xref: /linux/drivers/cpufreq/intel_pstate.c (revision d0fde6aae2bacdc024fff43461ba0f325375fa97)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37 
38 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
39 
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54 
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59 
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64 
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 	return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69 
70 static inline int ceiling_fp(int32_t x)
71 {
72 	int mask, ret;
73 
74 	ret = fp_toint(x);
75 	mask = (1 << FRAC_BITS) - 1;
76 	if (x & mask)
77 		ret += 1;
78 	return ret;
79 }
80 
81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83 	return (x * y) >> EXT_FRAC_BITS;
84 }
85 
86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88 	return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90 
91 /**
92  * struct sample -	Store performance sample
93  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
94  *			performance during last sample period
95  * @busy_scaled:	Scaled busy value which is used to calculate next
96  *			P state. This can be different than core_avg_perf
97  *			to account for cpu idle period
98  * @aperf:		Difference of actual performance frequency clock count
99  *			read from APERF MSR between last and current sample
100  * @mperf:		Difference of maximum performance frequency clock count
101  *			read from MPERF MSR between last and current sample
102  * @tsc:		Difference of time stamp counter between last and
103  *			current sample
104  * @time:		Current time from scheduler
105  *
106  * This structure is used in the cpudata structure to store performance sample
107  * data for choosing next P State.
108  */
109 struct sample {
110 	int32_t core_avg_perf;
111 	int32_t busy_scaled;
112 	u64 aperf;
113 	u64 mperf;
114 	u64 tsc;
115 	u64 time;
116 };
117 
118 /**
119  * struct pstate_data - Store P state data
120  * @current_pstate:	Current requested P state
121  * @min_pstate:		Min P state possible for this platform
122  * @max_pstate:		Max P state possible for this platform
123  * @max_pstate_physical:This is physical Max P state for a processor
124  *			This can be higher than the max_pstate which can
125  *			be limited by platform thermal design power limits
126  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
127  * @scaling:		Scaling factor between performance and frequency
128  * @turbo_pstate:	Max Turbo P state possible for this platform
129  * @min_freq:		@min_pstate frequency in cpufreq units
130  * @max_freq:		@max_pstate frequency in cpufreq units
131  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136 	int	current_pstate;
137 	int	min_pstate;
138 	int	max_pstate;
139 	int	max_pstate_physical;
140 	int	perf_ctl_scaling;
141 	int	scaling;
142 	int	turbo_pstate;
143 	unsigned int min_freq;
144 	unsigned int max_freq;
145 	unsigned int turbo_freq;
146 };
147 
148 /**
149  * struct vid_data -	Stores voltage information data
150  * @min:		VID data for this platform corresponding to
151  *			the lowest P state
152  * @max:		VID data corresponding to the highest P State.
153  * @turbo:		VID data for turbo P state
154  * @ratio:		Ratio of (vid max - vid min) /
155  *			(max P state - Min P State)
156  *
157  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158  * This data is used in Atom platforms, where in addition to target P state,
159  * the voltage data needs to be specified to select next P State.
160  */
161 struct vid_data {
162 	int min;
163 	int max;
164 	int turbo;
165 	int32_t ratio;
166 };
167 
168 /**
169  * struct global_params - Global parameters, mostly tunable via sysfs.
170  * @no_turbo:		Whether or not to use turbo P-states.
171  * @turbo_disabled:	Whether or not turbo P-states are available at all,
172  *			based on the MSR_IA32_MISC_ENABLE value and whether or
173  *			not the maximum reported turbo P-state is different from
174  *			the maximum reported non-turbo one.
175  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
176  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
177  *			P-state capacity.
178  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
179  *			P-state capacity.
180  */
181 struct global_params {
182 	bool no_turbo;
183 	bool turbo_disabled;
184 	bool turbo_disabled_mf;
185 	int max_perf_pct;
186 	int min_perf_pct;
187 };
188 
189 /**
190  * struct cpudata -	Per CPU instance data storage
191  * @cpu:		CPU number for this instance data
192  * @policy:		CPUFreq policy value
193  * @update_util:	CPUFreq utility callback information
194  * @update_util_set:	CPUFreq utility callback is set
195  * @iowait_boost:	iowait-related boost fraction
196  * @last_update:	Time of the last update.
197  * @pstate:		Stores P state limits for this CPU
198  * @vid:		Stores VID limits for this CPU
199  * @last_sample_time:	Last Sample time
200  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
201  * @prev_aperf:		Last APERF value read from APERF MSR
202  * @prev_mperf:		Last MPERF value read from MPERF MSR
203  * @prev_tsc:		Last timestamp counter (TSC) value
204  * @prev_cummulative_iowait: IO Wait time difference from last and
205  *			current sample
206  * @sample:		Storage for storing last Sample data
207  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
208  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
209  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
210  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
211  * @epp_powersave:	Last saved HWP energy performance preference
212  *			(EPP) or energy performance bias (EPB),
213  *			when policy switched to performance
214  * @epp_policy:		Last saved policy used to set EPP/EPB
215  * @epp_default:	Power on default HWP energy performance
216  *			preference/bias
217  * @epp_cached		Cached HWP energy-performance preference value
218  * @hwp_req_cached:	Cached value of the last HWP Request MSR
219  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
220  * @last_io_update:	Last time when IO wake flag was set
221  * @sched_flags:	Store scheduler flags for possible cross CPU update
222  * @hwp_boost_min:	Last HWP boosted min performance
223  * @suspended:		Whether or not the driver has been suspended.
224  * @hwp_notify_work:	workqueue for HWP notifications.
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229 	int cpu;
230 
231 	unsigned int policy;
232 	struct update_util_data update_util;
233 	bool   update_util_set;
234 
235 	struct pstate_data pstate;
236 	struct vid_data vid;
237 
238 	u64	last_update;
239 	u64	last_sample_time;
240 	u64	aperf_mperf_shift;
241 	u64	prev_aperf;
242 	u64	prev_mperf;
243 	u64	prev_tsc;
244 	u64	prev_cummulative_iowait;
245 	struct sample sample;
246 	int32_t	min_perf_ratio;
247 	int32_t	max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 	struct acpi_processor_performance acpi_perf_data;
250 	bool valid_pss_table;
251 #endif
252 	unsigned int iowait_boost;
253 	s16 epp_powersave;
254 	s16 epp_policy;
255 	s16 epp_default;
256 	s16 epp_cached;
257 	u64 hwp_req_cached;
258 	u64 hwp_cap_cached;
259 	u64 last_io_update;
260 	unsigned int sched_flags;
261 	u32 hwp_boost_min;
262 	bool suspended;
263 	struct delayed_work hwp_notify_work;
264 };
265 
266 static struct cpudata **all_cpu_data;
267 
268 /**
269  * struct pstate_funcs - Per CPU model specific callbacks
270  * @get_max:		Callback to get maximum non turbo effective P state
271  * @get_max_physical:	Callback to get maximum non turbo physical P state
272  * @get_min:		Callback to get minimum P state
273  * @get_turbo:		Callback to get turbo P state
274  * @get_scaling:	Callback to get frequency scaling factor
275  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
276  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277  * @get_val:		Callback to convert P state to actual MSR write value
278  * @get_vid:		Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284 	int (*get_max)(int cpu);
285 	int (*get_max_physical)(int cpu);
286 	int (*get_min)(int cpu);
287 	int (*get_turbo)(int cpu);
288 	int (*get_scaling)(void);
289 	int (*get_cpu_scaling)(int cpu);
290 	int (*get_aperf_mperf_shift)(void);
291 	u64 (*get_val)(struct cpudata*, int pstate);
292 	void (*get_vid)(struct cpudata *);
293 };
294 
295 static struct pstate_funcs pstate_funcs __read_mostly;
296 
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_forced __read_mostly;
302 
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304 
305 #define HYBRID_SCALING_FACTOR	78741
306 
307 static inline int core_get_scaling(void)
308 {
309 	return 100000;
310 }
311 
312 #ifdef CONFIG_ACPI
313 static bool acpi_ppc;
314 #endif
315 
316 static struct global_params global;
317 
318 static DEFINE_MUTEX(intel_pstate_driver_lock);
319 static DEFINE_MUTEX(intel_pstate_limits_lock);
320 
321 #ifdef CONFIG_ACPI
322 
323 static bool intel_pstate_acpi_pm_profile_server(void)
324 {
325 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
326 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
327 		return true;
328 
329 	return false;
330 }
331 
332 static bool intel_pstate_get_ppc_enable_status(void)
333 {
334 	if (intel_pstate_acpi_pm_profile_server())
335 		return true;
336 
337 	return acpi_ppc;
338 }
339 
340 #ifdef CONFIG_ACPI_CPPC_LIB
341 
342 /* The work item is needed to avoid CPU hotplug locking issues */
343 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
344 {
345 	sched_set_itmt_support();
346 }
347 
348 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
349 
350 #define CPPC_MAX_PERF	U8_MAX
351 
352 static void intel_pstate_set_itmt_prio(int cpu)
353 {
354 	struct cppc_perf_caps cppc_perf;
355 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
356 	int ret;
357 
358 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
359 	if (ret)
360 		return;
361 
362 	/*
363 	 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
364 	 * In this case we can't use CPPC.highest_perf to enable ITMT.
365 	 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
366 	 */
367 	if (cppc_perf.highest_perf == CPPC_MAX_PERF)
368 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
369 
370 	/*
371 	 * The priorities can be set regardless of whether or not
372 	 * sched_set_itmt_support(true) has been called and it is valid to
373 	 * update them at any time after it has been called.
374 	 */
375 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
376 
377 	if (max_highest_perf <= min_highest_perf) {
378 		if (cppc_perf.highest_perf > max_highest_perf)
379 			max_highest_perf = cppc_perf.highest_perf;
380 
381 		if (cppc_perf.highest_perf < min_highest_perf)
382 			min_highest_perf = cppc_perf.highest_perf;
383 
384 		if (max_highest_perf > min_highest_perf) {
385 			/*
386 			 * This code can be run during CPU online under the
387 			 * CPU hotplug locks, so sched_set_itmt_support()
388 			 * cannot be called from here.  Queue up a work item
389 			 * to invoke it.
390 			 */
391 			schedule_work(&sched_itmt_work);
392 		}
393 	}
394 }
395 
396 static int intel_pstate_get_cppc_guaranteed(int cpu)
397 {
398 	struct cppc_perf_caps cppc_perf;
399 	int ret;
400 
401 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
402 	if (ret)
403 		return ret;
404 
405 	if (cppc_perf.guaranteed_perf)
406 		return cppc_perf.guaranteed_perf;
407 
408 	return cppc_perf.nominal_perf;
409 }
410 
411 static int intel_pstate_cppc_get_scaling(int cpu)
412 {
413 	struct cppc_perf_caps cppc_perf;
414 	int ret;
415 
416 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
417 
418 	/*
419 	 * If the nominal frequency and the nominal performance are not
420 	 * zero and the ratio between them is not 100, return the hybrid
421 	 * scaling factor.
422 	 */
423 	if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
424 	    cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
425 		return HYBRID_SCALING_FACTOR;
426 
427 	return core_get_scaling();
428 }
429 
430 #else /* CONFIG_ACPI_CPPC_LIB */
431 static inline void intel_pstate_set_itmt_prio(int cpu)
432 {
433 }
434 #endif /* CONFIG_ACPI_CPPC_LIB */
435 
436 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
437 {
438 	struct cpudata *cpu;
439 	int ret;
440 	int i;
441 
442 	if (hwp_active) {
443 		intel_pstate_set_itmt_prio(policy->cpu);
444 		return;
445 	}
446 
447 	if (!intel_pstate_get_ppc_enable_status())
448 		return;
449 
450 	cpu = all_cpu_data[policy->cpu];
451 
452 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
453 						  policy->cpu);
454 	if (ret)
455 		return;
456 
457 	/*
458 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
459 	 * guarantee that the states returned by it map to the states in our
460 	 * list directly.
