabled) 1266 ret = sprintf(buf, "%u\n", global.turbo_disabled); 1267 else 1268 ret = sprintf(buf, "%u\n", global.no_turbo); 1269 1270 mutex_unlock(&intel_pstate_driver_lock); 1271 1272 return ret; 1273 } 1274 1275 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1276 const char *buf, size_t count) 1277 { 1278 unsigned int input; 1279 int ret; 1280 1281 ret = sscanf(buf, "%u", &input); 1282 if (ret != 1) 1283 return -EINVAL; 1284 1285 mutex_lock(&intel_pstate_driver_lock); 1286 1287 if (!intel_pstate_driver) { 1288 mutex_unlock(&intel_pstate_driver_lock); 1289 return -EAGAIN; 1290 } 1291 1292 mutex_lock(&intel_pstate_limits_lock); 1293 1294 update_turbo_state(); 1295 if (global.turbo_disabled) { 1296 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n"); 1297 mutex_unlock(&intel_pstate_limits_lock); 1298 mutex_unlock(&intel_pstate_driver_lock); 1299 return -EPERM; 1300 } 1301 1302 global.no_turbo = clamp_t(int, input, 0, 1); 1303 1304 if (global.no_turbo) { 1305 struct cpudata *cpu = all_cpu_data[0]; 1306 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1307 1308 /* Squash the global minimum into the permitted range. */ 1309 if (global.min_perf_pct > pct) 1310 global.min_perf_pct = pct; 1311 } 1312 1313 mutex_unlock(&intel_pstate_limits_lock); 1314 1315 intel_pstate_update_policies(); 1316 arch_set_max_freq_ratio(global.no_turbo); 1317 1318 mutex_unlock(&intel_pstate_driver_lock); 1319 1320 return count; 1321 } 1322 1323 static void update_qos_request(enum freq_qos_req_type type) 1324 { 1325 struct freq_qos_request *req; 1326 struct cpufreq_policy *policy; 1327 int i; 1328 1329 for_each_possible_cpu(i) { 1330 struct cpudata *cpu = all_cpu_data[i]; 1331 unsigned int freq, perf_pct; 1332 1333 policy = cpufreq_cpu_get(i); 1334 if (!policy) 1335 continue; 1336 1337 req = policy->driver_data; 1338 cpufreq_cpu_put(policy); 1339 1340 if (!req) 1341 continue; 1342 1343 if (hwp_active) 1344 intel_pstate_get_hwp_cap(cpu); 1345 1346 if (type == FREQ_QOS_MIN) { 1347 perf_pct = global.min_perf_pct; 1348 } else { 1349 req++; 1350 perf_pct = global.max_perf_pct; 1351 } 1352 1353 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); 1354 1355 if (freq_qos_update_request(req, freq) < 0) 1356 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1357 } 1358 } 1359 1360 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1361 const char *buf, size_t count) 1362 { 1363 unsigned int input; 1364 int ret; 1365 1366 ret = sscanf(buf, "%u", &input); 1367 if (ret != 1) 1368 return -EINVAL; 1369 1370 mutex_lock(&intel_pstate_driver_lock); 1371 1372 if (!intel_pstate_driver) { 1373 mutex_unlock(&intel_pstate_driver_lock); 1374 return -EAGAIN; 1375 } 1376 1377 mutex_lock(&intel_pstate_limits_lock); 1378 1379 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1380 1381 mutex_unlock(&intel_pstate_limits_lock); 1382 1383 if (intel_pstate_driver == &intel_pstate) 1384 intel_pstate_update_policies(); 1385 else 1386 update_qos_request(FREQ_QOS_MAX); 1387 1388 mutex_unlock(&intel_pstate_driver_lock); 1389 1390 return count; 1391 } 1392 1393 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1394 const char *buf, size_t count) 1395 { 1396 unsigned int input; 1397 int ret; 1398 1399 ret = sscanf(buf, "%u", &input); 1400 if (ret != 1) 1401 return -EINVAL; 1402 1403 mutex_lock(&intel_pstate_driver_lock); 1404 1405 if (!intel_pstate_driver) { 1406 mutex_unlock(&intel_pstate_driver_lock); 1407 return -EAGAIN; 1408 } 1409 1410 mutex_lock(&intel_pstate_limits_lock); 1411 1412 global.min_perf_pct = clamp_t(int, input, 1413 min_perf_pct_min(), global.max_perf_pct); 1414 1415 mutex_unlock(&intel_pstate_limits_lock); 1416 1417 if (intel_pstate_driver == &intel_pstate) 1418 intel_pstate_update_policies(); 1419 else 1420 update_qos_request(FREQ_QOS_MIN); 1421 1422 mutex_unlock(&intel_pstate_driver_lock); 1423 1424 return count; 1425 } 1426 1427 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1428 struct kobj_attribute *attr, char *buf) 1429 { 1430 return sprintf(buf, "%u\n", hwp_boost); 1431 } 1432 1433 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1434 struct kobj_attribute *b, 1435 const char *buf, size_t count) 1436 { 1437 unsigned int input; 1438 int ret; 1439 1440 ret = kstrtouint(buf, 10, &input); 1441 if (ret) 1442 return ret; 1443 1444 mutex_lock(&intel_pstate_driver_lock); 1445 hwp_boost = !!input; 1446 intel_pstate_update_policies(); 1447 mutex_unlock(&intel_pstate_driver_lock); 1448 1449 return count; 1450 } 1451 1452 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1453 char *buf) 1454 { 1455 u64 power_ctl; 1456 int enable; 1457 1458 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1459 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1460 return sprintf(buf, "%d\n", !enable); 1461 } 1462 1463 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1464 const char *buf, size_t count) 1465 { 1466 bool input; 1467 int ret; 1468 1469 ret = kstrtobool(buf, &input); 1470 if (ret) 1471 return ret; 1472 1473 set_power_ctl_ee_state(input); 1474 1475 return count; 1476 } 1477 1478 show_one(max_perf_pct, max_perf_pct); 1479 show_one(min_perf_pct, min_perf_pct); 1480 1481 define_one_global_rw(status); 1482 define_one_global_rw(no_turbo); 1483 define_one_global_rw(max_perf_pct); 1484 define_one_global_rw(min_perf_pct); 1485 define_one_global_ro(turbo_pct); 1486 define_one_global_ro(num_pstates); 1487 define_one_global_rw(hwp_dynamic_boost); 1488 define_one_global_rw(energy_efficiency); 1489 1490 static struct attribute *intel_pstate_attributes[] = { 1491 &status.attr, 1492 &no_turbo.attr, 1493 NULL 1494 }; 1495 1496 static const struct attribute_group intel_pstate_attr_group = { 1497 .attrs = intel_pstate_attributes, 1498 }; 1499 1500 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1501 1502 static struct kobject *intel_pstate_kobject; 1503 1504 static void __init intel_pstate_sysfs_expose_params(void) 1505 { 1506 struct device *dev_root = bus_get_dev_root(&cpu_subsys); 1507 int rc; 1508 1509 if (dev_root) { 1510 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj); 1511 put_device(dev_root); 1512 } 1513 if (WARN_ON(!intel_pstate_kobject)) 1514 return; 1515 1516 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1517 if (WARN_ON(rc)) 1518 return; 1519 1520 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1521 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr); 1522 WARN_ON(rc); 1523 1524 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr); 1525 WARN_ON(rc); 1526 } 1527 1528 /* 1529 * If per cpu limits are enforced there are no global limits, so 1530 * return without creating max/min_perf_pct attributes 1531 */ 1532 if (per_cpu_limits) 1533 return; 1534 1535 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1536 WARN_ON(rc); 1537 1538 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1539 WARN_ON(rc); 1540 1541 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1542 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1543 WARN_ON(rc); 1544 } 1545 } 1546 1547 static void __init intel_pstate_sysfs_remove(void) 1548 { 1549 if (!intel_pstate_kobject) 1550 return; 1551 1552 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); 1553 1554 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1555 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr); 1556 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr); 1557 } 1558 1559 if (!per_cpu_limits) { 1560 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); 1561 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); 1562 1563 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) 1564 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); 1565 } 1566 1567 kobject_put(intel_pstate_kobject); 1568 } 1569 1570 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) 1571 { 1572 int rc; 1573 1574 if (!hwp_active) 1575 return; 1576 1577 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1578 WARN_ON_ONCE(rc); 1579 } 1580 1581 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) 1582 { 1583 if (!hwp_active) 1584 return; 1585 1586 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1587 } 1588 1589 /************************** sysfs end ************************/ 1590 1591 static void intel_pstate_notify_work(struct work_struct *work) 1592 { 1593 struct cpudata *cpudata = 1594 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work); 1595 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu); 1596 1597 if (policy) { 1598 intel_pstate_get_hwp_cap(cpudata); 1599 __intel_pstate_update_max_freq(cpudata, policy); 1600 1601 cpufreq_cpu_release(policy); 1602 } 1603 1604 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1605 } 1606 1607 static DEFINE_SPINLOCK(hwp_notify_lock); 1608 static cpumask_t hwp_intr_enable_mask; 1609 1610 void notify_hwp_interrupt(void) 1611 { 1612 unsigned int this_cpu = smp_processor_id(); 1613 struct cpudata *cpudata; 1614 unsigned long flags; 1615 u64 value; 1616 1617 if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1618 return; 1619 1620 rdmsrl_safe(MSR_HWP_STATUS, &value); 1621 if (!(value & 0x01)) 1622 return; 1623 1624 spin_lock_irqsave(&hwp_notify_lock, flags); 1625 1626 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask)) 1627 goto ack_intr; 1628 1629 /* 1630 * Currently we never free all_cpu_data. And we can't reach here 1631 * without this allocated. But for safety for future changes, added 1632 * check. 1633 */ 1634 if (unlikely(!READ_ONCE(all_cpu_data))) 1635 goto ack_intr; 1636 1637 /* 1638 * The free is done during cleanup, when cpufreq registry is failed. 1639 * We wouldn't be here if it fails on init or switch status. But for 1640 * future changes, added check. 1641 */ 1642 cpudata = READ_ONCE(all_cpu_data[this_cpu]); 1643 if (unlikely(!cpudata)) 1644 goto ack_intr; 1645 1646 schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10)); 1647 1648 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1649 1650 return; 1651 1652 ack_intr: 1653 wrmsrl_safe(MSR_HWP_STATUS, 0); 1654 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1655 } 1656 1657 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata) 1658 { 1659 unsigned long flags; 1660 1661 if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1662 return; 1663 1664 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1665 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1666 1667 spin_lock_irqsave(&hwp_notify_lock, flags); 1668 if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask)) 1669 cancel_delayed_work(&cpudata->hwp_notify_work); 1670 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1671 } 1672 1673 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata) 1674 { 1675 /* Enable HWP notification interrupt for guaranteed performance change */ 1676 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) { 1677 unsigned long flags; 1678 1679 spin_lock_irqsave(&hwp_notify_lock, flags); 1680 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work); 1681 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask); 1682 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1683 1684 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1685 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01); 1686 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1687 } 1688 } 1689 1690 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata) 1691 { 1692 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1693 1694 /* 1695 * If this CPU gen doesn't call for change in balance_perf 1696 * EPP return. 1697 */ 1698 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) 1699 return; 1700 1701 /* 1702 * If the EPP is set by firmware, which means that firmware enabled HWP 1703 * - Is equal or less than 0x80 (default balance_perf EPP) 1704 * - But less performance oriented than performance EPP 1705 * then use this as new balance_perf EPP. 1706 */ 1707 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE && 1708 cpudata->epp_default > HWP_EPP_PERFORMANCE) { 1709 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default; 1710 return; 1711 } 1712 1713 /* 1714 * Use hard coded value per gen to update the balance_perf 1715 * and default EPP. 1716 */ 1717 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE]; 1718 intel_pstate_set_epp(cpudata, cpudata->epp_default); 1719 } 1720 1721 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1722 { 1723 /* First disable HWP notification interrupt till we activate again */ 1724 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1725 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1726 1727 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1728 1729 intel_pstate_enable_hwp_interrupt(cpudata); 1730 1731 if (cpudata->epp_default >= 0) 1732 return; 1733 1734 intel_pstate_update_epp_defaults(cpudata); 1735 } 1736 1737 static int atom_get_min_pstate(int not_used) 1738 { 1739 u64 value; 1740 1741 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1742 return (value >> 8) & 0x7F; 1743 } 1744 1745 static int atom_get_max_pstate(int not_used) 1746 { 1747 u64 value; 1748 1749 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1750 return (value >> 16) & 0x7F; 1751 } 1752 1753 static int atom_get_turbo_pstate(int not_used) 1754 { 1755 u64 value; 1756 1757 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1758 return value & 0x7F; 1759 } 1760 1761 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1762 { 1763 u64 val; 1764 int32_t vid_fp; 1765 u32 vid; 1766 1767 val = (u64)pstate << 8; 1768 if (global.no_turbo && !global.turbo_disabled) 1769 val |= (u64)1 << 32; 1770 1771 vid_fp = cpudata->vid.min + mul_fp( 1772 int_tofp(pstate - cpudata->pstate.min_pstate), 1773 cpudata->vid.ratio); 1774 1775 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1776 vid = ceiling_fp(vid_fp); 1777 1778 if (pstate > cpudata->pstate.max_pstate) 1779 vid = cpudata->vid.turbo; 1780 1781 return val | vid; 1782 } 1783 1784 static int silvermont_get_scaling(void) 1785 { 1786 u64 value; 1787 int i; 1788 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1789 static int silvermont_freq_table[] = { 1790 83300, 100000, 133300, 116700, 80000}; 1791 1792 rdmsrl(MSR_FSB_FREQ, value); 1793 i = value & 0x7; 1794 WARN_ON(i > 4); 1795 1796 return silvermont_freq_table[i]; 1797 } 1798 1799 static int airmont_get_scaling(void) 1800 { 1801 u64 value; 1802 int i; 1803 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1804 static int airmont_freq_table[] = { 1805 83300, 100000, 133300, 116700, 80000, 1806 93300, 90000, 88900, 87500}; 1807 1808 rdmsrl(MSR_FSB_FREQ, value); 1809 i = value & 0xF; 1810 WARN_ON(i > 8); 1811 1812 return airmont_freq_table[i]; 1813 } 1814 1815 static void atom_get_vid(struct cpudata *cpudata) 1816 { 1817 u64 value; 1818 1819 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1820 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1821 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1822 cpudata->vid.ratio = div_fp( 1823 cpudata->vid.max - cpudata->vid.min, 1824 int_tofp(cpudata->pstate.max_pstate - 1825 cpudata->pstate.min_pstate)); 1826 1827 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1828 cpudata->vid.turbo = value & 0x7f; 1829 } 1830 1831 static int core_get_min_pstate(int cpu) 1832 { 1833 u64 value; 1834 1835 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1836 return (value >> 40) & 0xFF; 1837 } 1838 1839 static int core_get_max_pstate_physical(int cpu) 1840 { 1841 u64 value; 1842 1843 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1844 return (value >> 8) & 0xFF; 1845 } 1846 1847 static int core_get_tdp_ratio(int cpu, u64 plat_info) 1848 { 1849 /* Check how many TDP levels present */ 1850 if (plat_info & 0x600000000) { 1851 u64 tdp_ctrl; 1852 u64 tdp_ratio; 1853 int tdp_msr; 1854 int err; 1855 1856 /* Get the TDP level (0, 1, 2) to get ratios */ 1857 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1858 if (err) 1859 return err; 1860 1861 /* TDP MSR are continuous starting at 0x648 */ 1862 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1863 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio); 1864 if (err) 1865 return err; 1866 1867 /* For level 1 and 2, bits[23:16] contain the ratio */ 1868 if (tdp_ctrl & 0x03) 1869 tdp_ratio >>= 16; 1870 1871 