461 	 */
462 	if (cpu->acpi_perf_data.control_register.space_id !=
463 						ACPI_ADR_SPACE_FIXED_HARDWARE)
464 		goto err;
465 
466 	/*
467 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
468 	 * usual without taking _PSS into account
469 	 */
470 	if (cpu->acpi_perf_data.state_count < 2)
471 		goto err;
472 
473 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
474 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
475 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
476 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
477 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
478 			 (u32) cpu->acpi_perf_data.states[i].power,
479 			 (u32) cpu->acpi_perf_data.states[i].control);
480 	}
481 
482 	cpu->valid_pss_table = true;
483 	pr_debug("_PPC limits will be enforced\n");
484 
485 	return;
486 
487  err:
488 	cpu->valid_pss_table = false;
489 	acpi_processor_unregister_performance(policy->cpu);
490 }
491 
492 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494 	struct cpudata *cpu;
495 
496 	cpu = all_cpu_data[policy->cpu];
497 	if (!cpu->valid_pss_table)
498 		return;
499 
500 	acpi_processor_unregister_performance(policy->cpu);
501 }
502 #else /* CONFIG_ACPI */
503 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
504 {
505 }
506 
507 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
508 {
509 }
510 
511 static inline bool intel_pstate_acpi_pm_profile_server(void)
512 {
513 	return false;
514 }
515 #endif /* CONFIG_ACPI */
516 
517 #ifndef CONFIG_ACPI_CPPC_LIB
518 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
519 {
520 	return -ENOTSUPP;
521 }
522 
523 static int intel_pstate_cppc_get_scaling(int cpu)
524 {
525 	return core_get_scaling();
526 }
527 #endif /* CONFIG_ACPI_CPPC_LIB */
528 
529 /**
530  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
531  * @cpu: Target CPU.
532  *
533  * On hybrid processors, HWP may expose more performance levels than there are
534  * P-states accessible through the PERF_CTL interface.  If that happens, the
535  * scaling factor between HWP performance levels and CPU frequency will be less
536  * than the scaling factor between P-state values and CPU frequency.
537  *
538  * In that case, adjust the CPU parameters used in computations accordingly.
539  */
540 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
541 {
542 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
543 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
544 	int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
545 	int scaling = cpu->pstate.scaling;
546 
547 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
548 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
549 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
550 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
551 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
552 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
553 
554 	cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
555 					   perf_ctl_scaling);
556 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
557 					 perf_ctl_scaling);
558 
559 	cpu->pstate.max_pstate_physical =
560 			DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
561 				     scaling);
562 
563 	cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
564 	/*
565 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
566 	 * the effective range of HWP performance levels.
567 	 */
568 	cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
569 }
570 
571 static inline void update_turbo_state(void)
572 {
573 	u64 misc_en;
574 
575 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
576 	global.turbo_disabled = misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
577 }
578 
579 static int min_perf_pct_min(void)
580 {
581 	struct cpudata *cpu = all_cpu_data[0];
582 	int turbo_pstate = cpu->pstate.turbo_pstate;
583 
584 	return turbo_pstate ?
585 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
586 }
587 
588 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
589 {
590 	u64 epb;
591 	int ret;
592 
593 	if (!boot_cpu_has(X86_FEATURE_EPB))
594 		return -ENXIO;
595 
596 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
597 	if (ret)
598 		return (s16)ret;
599 
600 	return (s16)(epb & 0x0f);
601 }
602 
603 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
604 {
605 	s16 epp;
606 
607 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
608 		/*
609 		 * When hwp_req_data is 0, means that caller didn't read
610 		 * MSR_HWP_REQUEST, so need to read and get EPP.
611 		 */
612 		if (!hwp_req_data) {
613 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
614 					    &hwp_req_data);
615 			if (epp)
616 				return epp;
617 		}
618 		epp = (hwp_req_data >> 24) & 0xff;
619 	} else {
620 		/* When there is no EPP present, HWP uses EPB settings */
621 		epp = intel_pstate_get_epb(cpu_data);
622 	}
623 
624 	return epp;
625 }
626 
627 static int intel_pstate_set_epb(int cpu, s16 pref)
628 {
629 	u64 epb;
630 	int ret;
631 
632 	if (!boot_cpu_has(X86_FEATURE_EPB))
633 		return -ENXIO;
634 
635 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
636 	if (ret)
637 		return ret;
638 
639 	epb = (epb & ~0x0f) | pref;
640 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
641 
642 	return 0;
643 }
644 
645 /*
646  * EPP/EPB display strings corresponding to EPP index in the
647  * energy_perf_strings[]
648  *	index		String
649  *-------------------------------------
650  *	0		default
651  *	1		performance
652  *	2		balance_performance
653  *	3		balance_power
654  *	4		power
655  */
656 
657 enum energy_perf_value_index {
658 	EPP_INDEX_DEFAULT = 0,
659 	EPP_INDEX_PERFORMANCE,
660 	EPP_INDEX_BALANCE_PERFORMANCE,
661 	EPP_INDEX_BALANCE_POWERSAVE,
662 	EPP_INDEX_POWERSAVE,
663 };
664 
665 static const char * const energy_perf_strings[] = {
666 	[EPP_INDEX_DEFAULT] = "default",
667 	[EPP_INDEX_PERFORMANCE] = "performance",
668 	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
669 	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
670 	[EPP_INDEX_POWERSAVE] = "power",
671 	NULL
672 };
673 static unsigned int epp_values[] = {
674 	[EPP_INDEX_DEFAULT] = 0, /* Unused index */
675 	[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
676 	[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
677 	[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
678 	[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
679 };
680 
681 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
682 {
683 	s16 epp;
684 	int index = -EINVAL;
685 
686 	*raw_epp = 0;
687 	epp = intel_pstate_get_epp(cpu_data, 0);
688 	if (epp < 0)
689 		return epp;
690 
691 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
692 		if (epp == epp_values[EPP_INDEX_PERFORMANCE])
693 			return EPP_INDEX_PERFORMANCE;
694 		if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
695 			return EPP_INDEX_BALANCE_PERFORMANCE;
696 		if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
697 			return EPP_INDEX_BALANCE_POWERSAVE;
698 		if (epp == epp_values[EPP_INDEX_POWERSAVE])
699 			return EPP_INDEX_POWERSAVE;
700 		*raw_epp = epp;
701 		return 0;
702 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
703 		/*
704 		 * Range:
705 		 *	0x00-0x03	:	Performance
706 		 *	0x04-0x07	:	Balance performance
707 		 *	0x08-0x0B	:	Balance power
708 		 *	0x0C-0x0F	:	Power
709 		 * The EPB is a 4 bit value, but our ranges restrict the
710 		 * value which can be set. Here only using top two bits
711 		 * effectively.
712 		 */
713 		index = (epp >> 2) + 1;
714 	}
715 
716 	return index;
717 }
718 
719 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
720 {
721 	int ret;
722 
723 	/*
724 	 * Use the cached HWP Request MSR value, because in the active mode the
725 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
726 	 * intel_pstate_hwp_boost_down() at any time.
727 	 */
728 	u64 value = READ_ONCE(cpu->hwp_req_cached);
729 
730 	value &= ~GENMASK_ULL(31, 24);
731 	value |= (u64)epp << 24;
732 	/*
733 	 * The only other updater of hwp_req_cached in the active mode,
734 	 * intel_pstate_hwp_set(), is called under the same lock as this
735 	 * function, so it cannot run in parallel with the update below.
736 	 */
737 	WRITE_ONCE(cpu->hwp_req_cached, value);
738 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
739 	if (!ret)
740 		cpu->epp_cached = epp;
741 
742 	return ret;
743 }
744 
745 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
746 					      int pref_index, bool use_raw,
747 					      u32 raw_epp)
748 {
749 	int epp = -EINVAL;
750 	int ret;
751 
752 	if (!pref_index)
753 		epp = cpu_data->epp_default;
754 
755 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
756 		if (use_raw)
757 			epp = raw_epp;
758 		else if (epp == -EINVAL)
759 			epp = epp_values[pref_index];
760 
761 		/*
762 		 * To avoid confusion, refuse to set EPP to any values different
763 		 * from 0 (performance) if the current policy is "performance",
764 		 * because those values would be overridden.
765 		 */
766 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
767 			return -EBUSY;
768 
769 		ret = intel_pstate_set_epp(cpu_data, epp);
770 	} else {
771 		if (epp == -EINVAL)
772 			epp = (pref_index - 1) << 2;
773 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
774 	}
775 
776 	return ret;
777 }
778 
779 static ssize_t show_energy_performance_available_preferences(
780 				struct cpufreq_policy *policy, char *buf)
781 {
782 	int i = 0;
783 	int ret = 0;
784 
785 	while (energy_perf_strings[i] != NULL)
786 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
787 
788 	ret += sprintf(&buf[ret], "\n");
789 
790 	return ret;
791 }
792 
793 cpufreq_freq_attr_ro(energy_performance_available_preferences);
794 
795 static struct cpufreq_driver intel_pstate;
796 
797 static ssize_t store_energy_performance_preference(
798 		struct cpufreq_policy *policy, const char *buf, size_t count)
799 {
800 	struct cpudata *cpu = all_cpu_data[policy->cpu];
801 	char str_preference[21];
802 	bool raw = false;
803 	ssize_t ret;
804 	u32 epp = 0;
805 
806 	ret = sscanf(buf, "%20s", str_preference);
807 	if (ret != 1)
808 		return -EINVAL;
809 
810 	ret = match_string(energy_perf_strings, -1, str_preference);
811 	if (ret < 0) {
812 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
813 			return ret;
814 
815 		ret = kstrtouint(buf, 10, &epp);
816 		if (ret)
817 			return ret;
818 
819 		if (epp > 255)
820 			return -EINVAL;
821 
822 		raw = true;
823 	}
824 
825 	/*
826 	 * This function runs with the policy R/W semaphore held, which
827 	 * guarantees that the driver pointer will not change while it is
828 	 * running.
829 	 */
830 	if (!intel_pstate_driver)
831 		return -EAGAIN;
832 
833 	mutex_lock(&intel_pstate_limits_lock);
834 
835 	if (intel_pstate_driver == &intel_pstate) {
836 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
837 	} else {
838 		/*
839 		 * In the passive mode the governor needs to be stopped on the
840 		 * target CPU before the EPP update and restarted after it,
841 		 * which is super-heavy-weight, so make sure it is worth doing
842 		 * upfront.
843 		 */
844 		if (!raw)
845 			epp = ret ? epp_values[ret] : cpu->epp_default;
846 
847 		if (cpu->epp_cached != epp) {
848 			int err;
849 
850 			cpufreq_stop_governor(policy);
851 			ret = intel_pstate_set_epp(cpu, epp);
852 			err = cpufreq_start_governor(policy);
853 			if (!ret)
854 				ret = err;
855 		} else {
856 			ret = 0;
857 		}
858 	}
859 
860 	mutex_unlock(&intel_pstate_limits_lock);
861 
862 	return ret ?: count;
863 }
864 
865 static ssize_t show_energy_performance_preference(
866 				struct cpufreq_policy *policy, char *buf)
867 {
868 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
869 	int preference, raw_epp;
870 
871 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
872 	if (preference < 0)
873 		return preference;
874 
875 	if (raw_epp)
876 		return  sprintf(buf, "%d\n", raw_epp);
877 	else
878 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
879 }
880 
881 cpufreq_freq_attr_rw(energy_performance_preference);
882 
883 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
884 {
885 	struct cpudata *cpu = all_cpu_data[policy->cpu];
886 	int ratio, freq;
887 
888 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
889 	if (ratio <= 0) {
890 		u64 cap;
891 
892 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
893 		ratio = HWP_GUARANTEED_PERF(cap);
894 	}
895 
896 	freq = ratio * cpu->pstate.scaling;
897 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
898 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
899 
900 	return sprintf(buf, "%d\n", freq);
901 }
902 
903 cpufreq_freq_attr_ro(base_frequency);
904 
905 static struct freq_attr *hwp_cpufreq_attrs[] = {
906 	&energy_performance_preference,
907 	&energy_performance_available_preferences,
908 	&base_frequency,
909 	NULL,
910 };
911 
912 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
913 {
914 	u64 cap;
915 
916 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
917 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
918 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
919 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
920 }
921 
922 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
923 {
924 	int scaling = cpu->pstate.scaling;
925 
926 	__intel_pstate_get_hwp_cap(cpu);
927 
928 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
929 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
930 	if (scaling != cpu->pstate.perf_ctl_scaling) {
931 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
932 
933 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
934 						 perf_ctl_scaling);
935 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
936 						   perf_ctl_scaling);
937 	}
938 }
939 
940 static void intel_pstate_hwp_set(unsigned int cpu)
941 {
942 	struct cpudata *cpu_data = all_cpu_data[cpu];
943 	int max, min;
944 	u64 value;
945 	s16 epp;
946 
947 	max = cpu_data->max_perf_ratio;
948 	min = cpu_data->min_perf_ratio;
949 
950 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
951 		min = max;
952 
953 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
954 
955 	value &= ~HWP_MIN_PERF(~0L);
956 	value |= HWP_MIN_PERF(min);
957 
958 	value &= ~HWP_MAX_PERF(~0L);
959 	value |= HWP_MAX_PERF(max);
960 
961 	if (cpu_data->epp_policy == cpu_data->policy)
962 		goto skip_epp;
963 
964 	cpu_data->epp_policy = cpu_data->policy;
965 
966 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
967 		epp = intel_pstate_get_epp(cpu_data, value);
968 		cpu_data->epp_powersave = epp;
969 		/* If EPP read was failed, then don't try to write */
970 		if (epp < 0)
971 			goto skip_epp;
972 
973 		epp = 0;
974 	} else {
975 		/* skip setting EPP, when saved value is invalid */
976 		if (cpu_data->epp_powersave < 0)
977 			goto skip_epp;
978 
979 		/*
980 		 * No need to restore EPP when it is not zero. This
981 		 * means:
982 		 *  - Policy is not changed
983 		 *  - user has manually changed
984 		 *  - Error reading EPB
985 		 */
986 		epp = intel_pstate_get_epp(cpu_data, value);
987 		if (epp)
988 			goto skip_epp;
989 
990 		epp = cpu_data->epp_powersave;
991 	}
992 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
993 		value &= ~GENMASK_ULL(31, 24);
994 		value |= (u64)epp << 24;
995 	} else {
996 		intel_pstate_set_epb(cpu, epp);
997 	}
998 skip_epp:
999 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1000 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1001 }
1002 
1003 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1004 
1005 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1006 {
1007 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1008 	int min_perf;
1009 
1010 	intel_pstate_disable_hwp_interrupt(cpu);
1011 
1012 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1013 		/*
1014 		 * In case the EPP has been set to "performance" by the
1015 		 * active mode "performance" scaling algorithm, replace that
1016 		 * temporary value with the cached EPP one.
1017 		 */
1018 		value &= ~GENMASK_ULL(31, 24);
1019 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1020 		/*
1021 		 * However, make sure that EPP will be set to "performance" when
1022 		 * the CPU is brought back online again and the "performance"
1023 		 * scaling algorithm is still in effect.
1024 		 */
1025 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1026 	}
1027 
1028 	/*
1029 	 * Clear the desired perf field in the cached HWP request value to
1030 	 * prevent nonzero desired values from being leaked into the active
1031 	 * mode.
1032 	 */
1033 	value &= ~HWP_DESIRED_PERF(~0L);
1034 	WRITE_ONCE(cpu->hwp_req_cached, value);
1035 
1036 	value &= ~GENMASK_ULL(31, 0);
1037 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1038 
1039 	/* Set hwp_max = hwp_min */
1040 	value |= HWP_MAX_PERF(min_perf);
1041 	value |= HWP_MIN_PERF(min_perf);
1042 
1043 	/* Set EPP to min */
1044 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1045 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1046 
1047 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1048 }
1049 
1050 #define POWER_CTL_EE_ENABLE	1
1051 #define POWER_CTL_EE_DISABLE	2
1052 
1053 static int power_ctl_ee_state;
1054 
1055 static void set_power_ctl_ee_state(bool input)
1056 {
1057 	u64 power_ctl;
1058 
1059 	mutex_lock(&intel_pstate_driver_lock);
1060 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1061 	if (input) {
1062 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1063 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1064 	} else {
1065 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1066 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1067 	}
1068 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1069 	mutex_unlock(&intel_pstate_driver_lock);
1070 }
1071 
1072 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1073 
1074 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1075 {
1076 	intel_pstate_hwp_enable(cpu);
1077 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1078 }
1079 
1080 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1081 {
1082 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1083 
1084 	pr_debug("CPU %d suspending\n", cpu->cpu);
1085 
1086 	cpu->suspended = true;
1087 
1088 	/* disable HWP interrupt and cancel any pending work */
1089 	intel_pstate_disable_hwp_interrupt(cpu);
1090 
1091 	return 0;
1092 }
1093 
1094 static int intel_pstate_resume(struct cpufreq_policy *policy)
1095 {
1096 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1097 
1098 	pr_debug("CPU %d resuming\n", cpu->cpu);
1099 
1100 	/* Only restore if the system default is changed */
1101 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1102 		set_power_ctl_ee_state(true);
1103 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1104 		set_power_ctl_ee_state(false);
1105 
1106 	if (cpu->suspended && hwp_active) {
1107 		mutex_lock(&intel_pstate_limits_lock);
1108 
1109 		/* Re-enable HWP, because "online" has not done that. */
1110 		intel_pstate_hwp_reenable(cpu);
1111 
1112 		mutex_unlock(&intel_pstate_limits_lock);
1113 	}
1114 
1115 	cpu->suspended = false;
1116 
1117 	return 0;
1118 }
1119 
1120 static void intel_pstate_update_policies(void)
1121 {
1122 	int cpu;
1123 
1124 	for_each_possible_cpu(cpu)
1125 		cpufreq_update_policy(cpu);
1126 }
1127 
1128 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1129 					   struct cpufreq_policy *policy)
1130 {
1131 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1132 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1133 	refresh_frequency_limits(policy);
1134 }
1135 
1136 static void intel_pstate_update_max_freq(unsigned int cpu)
1137 {
1138 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1139 
1140 	if (!policy)
1141 		return;
1142 
1143 	__intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1144 
1145 	cpufreq_cpu_release(policy);
1146 }
1147 
1148 static void intel_pstate_update_limits(unsigned int cpu)
1149 {
1150 	mutex_lock(&intel_pstate_driver_lock);
1151 
1152 	update_turbo_state();
1153 	/*
1154 	 * If turbo has been turned on or off globally, policy limits for
1155 	 * all CPUs need to be updated to reflect that.
1156 	 */
1157 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1158 		global.turbo_disabled_mf = global.turbo_disabled;
1159 		arch_set_max_freq_ratio(global.turbo_disabled);
1160 		for_each_possible_cpu(cpu)
1161 			intel_pstate_update_max_freq(cpu);
1162 	} else {
1163 		cpufreq_update_policy(cpu);
1164 	}
1165 
1166 	mutex_unlock(&intel_pstate_driver_lock);
1167 }
1168 
1169 /************************** sysfs begin ************************/
1170 #define show_one(file_name, object)					\
1171 	static ssize_t show_##file_name					\
1172 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1173 	{								\
1174 		return sprintf(buf, "%u\n", global.object);		\
1175 	}
1176 
1177 static ssize_t intel_pstate_show_status(char *buf);
1178 static int intel_pstate_update_status(const char *buf, size_t size);
1179 
1180 static ssize_t show_status(struct kobject *kobj,
1181 			   struct kobj_attribute *attr, char *buf)
1182 {
1183 	ssize_t ret;
1184 
1185 	mutex_lock(&intel_pstate_driver_lock);
1186 	ret = intel_pstate_show_status(buf);
1187 	mutex_unlock(&intel_pstate_driver_lock);
1188 
1189 	return ret;
1190 }
1191 
1192 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1193 			    const char *buf, size_t count)
1194 {
1195 	char *p = memchr(buf, '\n', count);
1196 	int ret;
1197 
1198 	mutex_lock(&intel_pstate_driver_lock);
1199 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1200 	mutex_unlock(&intel_pstate_driver_lock);
1201 
1202 	return ret < 0 ? ret : count;
1203 }
1204 
1205 static ssize_t show_turbo_pct(struct kobject *kobj,
1206 				struct kobj_attribute *attr, char *buf)
1207 {
1208 	struct cpudata *cpu;
1209 	int total, no_turbo, turbo_pct;
1210 	uint32_t turbo_fp;
1211 
1212 	mutex_lock(&intel_pstate_driver_lock);
1213 
1214 	if (!intel_pstate_driver) {
1215 		mutex_unlock(&intel_pstate_driver_lock);
1216 		return -EAGAIN;
1217 	}
1218 
1219 	cpu = all_cpu_data[0];
1220 
1221 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1222 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1223 	turbo_fp = div_fp(no_turbo, total);
1224 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1225 
1226 	mutex_unlock(&intel_pstate_driver_lock);
1227 
1228 	return sprintf(buf, "%u\n", turbo_pct);
1229 }
1230 
1231 static ssize_t show_num_pstates(struct kobject *kobj,
1232 				struct kobj_attribute *attr, char *buf)
1233 {
1234 	struct cpudata *cpu;
1235 	int total;
1236 
1237 	mutex_lock(&intel_pstate_driver_lock);
1238 
1239 	if (!intel_pstate_driver) {
1240 		mutex_unlock(&intel_pstate_driver_lock);
1241 		return -EAGAIN;
1242 	}
1243 
1244 	cpu = all_cpu_data[0];
1245 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1246 
1247 	mutex_unlock(&intel_pstate_driver_lock);
1248 
1249 	return sprintf(buf, "%u\n", total);
1250 }
1251 
1252 static ssize_t show_no_turbo(struct kobject *kobj,
1253 			     struct kobj_attribute *attr, char *buf)
1254 {
1255 	ssize_t ret;
1256 
1257 	mutex_lock(&intel_pstate_driver_lock);
1258 
1259 	if (!intel_pstate_driver) {
1260 		mutex_unlock(&intel_pstate_driver_lock);
1261 		return -EAGAIN;
1262 	}
1263 
1264 	update_turbo_state();
1265 	if (global.turbo_disabled)
1266 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1267 	else
1268 		ret = sprintf(buf, "%u\n", global.no_turbo);
1269 