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1872 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1873 1874 return (int)tdp_ratio; 1875 } 1876 1877 return -ENXIO; 1878 } 1879 1880 static int core_get_max_pstate(int cpu) 1881 { 1882 u64 tar; 1883 u64 plat_info; 1884 int max_pstate; 1885 int tdp_ratio; 1886 int err; 1887 1888 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info); 1889 max_pstate = (plat_info >> 8) & 0xFF; 1890 1891 tdp_ratio = core_get_tdp_ratio(cpu, plat_info); 1892 if (tdp_ratio <= 0) 1893 return max_pstate; 1894 1895 if (hwp_active) { 1896 /* Turbo activation ratio is not used on HWP platforms */ 1897 return tdp_ratio; 1898 } 1899 1900 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar); 1901 if (!err) { 1902 int tar_levels; 1903 1904 /* Do some sanity checking for safety */ 1905 tar_levels = tar & 0xff; 1906 if (tdp_ratio - 1 == tar_levels) { 1907 max_pstate = tar_levels; 1908 pr_debug("max_pstate=TAC %x\n", max_pstate); 1909 } 1910 } 1911 1912 return max_pstate; 1913 } 1914 1915 static int core_get_turbo_pstate(int cpu) 1916 { 1917 u64 value; 1918 int nont, ret; 1919 1920 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1921 nont = core_get_max_pstate(cpu); 1922 ret = (value) & 255; 1923 if (ret <= nont) 1924 ret = nont; 1925 return ret; 1926 } 1927 1928 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1929 { 1930 u64 val; 1931 1932 val = (u64)pstate << 8; 1933 if (global.no_turbo && !global.turbo_disabled) 1934 val |= (u64)1 << 32; 1935 1936 return val; 1937 } 1938 1939 static int knl_get_aperf_mperf_shift(void) 1940 { 1941 return 10; 1942 } 1943 1944 static int knl_get_turbo_pstate(int cpu) 1945 { 1946 u64 value; 1947 int nont, ret; 1948 1949 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1950 nont = core_get_max_pstate(cpu); 1951 ret = (((value) >> 8) & 0xFF); 1952 if (ret <= nont) 1953 ret = nont; 1954 return ret; 1955 } 1956 1957 static void hybrid_get_type(void *data) 1958 { 1959 u8 *cpu_type = data; 1960 1961 *cpu_type = get_this_hybrid_cpu_type(); 1962 } 1963 1964 static int hwp_get_cpu_scaling(int cpu) 1965 { 1966 u8 cpu_type = 0; 1967 1968 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1); 1969 /* P-cores have a smaller perf level-to-freqency scaling factor. */ 1970 if (cpu_type == 0x40) 1971 return HYBRID_SCALING_FACTOR; 1972 1973 /* Use default core scaling for E-cores */ 1974 if (cpu_type == 0x20) 1975 return core_get_scaling(); 1976 1977 /* 1978 * If reached here, this system is either non-hybrid (like Tiger 1979 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with 1980 * no E cores (in which case CPUID for hybrid support is 0). 1981 * 1982 * The CPPC nominal_frequency field is 0 for non-hybrid systems, 1983 * so the default core scaling will be used for them. 1984 */ 1985 return intel_pstate_cppc_get_scaling(cpu); 1986 } 1987 1988 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 1989 { 1990 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1991 cpu->pstate.current_pstate = pstate; 1992 /* 1993 * Generally, there is no guarantee that this code will always run on 1994 * the CPU being updated, so force the register update to run on the 1995 * right CPU. 1996 */ 1997 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 1998 pstate_funcs.get_val(cpu, pstate)); 1999 } 2000 2001 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 2002 { 2003 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 2004 } 2005 2006 static void intel_pstate_max_within_limits(struct cpudata *cpu) 2007 { 2008 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 2009 2010 update_turbo_state(); 2011 intel_pstate_set_pstate(cpu, pstate); 2012 } 2013 2014 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 2015 { 2016 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu); 2017 int perf_ctl_scaling = pstate_funcs.get_scaling(); 2018 2019 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu); 2020 cpu->pstate.max_pstate_physical = perf_ctl_max_phys; 2021 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling; 2022 2023 if (hwp_active && !hwp_mode_bdw) { 2024 __intel_pstate_get_hwp_cap(cpu); 2025 2026 if (pstate_funcs.get_cpu_scaling) { 2027 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu); 2028 if (cpu->pstate.scaling != perf_ctl_scaling) 2029 intel_pstate_hybrid_hwp_adjust(cpu); 2030 } else { 2031 cpu->pstate.scaling = perf_ctl_scaling; 2032 } 2033 } else { 2034 cpu->pstate.scaling = perf_ctl_scaling; 2035 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu); 2036 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu); 2037 } 2038 2039 if (cpu->pstate.scaling == perf_ctl_scaling) { 2040 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 2041 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling; 2042 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling; 2043 } 2044 2045 if (pstate_funcs.get_aperf_mperf_shift) 2046 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 2047 2048 if (pstate_funcs.get_vid) 2049 pstate_funcs.get_vid(cpu); 2050 2051 intel_pstate_set_min_pstate(cpu); 2052 } 2053 2054 /* 2055 * Long hold time will keep high perf limits for long time, 2056 * which negatively impacts perf/watt for some workloads, 2057 * like specpower. 3ms is based on experiements on some 2058 * workoads. 2059 */ 2060 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 2061 2062 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 2063 { 2064 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 2065 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2066 u32 max_limit = (hwp_req & 0xff00) >> 8; 2067 u32 min_limit = (hwp_req & 0xff); 2068 u32 boost_level1; 2069 2070 /* 2071 * Cases to consider (User changes via sysfs or boot time): 2072 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 2073 * No boost, return. 2074 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 2075 * Should result in one level boost only for P0. 2076 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 2077 * Should result in two level boost: 2078 * (min + p1)/2 and P1. 2079 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 2080 * Should result in three level boost: 2081 * (min + p1)/2, P1 and P0. 2082 */ 2083 2084 /* If max and min are equal or already at max, nothing to boost */ 2085 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 2086 return; 2087 2088 if (!cpu->hwp_boost_min) 2089 cpu->hwp_boost_min = min_limit; 2090 2091 /* level at half way mark between min and guranteed */ 2092 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; 2093 2094 if (cpu->hwp_boost_min < boost_level1) 2095 cpu->hwp_boost_min = boost_level1; 2096 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) 2097 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); 2098 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && 2099 max_limit != HWP_GUARANTEED_PERF(hwp_cap)) 2100 cpu->hwp_boost_min = max_limit; 2101 else 2102 return; 2103 2104 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 2105 wrmsrl(MSR_HWP_REQUEST, hwp_req); 2106 cpu->last_update = cpu->sample.time; 2107 } 2108 2109 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 2110 { 2111 if (cpu->hwp_boost_min) { 2112 bool expired; 2113 2114 /* Check if we are idle for hold time to boost down */ 2115 expired = time_after64(cpu->sample.time, cpu->last_update + 2116 hwp_boost_hold_time_ns); 2117 if (expired) { 2118 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); 2119 cpu->hwp_boost_min = 0; 2120 } 2121 } 2122 cpu->last_update = cpu->sample.time; 2123 } 2124 2125 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 2126 u64 time) 2127 { 2128 cpu->sample.time = time; 2129 2130 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 2131 bool do_io = false; 2132 2133 cpu->sched_flags = 0; 2134 /* 2135 * Set iowait_boost flag and update time. Since IO WAIT flag 2136 * is set all the time, we can't just conclude that there is 2137 * some IO bound activity is scheduled on this CPU with just 2138 * one occurrence. If we receive at least two in two 2139 * consecutive ticks, then we treat as boost candidate. 