1270 	mutex_unlock(&intel_pstate_driver_lock);
1271 
1272 	return ret;
1273 }
1274 
1275 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1276 			      const char *buf, size_t count)
1277 {
1278 	unsigned int input;
1279 	int ret;
1280 
1281 	ret = sscanf(buf, "%u", &input);
1282 	if (ret != 1)
1283 		return -EINVAL;
1284 
1285 	mutex_lock(&intel_pstate_driver_lock);
1286 
1287 	if (!intel_pstate_driver) {
1288 		mutex_unlock(&intel_pstate_driver_lock);
1289 		return -EAGAIN;
1290 	}
1291 
1292 	mutex_lock(&intel_pstate_limits_lock);
1293 
1294 	update_turbo_state();
1295 	if (global.turbo_disabled) {
1296 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1297 		mutex_unlock(&intel_pstate_limits_lock);
1298 		mutex_unlock(&intel_pstate_driver_lock);
1299 		return -EPERM;
1300 	}
1301 
1302 	global.no_turbo = clamp_t(int, input, 0, 1);
1303 
1304 	if (global.no_turbo) {
1305 		struct cpudata *cpu = all_cpu_data[0];
1306 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1307 
1308 		/* Squash the global minimum into the permitted range. */
1309 		if (global.min_perf_pct > pct)
1310 			global.min_perf_pct = pct;
1311 	}
1312 
1313 	mutex_unlock(&intel_pstate_limits_lock);
1314 
1315 	intel_pstate_update_policies();
1316 	arch_set_max_freq_ratio(global.no_turbo);
1317 
1318 	mutex_unlock(&intel_pstate_driver_lock);
1319 
1320 	return count;
1321 }
1322 
1323 static void update_qos_request(enum freq_qos_req_type type)
1324 {
1325 	struct freq_qos_request *req;
1326 	struct cpufreq_policy *policy;
1327 	int i;
1328 
1329 	for_each_possible_cpu(i) {
1330 		struct cpudata *cpu = all_cpu_data[i];
1331 		unsigned int freq, perf_pct;
1332 
1333 		policy = cpufreq_cpu_get(i);
1334 		if (!policy)
1335 			continue;
1336 
1337 		req = policy->driver_data;
1338 		cpufreq_cpu_put(policy);
1339 
1340 		if (!req)
1341 			continue;
1342 
1343 		if (hwp_active)
1344 			intel_pstate_get_hwp_cap(cpu);
1345 
1346 		if (type == FREQ_QOS_MIN) {
1347 			perf_pct = global.min_perf_pct;
1348 		} else {
1349 			req++;
1350 			perf_pct = global.max_perf_pct;
1351 		}
1352 
1353 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1354 
1355 		if (freq_qos_update_request(req, freq) < 0)
1356 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1357 	}
1358 }
1359 
1360 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1361 				  const char *buf, size_t count)
1362 {
1363 	unsigned int input;
1364 	int ret;
1365 
1366 	ret = sscanf(buf, "%u", &input);
1367 	if (ret != 1)
1368 		return -EINVAL;
1369 
1370 	mutex_lock(&intel_pstate_driver_lock);
1371 
1372 	if (!intel_pstate_driver) {
1373 		mutex_unlock(&intel_pstate_driver_lock);
1374 		return -EAGAIN;
1375 	}
1376 
1377 	mutex_lock(&intel_pstate_limits_lock);
1378 
1379 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1380 
1381 	mutex_unlock(&intel_pstate_limits_lock);
1382 
1383 	if (intel_pstate_driver == &intel_pstate)
1384 		intel_pstate_update_policies();
1385 	else
1386 		update_qos_request(FREQ_QOS_MAX);
1387 
1388 	mutex_unlock(&intel_pstate_driver_lock);
1389 
1390 	return count;
1391 }
1392 
1393 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1394 				  const char *buf, size_t count)
1395 {
1396 	unsigned int input;
1397 	int ret;
1398 
1399 	ret = sscanf(buf, "%u", &input);
1400 	if (ret != 1)
1401 		return -EINVAL;
1402 
1403 	mutex_lock(&intel_pstate_driver_lock);
1404 
1405 	if (!intel_pstate_driver) {
1406 		mutex_unlock(&intel_pstate_driver_lock);
1407 		return -EAGAIN;
1408 	}
1409 
1410 	mutex_lock(&intel_pstate_limits_lock);
1411 
1412 	global.min_perf_pct = clamp_t(int, input,
1413 				      min_perf_pct_min(), global.max_perf_pct);
1414 
1415 	mutex_unlock(&intel_pstate_limits_lock);
1416 
1417 	if (intel_pstate_driver == &intel_pstate)
1418 		intel_pstate_update_policies();
1419 	else
1420 		update_qos_request(FREQ_QOS_MIN);
1421 
1422 	mutex_unlock(&intel_pstate_driver_lock);
1423 
1424 	return count;
1425 }
1426 
1427 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1428 				struct kobj_attribute *attr, char *buf)
1429 {
1430 	return sprintf(buf, "%u\n", hwp_boost);
1431 }
1432 
1433 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1434 				       struct kobj_attribute *b,
1435 				       const char *buf, size_t count)
1436 {
1437 	unsigned int input;
1438 	int ret;
1439 
1440 	ret = kstrtouint(buf, 10, &input);
1441 	if (ret)
1442 		return ret;
1443 
1444 	mutex_lock(&intel_pstate_driver_lock);
1445 	hwp_boost = !!input;
1446 	intel_pstate_update_policies();
1447 	mutex_unlock(&intel_pstate_driver_lock);
1448 
1449 	return count;
1450 }
1451 
1452 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1453 				      char *buf)
1454 {
1455 	u64 power_ctl;
1456 	int enable;
1457 
1458 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1459 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1460 	return sprintf(buf, "%d\n", !enable);
1461 }
1462 
1463 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1464 				       const char *buf, size_t count)
1465 {
1466 	bool input;
1467 	int ret;
1468 
1469 	ret = kstrtobool(buf, &input);
1470 	if (ret)
1471 		return ret;
1472 
1473 	set_power_ctl_ee_state(input);
1474 
1475 	return count;
1476 }
1477 
1478 show_one(max_perf_pct, max_perf_pct);
1479 show_one(min_perf_pct, min_perf_pct);
1480 
1481 define_one_global_rw(status);
1482 define_one_global_rw(no_turbo);
1483 define_one_global_rw(max_perf_pct);
1484 define_one_global_rw(min_perf_pct);
1485 define_one_global_ro(turbo_pct);
1486 define_one_global_ro(num_pstates);
1487 define_one_global_rw(hwp_dynamic_boost);
1488 define_one_global_rw(energy_efficiency);
1489 
1490 static struct attribute *intel_pstate_attributes[] = {
1491 	&status.attr,
1492 	&no_turbo.attr,
1493 	NULL
1494 };
1495 
1496 static const struct attribute_group intel_pstate_attr_group = {
1497 	.attrs = intel_pstate_attributes,
1498 };
1499 
1500 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1501 
1502 static struct kobject *intel_pstate_kobject;
1503 
1504 static void __init intel_pstate_sysfs_expose_params(void)
1505 {
1506 	struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1507 	int rc;
1508 
1509 	if (dev_root) {
1510 		intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1511 		put_device(dev_root);
1512 	}
1513 	if (WARN_ON(!intel_pstate_kobject))
1514 		return;
1515 
1516 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1517 	if (WARN_ON(rc))
1518 		return;
1519 
1520 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1521 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1522 		WARN_ON(rc);
1523 
1524 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1525 		WARN_ON(rc);
1526 	}
1527 
1528 	/*
1529 	 * If per cpu limits are enforced there are no global limits, so
1530 	 * return without creating max/min_perf_pct attributes
1531 	 */
1532 	if (per_cpu_limits)
1533 		return;
1534 
1535 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1536 	WARN_ON(rc);
1537 
1538 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1539 	WARN_ON(rc);
1540 
1541 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1542 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1543 		WARN_ON(rc);
1544 	}
1545 }
1546 
1547 static void __init intel_pstate_sysfs_remove(void)
1548 {
1549 	if (!intel_pstate_kobject)
1550 		return;
1551 
1552 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1553 
1554 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1555 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1556 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1557 	}
1558 
1559 	if (!per_cpu_limits) {
1560 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1561 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1562 
1563 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1564 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1565 	}
1566 
1567 	kobject_put(intel_pstate_kobject);
1568 }
1569 
1570 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1571 {
1572 	int rc;
1573 
1574 	if (!hwp_active)
1575 		return;
1576 
1577 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1578 	WARN_ON_ONCE(rc);
1579 }
1580 
1581 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1582 {
1583 	if (!hwp_active)
1584 		return;
1585 
1586 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1587 }
1588 
1589 /************************** sysfs end ************************/
1590 
1591 static void intel_pstate_notify_work(struct work_struct *work)
1592 {
1593 	struct cpudata *cpudata =
1594 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1595 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1596 
1597 	if (policy) {
1598 		intel_pstate_get_hwp_cap(cpudata);
1599 		__intel_pstate_update_max_freq(cpudata, policy);
1600 
1601 		cpufreq_cpu_release(policy);
1602 	}
1603 
1604 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1605 }
1606 
1607 static DEFINE_SPINLOCK(hwp_notify_lock);
1608 static cpumask_t hwp_intr_enable_mask;
1609 
1610 void notify_hwp_interrupt(void)
1611 {
1612 	unsigned int this_cpu = smp_processor_id();
1613 	struct cpudata *cpudata;
1614 	unsigned long flags;
1615 	u64 value;
1616 
1617 	if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1618 		return;
1619 
1620 	rdmsrl_safe(MSR_HWP_STATUS, &value);
1621 	if (!(value & 0x01))
1622 		return;
1623 
1624 	spin_lock_irqsave(&hwp_notify_lock, flags);
1625 
1626 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1627 		goto ack_intr;
1628 
1629 	/*
1630 	 * Currently we never free all_cpu_data. And we can't reach here
1631 	 * without this allocated. But for safety for future changes, added
1632 	 * check.
1633 	 */
1634 	if (unlikely(!READ_ONCE(all_cpu_data)))
1635 		goto ack_intr;
1636 
1637 	/*
1638 	 * The free is done during cleanup, when cpufreq registry is failed.
1639 	 * We wouldn't be here if it fails on init or switch status. But for
1640 	 * future changes, added check.
1641 	 */
1642 	cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1643 	if (unlikely(!cpudata))
1644 		goto ack_intr;
1645 
1646 	schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1647 
1648 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1649 
1650 	return;
1651 
1652 ack_intr:
1653 	wrmsrl_safe(MSR_HWP_STATUS, 0);
1654 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1655 }
1656 
1657 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1658 {
1659 	unsigned long flags;
1660 
1661 	if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1662 		return;
1663 
1664 	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1665 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1666 
1667 	spin_lock_irqsave(&hwp_notify_lock, flags);
1668 	if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1669 		cancel_delayed_work(&cpudata->hwp_notify_work);
1670 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1671 }
1672 
1673 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1674 {
1675 	/* Enable HWP notification interrupt for guaranteed performance change */
1676 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1677 		unsigned long flags;
1678 
1679 		spin_lock_irqsave(&hwp_notify_lock, flags);
1680 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1681 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1682 		spin_unlock_irqrestore(&hwp_notify_lock, flags);
1683 
1684 		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1685 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1686 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1687 	}
1688 }
1689 
1690 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1691 {
1692 	cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1693 
1694 	/*
1695 	 * If this CPU gen doesn't call for change in balance_perf
1696 	 * EPP return.
1697 	 */
1698 	if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1699 		return;
1700 
1701 	/*
1702 	 * If the EPP is set by firmware, which means that firmware enabled HWP
1703 	 * - Is equal or less than 0x80 (default balance_perf EPP)
1704 	 * - But less performance oriented than performance EPP
1705 	 *   then use this as new balance_perf EPP.
1706 	 */
1707 	if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1708 	    cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1709 		epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1710 		return;
1711 	}
1712 
1713 	/*
1714 	 * Use hard coded value per gen to update the balance_perf
1715 	 * and default EPP.