2140 */ 2141 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 2142 do_io = true; 2143 2144 cpu->last_io_update = time; 2145 2146 if (do_io) 2147 intel_pstate_hwp_boost_up(cpu); 2148 2149 } else { 2150 intel_pstate_hwp_boost_down(cpu); 2151 } 2152 } 2153 2154 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 2155 u64 time, unsigned int flags) 2156 { 2157 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2158 2159 cpu->sched_flags |= flags; 2160 2161 if (smp_processor_id() == cpu->cpu) 2162 intel_pstate_update_util_hwp_local(cpu, time); 2163 } 2164 2165 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 2166 { 2167 struct sample *sample = &cpu->sample; 2168 2169 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 2170 } 2171 2172 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 2173 { 2174 u64 aperf, mperf; 2175 unsigned long flags; 2176 u64 tsc; 2177 2178 local_irq_save(flags); 2179 rdmsrl(MSR_IA32_APERF, aperf); 2180 rdmsrl(MSR_IA32_MPERF, mperf); 2181 tsc = rdtsc(); 2182 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 2183 local_irq_restore(flags); 2184 return false; 2185 } 2186 local_irq_restore(flags); 2187 2188 cpu->last_sample_time = cpu->sample.time; 2189 cpu->sample.time = time; 2190 cpu->sample.aperf = aperf; 2191 cpu->sample.mperf = mperf; 2192 cpu->sample.tsc = tsc; 2193 cpu->sample.aperf -= cpu->prev_aperf; 2194 cpu->sample.mperf -= cpu->prev_mperf; 2195 cpu->sample.tsc -= cpu->prev_tsc; 2196 2197 cpu->prev_aperf = aperf; 2198 cpu->prev_mperf = mperf; 2199 cpu->prev_tsc = tsc; 2200 /* 2201 * First time this function is invoked in a given cycle, all of the 2202 * previous sample data fields are equal to zero or stale and they must 2203 * be populated with meaningful numbers for things to work, so assume 2204 * that sample.time will always be reset before setting the utilization 2205 * update hook and make the caller skip the sample then. 2206 */ 2207 if (cpu->last_sample_time) { 2208 intel_pstate_calc_avg_perf(cpu); 2209 return true; 2210 } 2211 return false; 2212 } 2213 2214 static inline int32_t get_avg_frequency(struct cpudata *cpu) 2215 { 2216 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 2217 } 2218 2219 static inline int32_t get_avg_pstate(struct cpudata *cpu) 2220 { 2221 return mul_ext_fp(cpu->pstate.max_pstate_physical, 2222 cpu->sample.core_avg_perf); 2223 } 2224 2225 static inline int32_t get_target_pstate(struct cpudata *cpu) 2226 { 2227 struct sample *sample = &cpu->sample; 2228 int32_t busy_frac; 2229 int target, avg_pstate; 2230 2231 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 2232 sample->tsc); 2233 2234 if (busy_frac < cpu->iowait_boost) 2235 busy_frac = cpu->iowait_boost; 2236 2237 sample->busy_scaled = busy_frac * 100; 2238 2239 target = global.no_turbo || global.turbo_disabled ? 2240 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2241 target += target >> 2; 2242 target = mul_fp(target, busy_frac); 2243 if (target < cpu->pstate.min_pstate) 2244 target = cpu->pstate.min_pstate; 2245 2246 /* 2247 * If the average P-state during the previous cycle was higher than the 2248 * current target, add 50% of the difference to the target to reduce 2249 * possible performance oscillations and offset possible performance 2250 * loss related to moving the workload from one CPU to another within 2251 * a package/module. 2252 */ 2253 avg_pstate = get_avg_pstate(cpu); 2254 if (avg_pstate > target) 2255 target += (avg_pstate - target) >> 1; 2256 2257 return target; 2258 } 2259 2260 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 2261 { 2262 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 2263 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 2264 2265 return clamp_t(int, pstate, min_pstate, max_pstate); 2266 } 2267 2268 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 2269 { 2270 if (pstate == cpu->pstate.current_pstate) 2271 return; 2272 2273 cpu->pstate.current_pstate = pstate; 2274 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 2275 } 2276 2277 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 2278 { 2279 int from = cpu->pstate.current_pstate; 2280 struct sample *sample; 2281 int target_pstate; 2282 2283 update_turbo_state(); 2284 2285 target_pstate = get_target_pstate(cpu); 2286 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2287 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 2288 intel_pstate_update_pstate(cpu, target_pstate); 2289 2290 sample = &cpu->sample; 2291 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 2292 fp_toint(sample->busy_scaled), 2293 from, 2294 cpu->pstate.current_pstate, 2295 sample->mperf, 2296 sample->aperf, 2297 sample->tsc, 2298 get_avg_frequency(cpu), 2299 fp_toint(cpu->iowait_boost * 100)); 2300 } 2301 2302 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 2303 unsigned int flags) 2304 { 2305 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2306 u64 delta_ns; 2307 2308 /* Don't allow remote callbacks */ 2309 if (smp_processor_id() != cpu->cpu) 2310 return; 2311 2312 delta_ns = time - cpu->last_update; 2313 if (flags & SCHED_CPUFREQ_IOWAIT) { 2314 /* Start over if the CPU may have been idle. */ 2315 if (delta_ns > TICK_NSEC) { 2316 cpu->iowait_boost = ONE_EIGHTH_FP; 2317 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 2318 cpu->iowait_boost <<= 1; 2319 if (cpu->iowait_boost > int_tofp(1)) 2320 cpu->iowait_boost = int_tofp(1); 2321 } else { 2322 cpu->iowait_boost = ONE_EIGHTH_FP; 2323 } 2324 } else if (cpu->iowait_boost) { 2325 /* Clear iowait_boost if the CPU may have been idle. */ 2326 if (delta_ns > TICK_NSEC) 2327 cpu->iowait_boost = 0; 2328 else 2329 cpu->iowait_boost >>= 1; 2330 } 2331 cpu->last_update = time; 2332 delta_ns = time - cpu->sample.time; 2333 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 2334 return; 2335 2336 if (intel_pstate_sample(cpu, time)) 2337 intel_pstate_adjust_pstate(cpu); 2338 } 2339 2340 static struct pstate_funcs core_funcs = { 2341 .get_max = core_get_max_pstate, 2342 .get_max_physical = core_get_max_pstate_physical, 2343 .get_min = core_get_min_pstate, 2344 .get_turbo = core_get_turbo_pstate, 2345 .get_scaling = core_get_scaling, 2346 .get_val = core_get_val, 2347 }; 2348 2349 static const struct pstate_funcs silvermont_funcs = { 2350 .get_max = atom_get_max_pstate, 2351 .get_max_physical = atom_get_max_pstate, 2352 .get_min = atom_get_min_pstate, 2353 .get_turbo = atom_get_turbo_pstate, 2354 .get_val = atom_get_val, 2355 .get_scaling = silvermont_get_scaling, 2356 .get_vid = atom_get_vid, 2357 }; 2358 2359 static const struct pstate_funcs airmont_funcs = { 2360 .get_max = atom_get_max_pstate, 2361 .get_max_physical = atom_get_max_pstate, 2362 .get_min = atom_get_min_pstate, 2363 .get_turbo = atom_get_turbo_pstate, 2364 .get_val = atom_get_val, 2365 .get_scaling = airmont_get_scaling, 2366 .get_vid = atom_get_vid, 2367 }; 2368 2369 static const struct pstate_funcs knl_funcs = { 2370 .get_max = core_get_max_pstate, 2371 .get_max_physical = core_get_max_pstate_physical, 2372 .get_min = core_get_min_pstate, 2373 .get_turbo = knl_get_turbo_pstate, 2374 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 2375 .get_scaling = core_get_scaling, 2376 .get_val = core_get_val, 2377 }; 2378 2379 #define X86_MATCH(model, policy) \ 2380 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 2381 X86_FEATURE_APERFMPERF, &policy) 2382 2383 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 2384 X86_MATCH(SANDYBRIDGE, core_funcs), 2385 X86_MATCH(SANDYBRIDGE_X, core_funcs), 2386 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs), 2387 X86_MATCH(IVYBRIDGE, core_funcs), 2388 X86_MATCH(HASWELL, core_funcs), 2389 X86_MATCH(BROADWELL, core_funcs), 2390 X86_MATCH(IVYBRIDGE_X, core_funcs), 2391 X86_MATCH(HASWELL_X, core_funcs), 2392 X86_MATCH(HASWELL_L, core_funcs), 2393 X86_MATCH(HASWELL_G, core_funcs), 2394 X86_MATCH(BROADWELL_G, core_funcs), 2395 X86_MATCH(ATOM_AIRMONT, airmont_funcs), 2396 X86_MATCH(SKYLAKE_L, core_funcs), 2397 X86_MATCH(BROADWELL_X, core_funcs), 2398 X86_MATCH(SKYLAKE, core_funcs), 2399 X86_MATCH(BROADWELL_D, core_funcs), 2400 X86_MATCH(XEON_PHI_KNL, knl_funcs), 2401 X86_MATCH(XEON_PHI_KNM, knl_funcs), 2402 X86_MATCH(ATOM_GOLDMONT, core_funcs), 