1716 	 */
1717 	cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1718 	intel_pstate_set_epp(cpudata, cpudata->epp_default);
1719 }
1720 
1721 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1722 {
1723 	/* First disable HWP notification interrupt till we activate again */
1724 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1725 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1726 
1727 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1728 
1729 	intel_pstate_enable_hwp_interrupt(cpudata);
1730 
1731 	if (cpudata->epp_default >= 0)
1732 		return;
1733 
1734 	intel_pstate_update_epp_defaults(cpudata);
1735 }
1736 
1737 static int atom_get_min_pstate(int not_used)
1738 {
1739 	u64 value;
1740 
1741 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1742 	return (value >> 8) & 0x7F;
1743 }
1744 
1745 static int atom_get_max_pstate(int not_used)
1746 {
1747 	u64 value;
1748 
1749 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1750 	return (value >> 16) & 0x7F;
1751 }
1752 
1753 static int atom_get_turbo_pstate(int not_used)
1754 {
1755 	u64 value;
1756 
1757 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1758 	return value & 0x7F;
1759 }
1760 
1761 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1762 {
1763 	u64 val;
1764 	int32_t vid_fp;
1765 	u32 vid;
1766 
1767 	val = (u64)pstate << 8;
1768 	if (global.no_turbo && !global.turbo_disabled)
1769 		val |= (u64)1 << 32;
1770 
1771 	vid_fp = cpudata->vid.min + mul_fp(
1772 		int_tofp(pstate - cpudata->pstate.min_pstate),
1773 		cpudata->vid.ratio);
1774 
1775 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1776 	vid = ceiling_fp(vid_fp);
1777 
1778 	if (pstate > cpudata->pstate.max_pstate)
1779 		vid = cpudata->vid.turbo;
1780 
1781 	return val | vid;
1782 }
1783 
1784 static int silvermont_get_scaling(void)
1785 {
1786 	u64 value;
1787 	int i;
1788 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1789 	static int silvermont_freq_table[] = {
1790 		83300, 100000, 133300, 116700, 80000};
1791 
1792 	rdmsrl(MSR_FSB_FREQ, value);
1793 	i = value & 0x7;
1794 	WARN_ON(i > 4);
1795 
1796 	return silvermont_freq_table[i];
1797 }
1798 
1799 static int airmont_get_scaling(void)
1800 {
1801 	u64 value;
1802 	int i;
1803 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1804 	static int airmont_freq_table[] = {
1805 		83300, 100000, 133300, 116700, 80000,
1806 		93300, 90000, 88900, 87500};
1807 
1808 	rdmsrl(MSR_FSB_FREQ, value);
1809 	i = value & 0xF;
1810 	WARN_ON(i > 8);
1811 
1812 	return airmont_freq_table[i];
1813 }
1814 
1815 static void atom_get_vid(struct cpudata *cpudata)
1816 {
1817 	u64 value;
1818 
1819 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1820 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1821 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1822 	cpudata->vid.ratio = div_fp(
1823 		cpudata->vid.max - cpudata->vid.min,
1824 		int_tofp(cpudata->pstate.max_pstate -
1825 			cpudata->pstate.min_pstate));
1826 
1827 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1828 	cpudata->vid.turbo = value & 0x7f;
1829 }
1830 
1831 static int core_get_min_pstate(int cpu)
1832 {
1833 	u64 value;
1834 
1835 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1836 	return (value >> 40) & 0xFF;
1837 }
1838 
1839 static int core_get_max_pstate_physical(int cpu)
1840 {
1841 	u64 value;
1842 
1843 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1844 	return (value >> 8) & 0xFF;
1845 }
1846 
1847 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1848 {
1849 	/* Check how many TDP levels present */
1850 	if (plat_info & 0x600000000) {
1851 		u64 tdp_ctrl;
1852 		u64 tdp_ratio;
1853 		int tdp_msr;
1854 		int err;
1855 
1856 		/* Get the TDP level (0, 1, 2) to get ratios */
1857 		err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1858 		if (err)
1859 			return err;
1860 
1861 		/* TDP MSR are continuous starting at 0x648 */
1862 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1863 		err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1864 		if (err)
1865 			return err;
1866 
1867 		/* For level 1 and 2, bits[23:16] contain the ratio */
1868 		if (tdp_ctrl & 0x03)
1869 			tdp_ratio >>= 16;
1870 
1871 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1872 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1873 
1874 		return (int)tdp_ratio;
1875 	}
1876 
1877 	return -ENXIO;
1878 }
1879 
1880 static int core_get_max_pstate(int cpu)
1881 {
1882 	u64 tar;
1883 	u64 plat_info;
1884 	int max_pstate;
1885 	int tdp_ratio;
1886 	int err;
1887 
1888 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1889 	max_pstate = (plat_info >> 8) & 0xFF;
1890 
1891 	tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1892 	if (tdp_ratio <= 0)
1893 		return max_pstate;
1894 
1895 	if (hwp_active) {
1896 		/* Turbo activation ratio is not used on HWP platforms */
1897 		return tdp_ratio;
1898 	}
1899 
1900 	err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1901 	if (!err) {
1902 		int tar_levels;
1903 
1904 		/* Do some sanity checking for safety */
1905 		tar_levels = tar & 0xff;
1906 		if (tdp_ratio - 1 == tar_levels) {
1907 			max_pstate = tar_levels;
1908 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1909 		}
1910 	}
1911 
1912 	return max_pstate;
1913 }
1914 
1915 static int core_get_turbo_pstate(int cpu)
1916 {
1917 	u64 value;
1918 	int nont, ret;
1919 
1920 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1921 	nont = core_get_max_pstate(cpu);
1922 	ret = (value) & 255;
1923 	if (ret <= nont)
1924 		ret = nont;
1925 	return ret;
1926 }
1927 
1928 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1929 {
1930 	u64 val;
1931 
1932 	val = (u64)pstate << 8;
1933 	if (global.no_turbo && !global.turbo_disabled)
1934 		val |= (u64)1 << 32;
1935 
1936 	return val;
1937 }
1938 
1939 static int knl_get_aperf_mperf_shift(void)
1940 {
1941 	return 10;
1942 }
1943 
1944 static int knl_get_turbo_pstate(int cpu)
1945 {
1946 	u64 value;
1947 	int nont, ret;
1948 
1949 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1950 	nont = core_get_max_pstate(cpu);
1951 	ret = (((value) >> 8) & 0xFF);
1952 	if (ret <= nont)
1953 		ret = nont;
1954 	return ret;
1955 }
1956 
1957 static void hybrid_get_type(void *data)
1958 {
1959 	u8 *cpu_type = data;
1960 
1961 	*cpu_type = get_this_hybrid_cpu_type();
1962 }
1963 
1964 static int hwp_get_cpu_scaling(int cpu)
1965 {
1966 	u8 cpu_type = 0;
1967 
1968 	smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1969 	/* P-cores have a smaller perf level-to-freqency scaling factor. */
1970 	if (cpu_type == 0x40)
1971 		return HYBRID_SCALING_FACTOR;
1972 
1973 	/* Use default core scaling for E-cores */
1974 	if (cpu_type == 0x20)
1975 		return core_get_scaling();
1976 
1977 	/*
1978 	 * If reached here, this system is either non-hybrid (like Tiger
1979 	 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
1980 	 * no E cores (in which case CPUID for hybrid support is 0).
1981 	 *
1982 	 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
1983 	 * so the default core scaling will be used for them.
1984 	 */
1985 	return intel_pstate_cppc_get_scaling(cpu);
1986 }
1987 
1988 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1989 {
1990 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1991 	cpu->pstate.current_pstate = pstate;
1992 	/*
1993 	 * Generally, there is no guarantee that this code will always run on
1994 	 * the CPU being updated, so force the register update to run on the
1995 	 * right CPU.
1996 	 */
1997 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1998 		      pstate_funcs.get_val(cpu, pstate));
1999 }
2000 
2001 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2002 {
2003 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2004 }
2005 
2006 static void intel_pstate_max_within_limits(struct cpudata *cpu)
2007 {
2008 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2009 
2010 	update_turbo_state();
2011 	intel_pstate_set_pstate(cpu, pstate);
2012 }
2013 
2014 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2015 {
2016 	int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2017 	int perf_ctl_scaling = pstate_funcs.get_scaling();
2018 
2019 	cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2020 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2021 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2022 
2023 	if (hwp_active && !hwp_mode_bdw) {
2024 		__intel_pstate_get_hwp_cap(cpu);
2025 
2026 		if (pstate_funcs.get_cpu_scaling) {
2027 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2028 			if (cpu->pstate.scaling != perf_ctl_scaling)
2029 				intel_pstate_hybrid_hwp_adjust(cpu);
2030 		} else {
2031 			cpu->pstate.scaling = perf_ctl_scaling;
2032 		}
2033 	} else {
2034 		cpu->pstate.scaling = perf_ctl_scaling;
2035 		cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2036 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2037 	}
2038 
2039 	if (cpu->pstate.scaling == perf_ctl_scaling) {
2040 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2041 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2042 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2043 	}
2044 
2045 	if (pstate_funcs.get_aperf_mperf_shift)
2046 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2047 
2048 	if (pstate_funcs.get_vid)
2049 		pstate_funcs.get_vid(cpu);
2050 
2051 	intel_pstate_set_min_pstate(cpu);
2052 }
2053 
2054 /*
2055  * Long hold time will keep high perf limits for long time,
2056  * which negatively impacts perf/watt for some workloads,
2057  * like specpower. 3ms is based on experiements on some
2058  * workoads.
2059  */
2060 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2061 
2062 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2063 {
2064 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2065 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2066 	u32 max_limit = (hwp_req & 0xff00) >> 8;
2067 	u32 min_limit = (hwp_req & 0xff);
2068 	u32 boost_level1;
2069 
2070 	/*
2071 	 * Cases to consider (User changes via sysfs or boot time):
2072 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2073 	 *	No boost, return.
2074 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2075 	 *     Should result in one level boost only for P0.
2076 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2077 	 *     Should result in two level boost:
2078 	 *         (min + p1)/2 and P1.
2079 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2080 	 *     Should result in three level boost:
2081 	 *        (min + p1)/2, P1 and P0.
2082 	 */
2083 
2084 	/* If max and min are equal or already at max, nothing to boost */
2085 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2086 		return;
2087 
2088 	if (!cpu->hwp_boost_min)
2089 		cpu->hwp_boost_min = min_limit;
2090 
2091 	/* level at half way mark between min and guranteed */
2092 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2093 
2094 	if (cpu->hwp_boost_min < boost_level1)
2095 		cpu->hwp_boost_min = boost_level1;
2096 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2097 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2098 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2099 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2100 		cpu->hwp_boost_min = max_limit;
2101 	else
2102 		return;
2103 
2104 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2105 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2106 	cpu->last_update = cpu->sample.time;
2107 }
2108 
2109 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2110 {
2111 	if (cpu->hwp_boost_min) {
2112 		bool expired;
2113 
2114 		/* Check if we are idle for hold time to boost down */
2115 		expired = time_after64(cpu->sample.time, cpu->last_update +
2116 				       hwp_boost_hold_time_ns);
2117 		if (expired) {
2118 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2119 			cpu->hwp_boost_min = 0;
2120 		}
2121 	}
2122 	cpu->last_update = cpu->sample.time;
2123 }
2124 
2125 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2126 						      u64 time)
2127 {
2128 	cpu->sample.time = time;
2129 
2130 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2131 		bool do_io = false;
2132 
2133 		cpu->sched_flags = 0;
2134 		/*
2135 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2136 		 * is set all the time, we can't just conclude that there is
2137 		 * some IO bound activity is scheduled on this CPU with just
2138 		 * one occurrence. If we receive at least two in two
2139 		 * consecutive ticks, then we treat as boost candidate.
2140 		 */
2141 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2142 			do_io = true;
2143 
2144 		cpu->last_io_update = time;
2145 
2146 		if (do_io)
2147 			intel_pstate_hwp_boost_up(cpu);
2148 
2149 	} else {
2150 		intel_pstate_hwp_boost_down(cpu);
2151 	}
2152 }
2153 
2154 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2155 						u64 time, unsigned int flags)
2156 {
2157 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2158 
2159 	cpu->sched_flags |= flags;
2160 
2161 	if (smp_processor_id() == cpu->cpu)
2162 		intel_pstate_update_util_hwp_local(cpu, time);
2163 }
2164 
2165 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2166 {
2167 	struct sample *sample = &cpu->sample;
2168 
2169 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2170 }
2171 
2172 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2173 {
2174 	u64 aperf, mperf;
2175 	unsigned long flags;
2176 	u64 tsc;
2177 
2178 	local_irq_save(flags);
2179 	rdmsrl(MSR_IA32_APERF, aperf);
2180 	rdmsrl(MSR_IA32_MPERF, mperf);
2181 	tsc = rdtsc();
2182 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2183 		local_irq_restore(flags);
2184 		return false;
2185 	}
2186 	local_irq_restore(flags);
2187 
2188 	cpu->last_sample_time = cpu->sample.time;
2189 	cpu->sample.time = time;
2190 	cpu->sample.aperf = aperf;
2191 	cpu->sample.mperf = mperf;
2192 	cpu->sample.tsc =  tsc;
2193 	cpu->sample.aperf -= cpu->prev_aperf;
2194 	cpu->sample.mperf -= cpu->prev_mperf;
2195 	cpu->sample.tsc -= cpu->prev_tsc;
2196 
2197 	cpu->prev_aperf = aperf;
2198 	cpu->prev_mperf = mperf;
2199 	cpu->prev_tsc = tsc;
2200 	/*
2201 	 * First time this function is invoked in a given cycle, all of the
2202 	 * previous sample data fields are equal to zero or stale and they must
2203 	 * be populated with meaningful numbers for things to work, so assume
2204 	 * that sample.time will always be reset before setting the utilization
2205 	 * update hook and make the caller skip the sample then.
2206 	 */
2207 	if (cpu->last_sample_time) {
2208 		intel_pstate_calc_avg_perf(cpu);
2209 		return true;
2210 	}
2211 	return false;
2212 }
2213 
2214 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2215 {
2216 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2217 }
2218 
2219 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2220 {
2221 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2222 			  cpu->sample.core_avg_perf);
2223 }
2224 
2225 static inline int32_t get_target_pstate(struct cpudata *cpu)
2226 {
2227 	struct sample *sample = &cpu->sample;
2228 	int32_t busy_frac;
2229 	int target, avg_pstate;
2230 
2231 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2232 			   sample->tsc);
2233 
2234 	if (busy_frac < cpu->iowait_boost)
2235 		busy_frac = cpu->iowait_boost;
2236 
2237 	sample->busy_scaled = busy_frac * 100;
2238 
2239 	target = global.no_turbo || global.turbo_disabled ?