2403 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs), 2404 X86_MATCH(SKYLAKE_X, core_funcs), 2405 X86_MATCH(COMETLAKE, core_funcs), 2406 X86_MATCH(ICELAKE_X, core_funcs), 2407 X86_MATCH(TIGERLAKE, core_funcs), 2408 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs), 2409 {} 2410 }; 2411 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2412 2413 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2414 X86_MATCH(BROADWELL_D, core_funcs), 2415 X86_MATCH(BROADWELL_X, core_funcs), 2416 X86_MATCH(SKYLAKE_X, core_funcs), 2417 X86_MATCH(ICELAKE_X, core_funcs), 2418 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs), 2419 {} 2420 }; 2421 2422 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2423 X86_MATCH(KABYLAKE, core_funcs), 2424 {} 2425 }; 2426 2427 static int intel_pstate_init_cpu(unsigned int cpunum) 2428 { 2429 struct cpudata *cpu; 2430 2431 cpu = all_cpu_data[cpunum]; 2432 2433 if (!cpu) { 2434 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2435 if (!cpu) 2436 return -ENOMEM; 2437 2438 WRITE_ONCE(all_cpu_data[cpunum], cpu); 2439 2440 cpu->cpu = cpunum; 2441 2442 cpu->epp_default = -EINVAL; 2443 2444 if (hwp_active) { 2445 intel_pstate_hwp_enable(cpu); 2446 2447 if (intel_pstate_acpi_pm_profile_server()) 2448 hwp_boost = true; 2449 } 2450 } else if (hwp_active) { 2451 /* 2452 * Re-enable HWP in case this happens after a resume from ACPI 2453 * S3 if the CPU was offline during the whole system/resume 2454 * cycle. 2455 */ 2456 intel_pstate_hwp_reenable(cpu); 2457 } 2458 2459 cpu->epp_powersave = -EINVAL; 2460 cpu->epp_policy = 0; 2461 2462 intel_pstate_get_cpu_pstates(cpu); 2463 2464 pr_debug("controlling: cpu %d\n", cpunum); 2465 2466 return 0; 2467 } 2468 2469 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2470 { 2471 struct cpudata *cpu = all_cpu_data[cpu_num]; 2472 2473 if (hwp_active && !hwp_boost) 2474 return; 2475 2476 if (cpu->update_util_set) 2477 return; 2478 2479 /* Prevent intel_pstate_update_util() from using stale data. */ 2480 cpu->sample.time = 0; 2481 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2482 (hwp_active ? 2483 intel_pstate_update_util_hwp : 2484 intel_pstate_update_util)); 2485 cpu->update_util_set = true; 2486 } 2487 2488 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2489 { 2490 struct cpudata *cpu_data = all_cpu_data[cpu]; 2491 2492 if (!cpu_data->update_util_set) 2493 return; 2494 2495 cpufreq_remove_update_util_hook(cpu); 2496 cpu_data->update_util_set = false; 2497 synchronize_rcu(); 2498 } 2499 2500 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2501 { 2502 return global.turbo_disabled || global.no_turbo ? 2503 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2504 } 2505 2506 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2507 unsigned int policy_min, 2508 unsigned int policy_max) 2509 { 2510 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 2511 int32_t max_policy_perf, min_policy_perf; 2512 2513 max_policy_perf = policy_max / perf_ctl_scaling; 2514 if (policy_max == policy_min) { 2515 min_policy_perf = max_policy_perf; 2516 } else { 2517 min_policy_perf = policy_min / perf_ctl_scaling; 2518 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2519 0, max_policy_perf); 2520 } 2521 2522 /* 2523 * HWP needs some special consideration, because HWP_REQUEST uses 2524 * abstract values to represent performance rather than pure ratios. 2525 */ 2526 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) { 2527 int scaling = cpu->pstate.scaling; 2528 int freq; 2529 2530 freq = max_policy_perf * perf_ctl_scaling; 2531 max_policy_perf = DIV_ROUND_UP(freq, scaling); 2532 freq = min_policy_perf * perf_ctl_scaling; 2533 min_policy_perf = DIV_ROUND_UP(freq, scaling); 2534 } 2535 2536 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", 2537 cpu->cpu, min_policy_perf, max_policy_perf); 2538 2539 /* Normalize user input to [min_perf, max_perf] */ 2540 if (per_cpu_limits) { 2541 cpu->min_perf_ratio = min_policy_perf; 2542 cpu->max_perf_ratio = max_policy_perf; 2543 } else { 2544 int turbo_max = cpu->pstate.turbo_pstate; 2545 int32_t global_min, global_max; 2546 2547 /* Global limits are in percent of the maximum turbo P-state. */ 2548 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2549 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2550 global_min = clamp_t(int32_t, global_min, 0, global_max); 2551 2552 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2553 global_min, global_max); 2554 2555 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2556 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2557 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2558 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2559 2560 /* Make sure min_perf <= max_perf */ 2561 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2562 cpu->max_perf_ratio); 2563 2564 } 2565 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2566 cpu->max_perf_ratio, 2567 cpu->min_perf_ratio); 2568 } 2569 2570 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2571 { 2572 struct cpudata *cpu; 2573 2574 if (!policy->cpuinfo.max_freq) 2575 return -ENODEV; 2576 2577 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2578 policy->cpuinfo.max_freq, policy->max); 2579 2580 cpu = all_cpu_data[policy->cpu]; 2581 cpu->policy = policy->policy; 2582 2583 mutex_lock(&intel_pstate_limits_lock); 2584 2585 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2586 2587 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2588 /* 2589 * NOHZ_FULL CPUs need this as the governor callback may not 2590 * be invoked on them. 2591 */ 2592 intel_pstate_clear_update_util_hook(policy->cpu); 2593 intel_pstate_max_within_limits(cpu); 2594 } else { 2595 intel_pstate_set_update_util_hook(policy->cpu); 2596 } 2597 2598 if (hwp_active) { 2599 /* 2600 * When hwp_boost was active before and dynamically it 2601 * was turned off, in that case we need to clear the 2602 * update util hook. 2603 */ 2604 if (!hwp_boost) 2605 intel_pstate_clear_update_util_hook(policy->cpu); 2606 intel_pstate_hwp_set(policy->cpu); 2607 } 2608 /* 2609 * policy->cur is never updated with the intel_pstate driver, but it 2610 * is used as a stale frequency value. So, keep it within limits. 2611 */ 2612 policy->cur = policy->min; 2613 2614 mutex_unlock(&intel_pstate_limits_lock); 2615 2616 return 0; 2617 } 2618 2619 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2620 struct cpufreq_policy_data *policy) 2621 { 2622 if (!hwp_active && 2623 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2624 policy->max < policy->cpuinfo.max_freq && 2625 policy->max > cpu->pstate.max_freq) { 2626 pr_debug("policy->max > max non turbo frequency\n"); 2627 policy->max = policy->cpuinfo.max_freq; 2628 } 2629 } 2630 2631 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 2632 struct cpufreq_policy_data *policy) 2633 { 2634 int max_freq; 2635 2636 update_turbo_state(); 2637 if (hwp_active) { 2638 intel_pstate_get_hwp_cap(cpu); 2639 max_freq = global.no_turbo || global.turbo_disabled ? 2640 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2641 } else { 2642 max_freq = intel_pstate_get_max_freq(cpu); 2643 } 2644 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); 2645 2646 intel_pstate_adjust_policy_max(cpu, policy); 2647 } 2648 2649 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 2650 { 2651 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 2652 2653 return 0; 2654 } 2655 2656 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy) 2657 { 2658 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2659 2660 pr_debug("CPU %d going offline\n", cpu->cpu); 2661 2662 if (cpu->suspended) 2663 return 0; 2664 2665 /* 2666 * If the CPU is an SMT thread and it goes offline with the performance 2667 * settings different from the minimum, it will prevent its sibling 2668 * from getting to lower performance levels, so force the minimum 2669 * performance on CPU offline to prevent that from happening. 2670 */ 2671 if (hwp_active) 2672 intel_pstate_hwp_offline(cpu); 2673 else 2674 intel_pstate_set_min_pstate(cpu); 2675 2676 intel_pstate_exit_perf_limits(policy); 2677 2678 return 0; 2679 } 2680 2681 static int intel_pstate_cpu_online(struct cpufreq_policy *policy) 2682 { 2683 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2684 2685 pr_debug("CPU %d going online\n", cpu->cpu); 2686 2687 intel_pstate_init_acpi_perf_limits(policy); 2688 2689 if (hwp_active) { 2690 /* 2691 * Re-enable HWP and clear the "suspended" flag to let "resume" 2692 * know that it need not do that. 2693 */ 2694 intel_pstate_hwp_reenable(cpu); 2695 cpu->suspended = false; 2696 } 2697 2698 return 0; 2699 } 2700 2701 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) 2702 { 2703 intel_pstate_clear_update_util_hook(policy->cpu); 2704 2705 return intel_cpufreq_cpu_offline(policy); 2706 } 2707 2708 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2709 { 2710 pr_debug("CPU %d exiting\n", policy->cpu); 2711 2712 policy->fast_switch_possible = false; 2713 2714 return 0; 2715 } 2716 2717 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2718 { 2719 struct cpudata *cpu; 2720 int rc; 2721 2722 rc = intel_pstate_init_cpu(policy->cpu); 2723 if (rc) 2724 return rc; 2725 2726 cpu = all_cpu_data[policy->cpu]; 2727 2728 cpu->max_perf_ratio = 0xFF; 2729 cpu->min_perf_ratio = 0; 2730 2731 /* cpuinfo and default policy values */ 2732 policy->cpuinfo.min_freq = cpu->pstate.min_freq; 2733 update_turbo_state(); 2734 global.turbo_disabled_mf = global.turbo_disabled; 2735 policy->cpuinfo.max_freq = global.turbo_disabled ? 2736 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2737 2738 policy->min = policy->cpuinfo.min_freq; 2739 policy->max = policy->cpuinfo.max_freq; 2740 2741 intel_pstate_init_acpi_perf_limits(policy); 2742 2743 policy->fast_switch_possible = true; 2744 2745 return 0; 2746 } 2747 2748 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2749 { 2750 int ret = __intel_pstate_cpu_init(policy); 2751 2752 if (ret) 2753 return ret; 2754 2755 /* 2756 * Set the policy to powersave to provide a valid fallback value in case 2757 * the default cpufreq governor is neither powersave nor performance. 2758 */ 2759 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2760 2761 if (hwp_active) { 2762 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2763 2764 cpu->epp_cached = intel_pstate_get_epp(cpu, 0); 2765 } 2766 2767 return 0; 2768 } 2769 2770 static struct cpufreq_driver intel_pstate = { 2771 .flags = CPUFREQ_CONST_LOOPS, 2772 .verify = intel_pstate_verify_policy, 2773 .setpolicy = intel_pstate_set_policy, 2774 .suspend = intel_pstate_suspend, 2775 .resume = intel_pstate_resume, 2776 .init = intel_pstate_cpu_init, 2777 .exit = intel_pstate_cpu_exit, 2778 .offline = intel_pstate_cpu_offline, 2779 .online = intel_pstate_cpu_online, 2780 .update_limits = intel_pstate_update_limits, 2781 .name = "intel_pstate", 2782 }; 2783 2784 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 2785 { 2786 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2787 2788 intel_pstate_verify_cpu_policy(cpu, policy); 2789 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2790 2791 return 0; 2792 } 2793 2794 /* Use of trace in passive mode: 2795 * 2796 * In passive mode the trace core_busy field (also known as the 2797 * performance field, and lablelled as such on the graphs; also known as 2798 * core_avg_perf) is not needed and so is re-assigned to indicate if the 2799 * driver call was via the normal or fast switch path. Various graphs 2800 * output from the intel_pstate_tracer.py utility that include core_busy 2801 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 2802 * so we use 10 to indicate the normal path through the driver, and 2803 * 90 to indicate the fast switch path through the driver. 2804 * The scaled_busy field is not used, and is set to 0. 2805 */ 2806 2807 #define INTEL_PSTATE_TRACE_TARGET 10 2808 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 2809 2810 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 2811 { 2812 struct sample *sample; 2813 2814 if (!trace_pstate_sample_enabled()) 2815 return; 2816 2817 if (!intel_pstate_sample(cpu, ktime_get())) 2818 return; 2819 2820 sample = &cpu->sample; 2821 trace_pstate_sample(trace_type, 2822 0, 2823 old_pstate, 2824 cpu->pstate.current_pstate, 2825 sample->mperf, 2826 sample->aperf, 2827 sample->tsc, 2828 get_avg_frequency(cpu), 2829 fp_toint(cpu->iowait_boost * 100)); 2830 } 2831 2832 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, 2833 u32 desired, bool fast_switch) 2834 { 2835 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; 2836 2837 value &= ~HWP_MIN_PERF(~0L); 2838 value |= HWP_MIN_PERF(min); 2839 2840 value &= ~HWP_MAX_PERF(~0L); 2841 value |= HWP_MAX_PERF(max); 2842 2843 value &= ~HWP_DESIRED_PERF(~0L); 2844 value |= HWP_DESIRED_PERF(desired); 2845 2846 if (value == prev) 2847 return; 2848 2849 WRITE_ONCE(cpu->hwp_req_cached, value); 2850 if (fast_switch) 2851 wrmsrl(MSR_HWP_REQUEST, value); 2852 else 2853 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 2854 } 2855 2856 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, 2857 u32 target_pstate, bool fast_switch) 2858 { 2859 if (fast_switch) 2860 wrmsrl(MSR_IA32_PERF_CTL, 2861 pstate_funcs.get_val(cpu, target_pstate)); 2862 else 2863 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2864 pstate_funcs.get_val(cpu, target_pstate)); 2865 } 2866 2867 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, 2868 int target_pstate, bool fast_switch) 2869 { 2870 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2871 int old_pstate = cpu->pstate.current_pstate; 2872 2873 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2874 if (hwp_active) { 2875 int max_pstate = policy->strict_target ? 2876 target_pstate : cpu->max_perf_ratio; 2877 2878 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, 2879 fast_switch); 2880 } else if (target_pstate != old_pstate) { 2881 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); 2882 } 2883 2884 cpu->pstate.current_pstate = target_pstate; 2885 2886 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : 2887 INTEL_PSTATE_TRACE_TARGET, old_pstate); 2888 2889 return target_pstate; 2890 } 2891 2892 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2893 unsigned int target_freq, 2894 unsigned int relation) 2895 { 2896 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2897 struct cpufreq_freqs freqs; 2898 int target_pstate; 2899 2900 update_turbo_state(); 2901 2902 freqs.old = policy->cur; 2903 freqs.new = target_freq; 2904 2905 cpufreq_freq_transition_begin(policy, &freqs); 2906 2907 switch (relation) { 2908 case CPUFREQ_RELATION_L: 2909 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); 2910 break; 2911 case CPUFREQ_RELATION_H: 2912 target_pstate = freqs.new / cpu->pstate.scaling; 2913 break; 2914 default: 2915 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); 2916 break; 2917 } 2918 2919 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); 2920 2921 freqs.new = target_pstate * cpu->pstate.scaling; 2922 2923 cpufreq_freq_transition_end(policy, &freqs, false); 2924 2925 return 0; 2926 } 2927 2928 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2929 unsigned int target_freq) 2930 { 2931 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2932 int target_pstate; 2933 2934 update_turbo_state(); 2935 2936 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); 2937 2938 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); 2939 2940 return target_pstate * cpu->pstate.scaling; 2941 } 2942 2943 static void intel_cpufreq_adjust_perf(unsigned int cpunum, 2944 unsigned long min_perf, 2945 unsigned long target_perf, 2946 unsigned long capacity) 2947 { 2948 struct cpudata *cpu = all_cpu_data[cpunum]; 2949 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2950 int old_pstate = cpu->pstate.current_pstate; 2951 int cap_pstate, min_pstate, max_pstate, target_pstate; 2952 2953 update_turbo_state(); 2954 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) : 2955 HWP_HIGHEST_PERF(hwp_cap); 2956 2957 /* Optimization: Avoid unnecessary divisions. */ 2958 2959 target_pstate = cap_pstate; 2960 if (target_perf < capacity) 2961 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); 