2240 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2241 	target += target >> 2;
2242 	target = mul_fp(target, busy_frac);
2243 	if (target < cpu->pstate.min_pstate)
2244 		target = cpu->pstate.min_pstate;
2245 
2246 	/*
2247 	 * If the average P-state during the previous cycle was higher than the
2248 	 * current target, add 50% of the difference to the target to reduce
2249 	 * possible performance oscillations and offset possible performance
2250 	 * loss related to moving the workload from one CPU to another within
2251 	 * a package/module.
2252 	 */
2253 	avg_pstate = get_avg_pstate(cpu);
2254 	if (avg_pstate > target)
2255 		target += (avg_pstate - target) >> 1;
2256 
2257 	return target;
2258 }
2259 
2260 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2261 {
2262 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2263 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2264 
2265 	return clamp_t(int, pstate, min_pstate, max_pstate);
2266 }
2267 
2268 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2269 {
2270 	if (pstate == cpu->pstate.current_pstate)
2271 		return;
2272 
2273 	cpu->pstate.current_pstate = pstate;
2274 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2275 }
2276 
2277 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2278 {
2279 	int from = cpu->pstate.current_pstate;
2280 	struct sample *sample;
2281 	int target_pstate;
2282 
2283 	update_turbo_state();
2284 
2285 	target_pstate = get_target_pstate(cpu);
2286 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2287 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2288 	intel_pstate_update_pstate(cpu, target_pstate);
2289 
2290 	sample = &cpu->sample;
2291 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2292 		fp_toint(sample->busy_scaled),
2293 		from,
2294 		cpu->pstate.current_pstate,
2295 		sample->mperf,
2296 		sample->aperf,
2297 		sample->tsc,
2298 		get_avg_frequency(cpu),
2299 		fp_toint(cpu->iowait_boost * 100));
2300 }
2301 
2302 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2303 				     unsigned int flags)
2304 {
2305 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2306 	u64 delta_ns;
2307 
2308 	/* Don't allow remote callbacks */
2309 	if (smp_processor_id() != cpu->cpu)
2310 		return;
2311 
2312 	delta_ns = time - cpu->last_update;
2313 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2314 		/* Start over if the CPU may have been idle. */
2315 		if (delta_ns > TICK_NSEC) {
2316 			cpu->iowait_boost = ONE_EIGHTH_FP;
2317 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2318 			cpu->iowait_boost <<= 1;
2319 			if (cpu->iowait_boost > int_tofp(1))
2320 				cpu->iowait_boost = int_tofp(1);
2321 		} else {
2322 			cpu->iowait_boost = ONE_EIGHTH_FP;
2323 		}
2324 	} else if (cpu->iowait_boost) {
2325 		/* Clear iowait_boost if the CPU may have been idle. */
2326 		if (delta_ns > TICK_NSEC)
2327 			cpu->iowait_boost = 0;
2328 		else
2329 			cpu->iowait_boost >>= 1;
2330 	}
2331 	cpu->last_update = time;
2332 	delta_ns = time - cpu->sample.time;
2333 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2334 		return;
2335 
2336 	if (intel_pstate_sample(cpu, time))
2337 		intel_pstate_adjust_pstate(cpu);
2338 }
2339 
2340 static struct pstate_funcs core_funcs = {
2341 	.get_max = core_get_max_pstate,
2342 	.get_max_physical = core_get_max_pstate_physical,
2343 	.get_min = core_get_min_pstate,
2344 	.get_turbo = core_get_turbo_pstate,
2345 	.get_scaling = core_get_scaling,
2346 	.get_val = core_get_val,
2347 };
2348 
2349 static const struct pstate_funcs silvermont_funcs = {
2350 	.get_max = atom_get_max_pstate,
2351 	.get_max_physical = atom_get_max_pstate,
2352 	.get_min = atom_get_min_pstate,
2353 	.get_turbo = atom_get_turbo_pstate,
2354 	.get_val = atom_get_val,
2355 	.get_scaling = silvermont_get_scaling,
2356 	.get_vid = atom_get_vid,
2357 };
2358 
2359 static const struct pstate_funcs airmont_funcs = {
2360 	.get_max = atom_get_max_pstate,
2361 	.get_max_physical = atom_get_max_pstate,
2362 	.get_min = atom_get_min_pstate,
2363 	.get_turbo = atom_get_turbo_pstate,
2364 	.get_val = atom_get_val,
2365 	.get_scaling = airmont_get_scaling,
2366 	.get_vid = atom_get_vid,
2367 };
2368 
2369 static const struct pstate_funcs knl_funcs = {
2370 	.get_max = core_get_max_pstate,
2371 	.get_max_physical = core_get_max_pstate_physical,
2372 	.get_min = core_get_min_pstate,
2373 	.get_turbo = knl_get_turbo_pstate,
2374 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2375 	.get_scaling = core_get_scaling,
2376 	.get_val = core_get_val,
2377 };
2378 
2379 #define X86_MATCH(model, policy)					 \
2380 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2381 					   X86_FEATURE_APERFMPERF, &policy)
2382 
2383 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2384 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2385 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2386 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2387 	X86_MATCH(IVYBRIDGE,		core_funcs),
2388 	X86_MATCH(HASWELL,		core_funcs),
2389 	X86_MATCH(BROADWELL,		core_funcs),
2390 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2391 	X86_MATCH(HASWELL_X,		core_funcs),
2392 	X86_MATCH(HASWELL_L,		core_funcs),
2393 	X86_MATCH(HASWELL_G,		core_funcs),
2394 	X86_MATCH(BROADWELL_G,		core_funcs),
2395 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2396 	X86_MATCH(SKYLAKE_L,		core_funcs),
2397 	X86_MATCH(BROADWELL_X,		core_funcs),
2398 	X86_MATCH(SKYLAKE,		core_funcs),
2399 	X86_MATCH(BROADWELL_D,		core_funcs),
2400 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2401 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2402 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2403 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2404 	X86_MATCH(SKYLAKE_X,		core_funcs),
2405 	X86_MATCH(COMETLAKE,		core_funcs),
2406 	X86_MATCH(ICELAKE_X,		core_funcs),
2407 	X86_MATCH(TIGERLAKE,		core_funcs),
2408 	X86_MATCH(SAPPHIRERAPIDS_X,	core_funcs),
2409 	{}
2410 };
2411 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2412 
2413 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2414 	X86_MATCH(BROADWELL_D,		core_funcs),
2415 	X86_MATCH(BROADWELL_X,		core_funcs),
2416 	X86_MATCH(SKYLAKE_X,		core_funcs),
2417 	X86_MATCH(ICELAKE_X,		core_funcs),
2418 	X86_MATCH(SAPPHIRERAPIDS_X,	core_funcs),
2419 	{}
2420 };
2421 
2422 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2423 	X86_MATCH(KABYLAKE,		core_funcs),
2424 	{}
2425 };
2426 
2427 static int intel_pstate_init_cpu(unsigned int cpunum)
2428 {
2429 	struct cpudata *cpu;
2430 
2431 	cpu = all_cpu_data[cpunum];
2432 
2433 	if (!cpu) {
2434 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2435 		if (!cpu)
2436 			return -ENOMEM;
2437 
2438 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2439 
2440 		cpu->cpu = cpunum;
2441 
2442 		cpu->epp_default = -EINVAL;
2443 
2444 		if (hwp_active) {
2445 			intel_pstate_hwp_enable(cpu);
2446 
2447 			if (intel_pstate_acpi_pm_profile_server())
2448 				hwp_boost = true;
2449 		}
2450 	} else if (hwp_active) {
2451 		/*
2452 		 * Re-enable HWP in case this happens after a resume from ACPI
2453 		 * S3 if the CPU was offline during the whole system/resume
2454 		 * cycle.
2455 		 */
2456 		intel_pstate_hwp_reenable(cpu);
2457 	}
2458 
2459 	cpu->epp_powersave = -EINVAL;
2460 	cpu->epp_policy = 0;
2461 
2462 	intel_pstate_get_cpu_pstates(cpu);
2463 
2464 	pr_debug("controlling: cpu %d\n", cpunum);
2465 
2466 	return 0;
2467 }
2468 
2469 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2470 {
2471 	struct cpudata *cpu = all_cpu_data[cpu_num];
2472 
2473 	if (hwp_active && !hwp_boost)
2474 		return;
2475 
2476 	if (cpu->update_util_set)
2477 		return;
2478 
2479 	/* Prevent intel_pstate_update_util() from using stale data. */
2480 	cpu->sample.time = 0;
2481 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2482 				     (hwp_active ?
2483 				      intel_pstate_update_util_hwp :
2484 				      intel_pstate_update_util));
2485 	cpu->update_util_set = true;
2486 }
2487 
2488 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2489 {
2490 	struct cpudata *cpu_data = all_cpu_data[cpu];
2491 
2492 	if (!cpu_data->update_util_set)
2493 		return;
2494 
2495 	cpufreq_remove_update_util_hook(cpu);
2496 	cpu_data->update_util_set = false;
2497 	synchronize_rcu();
2498 }
2499 
2500 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2501 {
2502 	return global.turbo_disabled || global.no_turbo ?
2503 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2504 }
2505 
2506 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2507 					    unsigned int policy_min,
2508 					    unsigned int policy_max)
2509 {
2510 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2511 	int32_t max_policy_perf, min_policy_perf;
2512 
2513 	max_policy_perf = policy_max / perf_ctl_scaling;
2514 	if (policy_max == policy_min) {
2515 		min_policy_perf = max_policy_perf;
2516 	} else {
2517 		min_policy_perf = policy_min / perf_ctl_scaling;
2518 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2519 					  0, max_policy_perf);
2520 	}
2521 
2522 	/*
2523 	 * HWP needs some special consideration, because HWP_REQUEST uses
2524 	 * abstract values to represent performance rather than pure ratios.
2525 	 */
2526 	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2527 		int scaling = cpu->pstate.scaling;
2528 		int freq;
2529 
2530 		freq = max_policy_perf * perf_ctl_scaling;
2531 		max_policy_perf = DIV_ROUND_UP(freq, scaling);
2532 		freq = min_policy_perf * perf_ctl_scaling;
2533 		min_policy_perf = DIV_ROUND_UP(freq, scaling);
2534 	}
2535 
2536 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2537 		 cpu->cpu, min_policy_perf, max_policy_perf);
2538 
2539 	/* Normalize user input to [min_perf, max_perf] */
2540 	if (per_cpu_limits) {
2541 		cpu->min_perf_ratio = min_policy_perf;
2542 		cpu->max_perf_ratio = max_policy_perf;
2543 	} else {
2544 		int turbo_max = cpu->pstate.turbo_pstate;
2545 		int32_t global_min, global_max;
2546 
2547 		/* Global limits are in percent of the maximum turbo P-state. */
2548 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2549 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2550 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2551 
2552 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2553 			 global_min, global_max);
2554 
2555 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2556 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2557 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2558 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2559 
2560 		/* Make sure min_perf <= max_perf */
2561 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2562 					  cpu->max_perf_ratio);
2563 
2564 	}
2565 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2566 		 cpu->max_perf_ratio,
2567 		 cpu->min_perf_ratio);
2568 }
2569 
2570 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2571 {
2572 	struct cpudata *cpu;
2573 
2574 	if (!policy->cpuinfo.max_freq)
2575 		return -ENODEV;
2576 
2577 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2578 		 policy->cpuinfo.max_freq, policy->max);
2579 
2580 	cpu = all_cpu_data[policy->cpu];
2581 	cpu->policy = policy->policy;
2582 
2583 	mutex_lock(&intel_pstate_limits_lock);
2584 
2585 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2586 
2587 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2588 		/*
2589 		 * NOHZ_FULL CPUs need this as the governor callback may not
2590 		 * be invoked on them.
2591 		 */
2592 		intel_pstate_clear_update_util_hook(policy->cpu);
2593 		intel_pstate_max_within_limits(cpu);
2594 	} else {
2595 		intel_pstate_set_update_util_hook(policy->cpu);
2596 	}
2597 
2598 	if (hwp_active) {
2599 		/*
2600 		 * When hwp_boost was active before and dynamically it
2601 		 * was turned off, in that case we need to clear the
2602 		 * update util hook.