2962 2963 min_pstate = cap_pstate; 2964 if (min_perf < capacity) 2965 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); 2966 2967 if (min_pstate < cpu->pstate.min_pstate) 2968 min_pstate = cpu->pstate.min_pstate; 2969 2970 if (min_pstate < cpu->min_perf_ratio) 2971 min_pstate = cpu->min_perf_ratio; 2972 2973 max_pstate = min(cap_pstate, cpu->max_perf_ratio); 2974 if (max_pstate < min_pstate) 2975 max_pstate = min_pstate; 2976 2977 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); 2978 2979 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); 2980 2981 cpu->pstate.current_pstate = target_pstate; 2982 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 2983 } 2984 2985 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 2986 { 2987 struct freq_qos_request *req; 2988 struct cpudata *cpu; 2989 struct device *dev; 2990 int ret, freq; 2991 2992 dev = get_cpu_device(policy->cpu); 2993 if (!dev) 2994 return -ENODEV; 2995 2996 ret = __intel_pstate_cpu_init(policy); 2997 if (ret) 2998 return ret; 2999 3000 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 3001 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 3002 policy->cur = policy->cpuinfo.min_freq; 3003 3004 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 3005 if (!req) { 3006 ret = -ENOMEM; 3007 goto pstate_exit; 3008 } 3009 3010 cpu = all_cpu_data[policy->cpu]; 3011 3012 if (hwp_active) { 3013 u64 value; 3014 3015 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; 3016 3017 intel_pstate_get_hwp_cap(cpu); 3018 3019 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); 3020 WRITE_ONCE(cpu->hwp_req_cached, value); 3021 3022 cpu->epp_cached = intel_pstate_get_epp(cpu, value); 3023 } else { 3024 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 3025 } 3026 3027 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); 3028 3029 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 3030 freq); 3031 if (ret < 0) { 3032 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 3033 goto free_req; 3034 } 3035 3036 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); 3037 3038 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 3039 freq); 3040 if (ret < 0) { 3041 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 3042 goto remove_min_req; 3043 } 3044 3045 policy->driver_data = req; 3046 3047 return 0; 3048 3049 remove_min_req: 3050 freq_qos_remove_request(req); 3051 free_req: 3052 kfree(req); 3053 pstate_exit: 3054 intel_pstate_exit_perf_limits(policy); 3055 3056 return ret; 3057 } 3058 3059 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 3060 { 3061 struct freq_qos_request *req; 3062 3063 req = policy->driver_data; 3064 3065 freq_qos_remove_request(req + 1); 3066 freq_qos_remove_request(req); 3067 kfree(req); 3068 3069 return intel_pstate_cpu_exit(policy); 3070 } 3071 3072 static int intel_cpufreq_suspend(struct cpufreq_policy *policy) 3073 { 3074 intel_pstate_suspend(policy); 3075 3076 if (hwp_active) { 3077 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3078 u64 value = READ_ONCE(cpu->hwp_req_cached); 3079 3080 /* 3081 * Clear the desired perf field in MSR_HWP_REQUEST in case 3082 * intel_cpufreq_adjust_perf() is in use and the last value 3083 * written by it may not be suitable. 3084 */ 3085 value &= ~HWP_DESIRED_PERF(~0L); 3086 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 3087 WRITE_ONCE(cpu->hwp_req_cached, value); 3088 } 3089 3090 return 0; 3091 } 3092 3093 static struct cpufreq_driver intel_cpufreq = { 3094 .flags = CPUFREQ_CONST_LOOPS, 3095 .verify = intel_cpufreq_verify_policy, 3096 .target = intel_cpufreq_target, 3097 .fast_switch = intel_cpufreq_fast_switch, 3098 .init = intel_cpufreq_cpu_init, 3099 .exit = intel_cpufreq_cpu_exit, 3100 .offline = intel_cpufreq_cpu_offline, 3101 .online = intel_pstate_cpu_online, 3102 .suspend = intel_cpufreq_suspend, 3103 .resume = intel_pstate_resume, 3104 .update_limits = intel_pstate_update_limits, 3105 .name = "intel_cpufreq", 3106 }; 3107 3108 static struct cpufreq_driver *default_driver; 3109 3110 static void intel_pstate_driver_cleanup(void) 3111 { 3112 unsigned int cpu; 3113 3114 cpus_read_lock(); 3115 for_each_online_cpu(cpu) { 3116 if (all_cpu_data[cpu]) { 3117 if (intel_pstate_driver == &intel_pstate) 3118 intel_pstate_clear_update_util_hook(cpu); 3119 3120 spin_lock(&hwp_notify_lock); 3121 kfree(all_cpu_data[cpu]); 3122 WRITE_ONCE(all_cpu_data[cpu], NULL); 3123 spin_unlock(&hwp_notify_lock); 3124 } 3125 } 3126 cpus_read_unlock(); 3127 3128 intel_pstate_driver = NULL; 3129 } 3130 3131 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 3132 { 3133 int ret; 3134 3135 if (driver == &intel_pstate) 3136 intel_pstate_sysfs_expose_hwp_dynamic_boost(); 3137 3138 memset(&global, 0, sizeof(global)); 3139 global.max_perf_pct = 100; 3140 3141 intel_pstate_driver = driver; 3142 ret = cpufreq_register_driver(intel_pstate_driver); 3143 if (ret) { 3144 intel_pstate_driver_cleanup(); 3145 return ret; 3146 } 3147 3148 global.min_perf_pct = min_perf_pct_min(); 3149 3150 return 0; 3151 } 3152 3153 static ssize_t intel_pstate_show_status(char *buf) 3154 { 3155 if (!intel_pstate_driver) 3156 return sprintf(buf, "off\n"); 3157 3158 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 3159 "active" : "passive"); 3160 } 3161 3162 static int intel_pstate_update_status(const char *buf, size_t size) 3163 { 3164 if (size == 3 && !strncmp(buf, "off", size)) { 3165 if (!intel_pstate_driver) 3166 return -EINVAL; 3167 3168 if (hwp_active) 3169 return -EBUSY; 3170 3171 cpufreq_unregister_driver(intel_pstate_driver); 3172 intel_pstate_driver_cleanup(); 3173 return 0; 3174 } 3175 3176 if (size == 6 && !strncmp(buf, "active", size)) { 3177 if (intel_pstate_driver) { 3178 if (intel_pstate_driver == &intel_pstate) 3179 return 0; 3180 3181 cpufreq_unregister_driver(intel_pstate_driver); 3182 } 3183 3184 return intel_pstate_register_driver(&intel_pstate); 3185 } 3186 3187 if (size == 7 && !strncmp(buf, "passive", size)) { 3188 if (intel_pstate_driver) { 3189 if (intel_pstate_driver == &intel_cpufreq) 3190 return 0; 3191 3192 cpufreq_unregister_driver(intel_pstate_driver); 3193 intel_pstate_sysfs_hide_hwp_dynamic_boost(); 3194 } 3195 3196 return intel_pstate_register_driver(&intel_cpufreq); 3197 } 3198 3199 return -EINVAL; 3200 } 3201 3202 static int no_load __initdata; 3203 static int no_hwp __initdata; 3204 static int hwp_only __initdata; 3205 static unsigned int force_load __initdata; 3206 3207 static int __init intel_pstate_msrs_not_valid(void) 3208 { 3209 if (!pstate_funcs.get_max(0) || 3210 !pstate_funcs.get_min(0) || 3211 !pstate_funcs.get_turbo(0)) 3212 return -ENODEV; 3213 3214 return 0; 3215 } 3216 3217 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 3218 { 3219 pstate_funcs.get_max = funcs->get_max; 3220 pstate_funcs.get_max_physical = funcs->get_max_physical; 3221 pstate_funcs.get_min = funcs->get_min; 3222 pstate_funcs.get_turbo = funcs->get_turbo; 3223 pstate_funcs.get_scaling = funcs->get_scaling; 3224 pstate_funcs.get_val = funcs->get_val; 3225 pstate_funcs.get_vid = funcs->get_vid; 3226 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 3227 } 3228 3229 #ifdef CONFIG_ACPI 3230 3231 static bool __init intel_pstate_no_acpi_pss(void) 3232 { 3233 int i; 3234 3235 for_each_possible_cpu(i) { 3236 acpi_status status; 3237 union acpi_object *pss; 3238 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 3239 struct acpi_processor *pr = per_cpu(processors, i); 3240 3241 if (!pr) 3242 continue; 3243 3244 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 3245 if (ACPI_FAILURE(status)) 3246 continue; 3247 3248 pss = buffer.pointer; 3249 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 3250 kfree(pss); 3251 return false; 3252 } 3253 3254 kfree(pss); 3255 } 3256 3257 pr_debug("ACPI _PSS not found\n"); 3258 return true; 3259 } 3260 3261 static bool __init intel_pstate_no_acpi_pcch(void) 3262 { 3263 acpi_status status; 3264 acpi_handle handle; 3265 3266 status = acpi_get_handle(NULL, "\\_SB", &handle); 3267 if (ACPI_FAILURE(status)) 3268 goto not_found; 3269 3270 if (acpi_has_method(handle, "PCCH")) 3271 return false; 3272 3273 not_found: 3274 pr_debug("ACPI PCCH not found\n"); 3275 return true; 3276 } 3277 3278 static bool __init intel_pstate_has_acpi_ppc(void) 3279 { 3280 int i; 3281 3282 for_each_possible_cpu(i) { 3283 struct acpi_processor *pr = per_cpu(processors, i); 3284 3285 if (!pr) 3286 continue; 3287 if (acpi_has_method(pr->handle, "_PPC")) 3288 return true; 3289 } 3290 pr_debug("ACPI _PPC not found\n"); 3291 return false; 3292 } 3293 3294 enum { 3295 PSS, 3296 PPC, 3297 }; 3298 3299 /* Hardware vendor-specific info that has its own power management modes */ 3300 static struct acpi_platform_list plat_info[] __initdata = { 3301 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 3302 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3303 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3304 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3305 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3306 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3307 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3308 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3309 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3310 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3311 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3312 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3313 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3314 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3315 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3316 { } /* End */ 3317 }; 3318 3319 #define BITMASK_OOB (BIT(8) | BIT(18)) 3320 3321 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 3322 { 3323 const struct x86_cpu_id *id; 3324 u64 misc_pwr; 3325 int idx; 3326 3327 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 3328 if (id) { 3329 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 3330 if (misc_pwr & BITMASK_OOB) { 3331 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 3332 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 3333 return true; 3334 } 3335 } 3336 3337 idx = acpi_match_platform_list(plat_info); 3338 if (idx < 0) 3339 return false; 3340 3341 switch (plat_info[idx].data) { 3342 case PSS: 3343 if (!intel_pstate_no_acpi_pss()) 3344 return false; 3345 3346 return intel_pstate_no_acpi_pcch(); 3347 case PPC: 3348 return intel_pstate_has_acpi_ppc() && !force_load; 3349 } 3350 3351 return false; 3352 } 3353 3354 static void intel_pstate_request_control_from_smm(void) 3355 { 3356 /* 3357 * It may be unsafe to request P-states control from SMM if _PPC support 3358 * has not been enabled. 3359 */ 3360 if (acpi_ppc) 3361 acpi_processor_pstate_control(); 3362 } 3363 #else /* CONFIG_ACPI not enabled */ 3364 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 3365 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 3366 static inline void intel_pstate_request_control_from_smm(void) {} 3367 #endif /* CONFIG_ACPI */ 3368 3369 #define INTEL_PSTATE_HWP_BROADWELL 0x01 3370 3371 #define X86_MATCH_HWP(model, hwp_mode) \ 3372 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 3373 X86_FEATURE_HWP, hwp_mode) 3374 3375 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 3376 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 3377 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 3378 X86_MATCH_HWP(ANY, 0), 3379 {} 3380 }; 3381 3382 static bool intel_pstate_hwp_is_enabled(void) 3383 { 3384 u64 value; 3385 3386 rdmsrl(MSR_PM_ENABLE, value); 3387 return !!(value & 0x1); 3388 } 3389 3390 static const struct x86_cpu_id intel_epp_balance_perf[] = { 3391 /* 3392 * Set EPP value as 102, this is the max suggested EPP 3393 * which can result in one core turbo frequency for 3394 * AlderLake Mobile CPUs. 3395 */ 3396 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102), 3397 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32), 3398 {} 3399 }; 3400 3401 static int __init intel_pstate_init(void) 3402 { 3403 static struct cpudata **_all_cpu_data; 3404 const struct x86_cpu_id *id; 3405 int rc; 3406 3407 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 3408 return -ENODEV; 3409 3410 id = x86_match_cpu(hwp_support_ids); 3411 if (id) { 3412 hwp_forced = intel_pstate_hwp_is_enabled(); 3413 3414 if (hwp_forced) 3415 pr_info("HWP enabled by BIOS\n"); 3416 else if (no_load) 3417 return -ENODEV; 3418 3419 copy_cpu_funcs(&core_funcs); 3420 /* 3421 * Avoid enabling HWP for processors without EPP support, 3422 * because that means incomplete HWP implementation which is a 3423 * corner case and supporting it is generally problematic. 3424 * 3425 * If HWP is enabled already, though, there is no choice but to 3426 * deal with it. 3427 */ 3428 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { 3429 WRITE_ONCE(hwp_active, 1); 3430 hwp_mode_bdw = id->driver_data; 3431 intel_pstate.attr = hwp_cpufreq_attrs; 3432 intel_cpufreq.attr = hwp_cpufreq_attrs; 3433 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; 3434 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; 3435 if (!default_driver) 3436 default_driver = &intel_pstate; 3437 3438 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling; 3439 3440 goto hwp_cpu_matched; 3441 } 3442 pr_info("HWP not enabled\n"); 3443 } else { 3444 if (no_load) 3445 return -ENODEV; 3446 3447 id = x86_match_cpu(intel_pstate_cpu_ids); 3448 if (!id) { 3449 pr_info("CPU model not supported\n"); 3450 return -ENODEV; 3451 } 3452 3453 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 3454 } 3455 3456 if (intel_pstate_msrs_not_valid()) { 3457 pr_info("Invalid MSRs\n"); 3458 return -ENODEV; 3459 } 3460 /* Without HWP start in the passive mode. */ 3461 if (!default_driver) 3462 default_driver = &intel_cpufreq; 3463 3464 hwp_cpu_matched: 3465 /* 3466 * The Intel pstate driver will be ignored if the platform 3467 * firmware has its own power management modes. 3468 */ 3469 if (intel_pstate_platform_pwr_mgmt_exists()) { 3470 pr_info("P-states controlled by the platform\n"); 3471 return -ENODEV; 3472 } 3473 3474 if (!hwp_active && hwp_only) 3475 return -ENOTSUPP; 3476 3477 pr_info("Intel P-state driver initializing\n"); 3478 3479 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 3480 if (!_all_cpu_data) 3481 return -ENOMEM; 3482 3483 WRITE_ONCE(all_cpu_data, _all_cpu_data); 3484 3485 intel_pstate_request_control_from_smm(); 3486 3487 intel_pstate_sysfs_expose_params(); 3488 3489 if (hwp_active) { 3490 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf); 3491 3492 if (id) 3493 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data; 3494 } 3495 3496 mutex_lock(&intel_pstate_driver_lock); 3497 rc = intel_pstate_register_driver(default_driver); 3498 mutex_unlock(&intel_pstate_driver_lock); 3499 if (rc) { 3500 intel_pstate_sysfs_remove(); 3501 return rc; 3502 } 3503 3504 if (hwp_active) { 3505 const struct x86_cpu_id *id; 3506 3507 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 3508 if (id) { 3509 set_power_ctl_ee_state(false); 3510 pr_info("Disabling energy efficiency optimization\n"); 3511 } 3512 3513 pr_info("HWP enabled\n"); 3514 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 3515 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n"); 3516 } 3517 3518 return 0; 3519 } 3520 device_initcall(intel_pstate_init); 3521 3522 static int __init intel_pstate_setup(char *str) 3523 { 3524 if (!str) 3525 return -EINVAL; 3526 3527 if (!strcmp(str, "disable")) 3528 no_load = 1; 3529 else if (!strcmp(str, "active")) 3530 default_driver = &intel_pstate; 3531 else if (!strcmp(str, "passive")) 3532 default_driver = &intel_cpufreq; 3533 3534 if (!strcmp(str, "no_hwp")) 3535 no_hwp = 1; 3536 3537 if (!strcmp(str, "force")) 3538 force_load = 1; 3539 if (!strcmp(str, "hwp_only")) 3540 hwp_only = 1; 3541 if (!strcmp(str, "per_cpu_perf_limits")) 3542 per_cpu_limits = true; 3543 3544 #ifdef CONFIG_ACPI 3545 if (!strcmp(str, "support_acpi_ppc")) 3546 acpi_ppc = true; 3547 #endif 3548 3549 return 0; 3550 } 3551 early_param("intel_pstate", intel_pstate_setup); 3552 3553 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 3554 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 3555