2603 		 */
2604 		if (!hwp_boost)
2605 			intel_pstate_clear_update_util_hook(policy->cpu);
2606 		intel_pstate_hwp_set(policy->cpu);
2607 	}
2608 	/*
2609 	 * policy->cur is never updated with the intel_pstate driver, but it
2610 	 * is used as a stale frequency value. So, keep it within limits.
2611 	 */
2612 	policy->cur = policy->min;
2613 
2614 	mutex_unlock(&intel_pstate_limits_lock);
2615 
2616 	return 0;
2617 }
2618 
2619 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2620 					   struct cpufreq_policy_data *policy)
2621 {
2622 	if (!hwp_active &&
2623 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2624 	    policy->max < policy->cpuinfo.max_freq &&
2625 	    policy->max > cpu->pstate.max_freq) {
2626 		pr_debug("policy->max > max non turbo frequency\n");
2627 		policy->max = policy->cpuinfo.max_freq;
2628 	}
2629 }
2630 
2631 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2632 					   struct cpufreq_policy_data *policy)
2633 {
2634 	int max_freq;
2635 
2636 	update_turbo_state();
2637 	if (hwp_active) {
2638 		intel_pstate_get_hwp_cap(cpu);
2639 		max_freq = global.no_turbo || global.turbo_disabled ?
2640 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2641 	} else {
2642 		max_freq = intel_pstate_get_max_freq(cpu);
2643 	}
2644 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2645 
2646 	intel_pstate_adjust_policy_max(cpu, policy);
2647 }
2648 
2649 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2650 {
2651 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2652 
2653 	return 0;
2654 }
2655 
2656 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2657 {
2658 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2659 
2660 	pr_debug("CPU %d going offline\n", cpu->cpu);
2661 
2662 	if (cpu->suspended)
2663 		return 0;
2664 
2665 	/*
2666 	 * If the CPU is an SMT thread and it goes offline with the performance
2667 	 * settings different from the minimum, it will prevent its sibling
2668 	 * from getting to lower performance levels, so force the minimum
2669 	 * performance on CPU offline to prevent that from happening.
2670 	 */
2671 	if (hwp_active)
2672 		intel_pstate_hwp_offline(cpu);
2673 	else
2674 		intel_pstate_set_min_pstate(cpu);
2675 
2676 	intel_pstate_exit_perf_limits(policy);
2677 
2678 	return 0;
2679 }
2680 
2681 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2682 {
2683 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2684 
2685 	pr_debug("CPU %d going online\n", cpu->cpu);
2686 
2687 	intel_pstate_init_acpi_perf_limits(policy);
2688 
2689 	if (hwp_active) {
2690 		/*
2691 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2692 		 * know that it need not do that.
2693 		 */
2694 		intel_pstate_hwp_reenable(cpu);
2695 		cpu->suspended = false;
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2702 {
2703 	intel_pstate_clear_update_util_hook(policy->cpu);
2704 
2705 	return intel_cpufreq_cpu_offline(policy);
2706 }
2707 
2708 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2709 {
2710 	pr_debug("CPU %d exiting\n", policy->cpu);
2711 
2712 	policy->fast_switch_possible = false;
2713 
2714 	return 0;
2715 }
2716 
2717 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2718 {
2719 	struct cpudata *cpu;
2720 	int rc;
2721 
2722 	rc = intel_pstate_init_cpu(policy->cpu);
2723 	if (rc)
2724 		return rc;
2725 
2726 	cpu = all_cpu_data[policy->cpu];
2727 
2728 	cpu->max_perf_ratio = 0xFF;
2729 	cpu->min_perf_ratio = 0;
2730 
2731 	/* cpuinfo and default policy values */
2732 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2733 	update_turbo_state();
2734 	global.turbo_disabled_mf = global.turbo_disabled;
2735 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2736 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2737 
2738 	policy->min = policy->cpuinfo.min_freq;
2739 	policy->max = policy->cpuinfo.max_freq;
2740 
2741 	intel_pstate_init_acpi_perf_limits(policy);
2742 
2743 	policy->fast_switch_possible = true;
2744 
2745 	return 0;
2746 }
2747 
2748 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2749 {
2750 	int ret = __intel_pstate_cpu_init(policy);
2751 
2752 	if (ret)
2753 		return ret;
2754 
2755 	/*
2756 	 * Set the policy to powersave to provide a valid fallback value in case
2757 	 * the default cpufreq governor is neither powersave nor performance.
2758 	 */
2759 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2760 
2761 	if (hwp_active) {
2762 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2763 
2764 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 static struct cpufreq_driver intel_pstate = {
2771 	.flags		= CPUFREQ_CONST_LOOPS,
2772 	.verify		= intel_pstate_verify_policy,
2773 	.setpolicy	= intel_pstate_set_policy,
2774 	.suspend	= intel_pstate_suspend,
2775 	.resume		= intel_pstate_resume,
2776 	.init		= intel_pstate_cpu_init,
2777 	.exit		= intel_pstate_cpu_exit,
2778 	.offline	= intel_pstate_cpu_offline,
2779 	.online		= intel_pstate_cpu_online,
2780 	.update_limits	= intel_pstate_update_limits,
2781 	.name		= "intel_pstate",
2782 };
2783 
2784 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2785 {
2786 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2787 
2788 	intel_pstate_verify_cpu_policy(cpu, policy);
2789 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2790 
2791 	return 0;
2792 }
2793 
2794 /* Use of trace in passive mode:
2795  *
2796  * In passive mode the trace core_busy field (also known as the
2797  * performance field, and lablelled as such on the graphs; also known as
2798  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2799  * driver call was via the normal or fast switch path. Various graphs
2800  * output from the intel_pstate_tracer.py utility that include core_busy
2801  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2802  * so we use 10 to indicate the normal path through the driver, and
2803  * 90 to indicate the fast switch path through the driver.
2804  * The scaled_busy field is not used, and is set to 0.
2805  */
2806 
2807 #define	INTEL_PSTATE_TRACE_TARGET 10
2808 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2809 
2810 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2811 {
2812 	struct sample *sample;
2813 
2814 	if (!trace_pstate_sample_enabled())
2815 		return;
2816 
2817 	if (!intel_pstate_sample(cpu, ktime_get()))
2818 		return;
2819 
2820 	sample = &cpu->sample;
2821 	trace_pstate_sample(trace_type,
2822 		0,
2823 		old_pstate,
2824 		cpu->pstate.current_pstate,
2825 		sample->mperf,
2826 		sample->aperf,
2827 		sample->tsc,
2828 		get_avg_frequency(cpu),
2829 		fp_toint(cpu->iowait_boost * 100));
2830 }
2831 
2832 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2833 				     u32 desired, bool fast_switch)
2834 {
2835 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2836 
2837 	value &= ~HWP_MIN_PERF(~0L);
2838 	value |= HWP_MIN_PERF(min);
2839 
2840 	value &= ~HWP_MAX_PERF(~0L);
2841 	value |= HWP_MAX_PERF(max);
2842 
2843 	value &= ~HWP_DESIRED_PERF(~0L);
2844 	value |= HWP_DESIRED_PERF(desired);
2845 
2846 	if (value == prev)
2847 		return;
2848 
2849 	WRITE_ONCE(cpu->hwp_req_cached, value);
2850 	if (fast_switch)
2851 		wrmsrl(MSR_HWP_REQUEST, value);
2852 	else
2853 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2854 }
2855 
2856 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2857 					  u32 target_pstate, bool fast_switch)
2858 {
2859 	if (fast_switch)
2860 		wrmsrl(MSR_IA32_PERF_CTL,
2861 		       pstate_funcs.get_val(cpu, target_pstate));
2862 	else
2863 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2864 			      pstate_funcs.get_val(cpu, target_pstate));
2865 }
2866 
2867 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2868 				       int target_pstate, bool fast_switch)
2869 {
2870 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2871 	int old_pstate = cpu->pstate.current_pstate;
2872 
2873 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2874 	if (hwp_active) {
2875 		int max_pstate = policy->strict_target ?
2876 					target_pstate : cpu->max_perf_ratio;
2877 
2878 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2879 					 fast_switch);
2880 	} else if (target_pstate != old_pstate) {
2881 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2882 	}
2883 
2884 	cpu->pstate.current_pstate = target_pstate;
2885 
2886 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2887 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2888 
2889 	return target_pstate;
2890 }
2891 
2892 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2893 				unsigned int target_freq,
2894 				unsigned int relation)
2895 {
2896 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2897 	struct cpufreq_freqs freqs;
2898 	int target_pstate;
2899 
2900 	update_turbo_state();
2901 
2902 	freqs.old = policy->cur;
2903 	freqs.new = target_freq;
2904 
2905 	cpufreq_freq_transition_begin(policy, &freqs);
2906 
2907 	switch (relation) {
2908 	case CPUFREQ_RELATION_L:
2909 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2910 		break;
2911 	case CPUFREQ_RELATION_H:
2912 		target_pstate = freqs.new / cpu->pstate.scaling;
2913 		break;
2914 	default:
2915 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2916 		break;
2917 	}
2918 
2919 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2920 
2921 	freqs.new = target_pstate * cpu->pstate.scaling;
2922 
2923 	cpufreq_freq_transition_end(policy, &freqs, false);
2924 
2925 	return 0;
2926 }
2927 
2928 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2929 					      unsigned int target_freq)
2930 {
2931 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2932 	int target_pstate;
2933 
2934 	update_turbo_state();
2935 
2936 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2937 
2938 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2939 
2940 	return target_pstate * cpu->pstate.scaling;
2941 }
2942 
2943 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2944 				      unsigned long min_perf,
2945 				      unsigned long target_perf,
2946 				      unsigned long capacity)
2947 {
2948 	struct cpudata *cpu = all_cpu_data[cpunum];
2949 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2950 	int old_pstate = cpu->pstate.current_pstate;
2951 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2952 
2953 	update_turbo_state();
2954 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2955 					     HWP_HIGHEST_PERF(hwp_cap);
2956 
2957 	/* Optimization: Avoid unnecessary divisions. */
2958 
2959 	target_pstate = cap_pstate;
2960 	if (target_perf < capacity)
2961 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2962 
2963 	min_pstate = cap_pstate;
2964 	if (min_perf < capacity)
2965 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2966 
2967 	if (min_pstate < cpu->pstate.min_pstate)
2968 		min_pstate = cpu->pstate.min_pstate;
2969 
2970 	if (min_pstate < cpu->min_perf_ratio)
2971 		min_pstate = cpu->min_perf_ratio;
2972 
2973 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2974 	if (max_pstate < min_pstate)
2975 		max_pstate = min_pstate;
2976 
2977 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2978 
2979 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2980 
2981 	cpu->pstate.current_pstate = target_pstate;
2982 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2983 }
2984 
2985 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2986 {
2987 	struct freq_qos_request *req;
2988 	struct cpudata *cpu;
2989 	struct device *dev;
2990 	int ret, freq;
2991 
2992 	dev = get_cpu_device(policy->cpu);
2993 	if (!dev)
2994 		return -ENODEV;
2995 
2996 	ret = __intel_pstate_cpu_init(policy);
2997 	if (ret)
2998 		return ret;
2999 
3000 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3001 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
3002 	policy->cur = policy->cpuinfo.min_freq;
3003 
3004 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3005 	if (!req) {
3006 		ret = -ENOMEM;
3007 		goto pstate_exit;
3008 	}
3009 
3010 	cpu = all_cpu_data[policy->cpu];
3011 
3012 	if (hwp_active) {
3013 		u64 value;
3014 
3015 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3016 
3017 		intel_pstate_get_hwp_cap(cpu);
3018 
3019 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3020 		WRITE_ONCE(cpu->hwp_req_cached, value);
3021 
3022 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3023 	} else {
3024 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3025 	}
3026 
3027 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3028 
3029 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3030 				   freq);
3031 	if (ret < 0) {
3032 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3033 		goto free_req;
3034 	}
3035 
3036 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3037 
3038 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3039 				   freq);
3040 	if (ret < 0) {
3041 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3042 		goto remove_min_req;
3043 	}
3044 
3045 	policy->driver_data = req;
3046 
3047 	return 0;
3048 
3049 remove_min_req:
3050 	freq_qos_remove_request(req);
3051 free_req:
3052 	kfree(req);
3053 pstate_exit:
3054 	intel_pstate_exit_perf_limits(policy);
3055 
3056 	return ret;
3057 }
3058 
3059 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3060 {
3061 	struct freq_qos_request *req;
3062 
3063 	req = policy->driver_data;
3064 
3065 	freq_qos_remove_request(req + 1);
3066 	freq_qos_remove_request(req);
3067 	kfree(req);
3068 
3069 	return intel_pstate_cpu_exit(policy);
3070 }
3071 
3072 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3073 {
3074 	intel_pstate_suspend(policy);
3075 
3076 	if (hwp_active) {
3077 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3078 		u64 value = READ_ONCE(cpu->hwp_req_cached);
3079 
3080 		/*
3081 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3082 		 * intel_cpufreq_adjust_perf() is in use and the last value
3083 		 * written by it may not be suitable.
3084 		 */
3085 		value &= ~HWP_DESIRED_PERF(~0L);
3086 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3087 		WRITE_ONCE(cpu->hwp_req_cached, value);
3088 	}
3089 
3090 	return 0;
3091 }
3092 
3093 static struct cpufreq_driver intel_cpufreq = {
3094 	.flags		= CPUFREQ_CONST_LOOPS,
3095 	.verify		= intel_cpufreq_verify_policy,
3096 	.target		= intel_cpufreq_target,
3097 	.fast_switch	= intel_cpufreq_fast_switch,
3098 	.init		= intel_cpufreq_cpu_init,
3099 	.exit		= intel_cpufreq_cpu_exit,
3100 	.offline	= intel_cpufreq_cpu_offline,
3101 	.online		= intel_pstate_cpu_online,
3102 	.suspend	= intel_cpufreq_suspend,
3103 	.resume		= intel_pstate_resume,
3104 	.update_limits	= intel_pstate_update_limits,
3105 	.name		= "intel_cpufreq",
3106 };
3107 
3108 static struct cpufreq_driver *default_driver;
3109 
3110 static void intel_pstate_driver_cleanup(void)
3111 {
3112 	unsigned int cpu;
3113 
3114 	cpus_read_lock();
3115 	for_each_online_cpu(cpu) {
3116 		if (all_cpu_data[cpu]) {
3117 			if (intel_pstate_driver == &intel_pstate)
3118 				intel_pstate_clear_update_util_hook(cpu);
3119 
3120 			spin_lock(&hwp_notify_lock);
3121 			kfree(all_cpu_data[cpu]);
3122 			WRITE_ONCE(all_cpu_data[cpu], NULL);
3123 			spin_unlock(&hwp_notify_lock);
3124 		}
3125 	}
3126 	cpus_read_unlock();
3127 
3128 	intel_pstate_driver = NULL;
3129 }
3130 
3131 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3132 {
3133 	int ret;
3134 
3135 	if (driver == &intel_pstate)
3136 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3137 
3138 	memset(&global, 0, sizeof(global));
3139 	global.max_perf_pct = 100;
3140 
3141 	intel_pstate_driver = driver;
3142 	ret = cpufreq_register_driver(intel_pstate_driver);
3143 	if (ret) {
3144 		intel_pstate_driver_cleanup();
3145 		return ret;
3146 	}
3147 
3148 	global.min_perf_pct = min_perf_pct_min();
3149 
3150 	return 0;
3151 }
3152 
3153 static ssize_t intel_pstate_show_status(char *buf)
3154 {
3155 	if (!intel_pstate_driver)
3156 		return sprintf(buf, "off\n");
3157 
3158 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3159 					"active" : "passive");
3160 }
3161 
3162 static int intel_pstate_update_status(const char *buf, size_t size)
3163 {
3164 	if (size == 3 && !strncmp(buf, "off", size)) {
3165 		if (!intel_pstate_driver)
3166 			return -EINVAL;
3167 
3168 		if (hwp_active)
3169 			return -EBUSY;
3170 
3171 		cpufreq_unregister_driver(intel_pstate_driver);
3172 		intel_pstate_driver_cleanup();
3173 		return 0;
3174 	}
3175 
3176 	if (size == 6 && !strncmp(buf, "active", size)) {
3177 		if (intel_pstate_driver) {
3178 			if (intel_pstate_driver == &intel_pstate)
3179 				return 0;
3180 
3181 			cpufreq_unregister_driver(intel_pstate_driver);
3182 		}
3183 
3184 		return intel_pstate_register_driver(&intel_pstate);
3185 	}
3186 
3187 	if (size == 7 && !strncmp(buf, "passive", size)) {
3188 		if (intel_pstate_driver) {
3189 			if (intel_pstate_driver == &intel_cpufreq)
3190 				return 0;
3191 
3192 			cpufreq_unregister_driver(intel_pstate_driver);
3193 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3194 		}
3195 
3196 		return intel_pstate_register_driver(&intel_cpufreq);
3197 	}
3198 
3199 	return -EINVAL;
3200 }
3201 
3202 static int no_load __initdata;
3203 static int no_hwp __initdata;
3204 static int hwp_only __initdata;
3205 static unsigned int force_load __initdata;
3206 
3207 static int __init intel_pstate_msrs_not_valid(void)
3208 {
3209 	if (!pstate_funcs.get_max(0) ||
3210 	    !pstate_funcs.get_min(0) ||
3211 	    !pstate_funcs.get_turbo(0))
3212 		return -ENODEV;
3213 
3214 	return 0;
3215 }
3216 
3217 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3218 {
3219 	pstate_funcs.get_max   = funcs->get_max;
3220 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3221 	pstate_funcs.get_min   = funcs->get_min;
3222 	pstate_funcs.get_turbo = funcs->get_turbo;
3223 	pstate_funcs.get_scaling = funcs->get_scaling;
3224 	pstate_funcs.get_val   = funcs->get_val;
3225 	pstate_funcs.get_vid   = funcs->get_vid;
3226 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3227 }
3228 
3229 #ifdef CONFIG_ACPI
3230 
3231 static bool __init intel_pstate_no_acpi_pss(void)
3232 {
3233 	int i;
3234 
3235 	for_each_possible_cpu(i) {
3236 		acpi_status status;
3237 		union acpi_object *pss;
3238 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3239 		struct acpi_processor *pr = per_cpu(processors, i);
3240 
3241 		if (!pr)
3242 			continue;
3243 
3244 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3245 		if (ACPI_FAILURE(status))
3246 			continue;
3247 
3248 		pss = buffer.pointer;
3249 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3250 			kfree(pss);
3251 			return false;
3252 		}
3253 
3254 		kfree(pss);
3255 	}
3256 
3257 	pr_debug("ACPI _PSS not found\n");
3258 	return true;
3259 }
3260 
3261 static bool __init intel_pstate_no_acpi_pcch(void)
3262 {
3263 	acpi_status status;
3264 	acpi_handle handle;
3265 
3266 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3267 	if (ACPI_FAILURE(status))
3268 		goto not_found;
3269 
3270 	if (acpi_has_method(handle, "PCCH"))
3271 		return false;
3272 
3273 not_found:
3274 	pr_debug("ACPI PCCH not found\n");
3275 	return true;
3276 }
3277 
3278 static bool __init intel_pstate_has_acpi_ppc(void)
3279 {
3280 	int i;
3281 
3282 	for_each_possible_cpu(i) {
3283 		struct acpi_processor *pr = per_cpu(processors, i);
3284 
3285 		if (!pr)
3286 			continue;
3287 		if (acpi_has_method(pr->handle, "_PPC"))
3288 			return true;
3289 	}
3290 	pr_debug("ACPI _PPC not found\n");
3291 	return false;
3292 }
3293 
3294 enum {
3295 	PSS,
3296 	PPC,
3297 };
3298 
3299 /* Hardware vendor-specific info that has its own power management modes */
3300 static struct acpi_platform_list plat_info[] __initdata = {
3301 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3302 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3303 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3304 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3305 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3306 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3307 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3308 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3309 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3310 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3311 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3312 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3313 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3314 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3315 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3316 	{ } /* End */
3317 };
3318 
3319 #define BITMASK_OOB	(BIT(8) | BIT(18))
3320 
3321 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3322 {
3323 	const struct x86_cpu_id *id;
3324 	u64 misc_pwr;
3325 	int idx;
3326 
3327 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3328 	if (id) {
3329 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3330 		if (misc_pwr & BITMASK_OOB) {
3331 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3332 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3333 			return true;
3334 		}
3335 	}
3336 
3337 	idx = acpi_match_platform_list(plat_info);
3338 	if (idx < 0)
3339 		return false;
3340 
3341 	switch (plat_info[idx].data) {
3342 	case PSS:
3343 		if (!intel_pstate_no_acpi_pss())
3344 			return false;
3345 
3346 		return intel_pstate_no_acpi_pcch();
3347 	case PPC:
3348 		return intel_pstate_has_acpi_ppc() && !force_load;
3349 	}
3350 
3351 	return false;
3352 }
3353 
3354 static void intel_pstate_request_control_from_smm(void)
3355 {
3356 	/*
3357 	 * It may be unsafe to request P-states control from SMM if _PPC support
3358 	 * has not been enabled.
3359 	 */
3360 	if (acpi_ppc)
3361 		acpi_processor_pstate_control();
3362 }
3363 #else /* CONFIG_ACPI not enabled */
3364 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3365 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3366 static inline void intel_pstate_request_control_from_smm(void) {}
3367 #endif /* CONFIG_ACPI */
3368 
3369 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3370 
3371 #define X86_MATCH_HWP(model, hwp_mode)					\
3372 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3373 					   X86_FEATURE_HWP, hwp_mode)
3374 
3375 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3376 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3377 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3378 	X86_MATCH_HWP(ANY,		0),
3379 	{}
3380 };
3381 
3382 static bool intel_pstate_hwp_is_enabled(void)
3383 {
3384 	u64 value;
3385 
3386 	rdmsrl(MSR_PM_ENABLE, value);
3387 	return !!(value & 0x1);
3388 }
3389 
3390 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3391 	/*
3392 	 * Set EPP value as 102, this is the max suggested EPP
3393 	 * which can result in one core turbo frequency for
3394 	 * AlderLake Mobile CPUs.
3395 	 */
3396 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3397 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3398 	{}
3399 };
3400 
3401 static int __init intel_pstate_init(void)
3402 {
3403 	static struct cpudata **_all_cpu_data;
3404 	const struct x86_cpu_id *id;
3405 	int rc;
3406 
3407 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3408 		return -ENODEV;
3409 
3410 	id = x86_match_cpu(hwp_support_ids);
3411 	if (id) {
3412 		hwp_forced = intel_pstate_hwp_is_enabled();
3413 
3414 		if (hwp_forced)
3415 			pr_info("HWP enabled by BIOS\n");
3416 		else if (no_load)
3417 			return -ENODEV;
3418 
3419 		copy_cpu_funcs(&core_funcs);
3420 		/*
3421 		 * Avoid enabling HWP for processors without EPP support,
3422 		 * because that means incomplete HWP implementation which is a
3423 		 * corner case and supporting it is generally problematic.
3424 		 *
3425 		 * If HWP is enabled already, though, there is no choice but to
3426 		 * deal with it.
3427 		 */
3428 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3429 			WRITE_ONCE(hwp_active, 1);
3430 			hwp_mode_bdw = id->driver_data;
3431 			intel_pstate.attr = hwp_cpufreq_attrs;
3432 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3433 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3434 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3435 			if (!default_driver)
3436 				default_driver = &intel_pstate;
3437 
3438 			pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3439 
3440 			goto hwp_cpu_matched;
3441 		}
3442 		pr_info("HWP not enabled\n");
3443 	} else {
3444 		if (no_load)
3445 			return -ENODEV;
3446 
3447 		id = x86_match_cpu(intel_pstate_cpu_ids);
3448 		if (!id) {
3449 			pr_info("CPU model not supported\n");
3450 			return -ENODEV;
3451 		}
3452 
3453 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3454 	}
3455 
3456 	if (intel_pstate_msrs_not_valid()) {
3457 		pr_info("Invalid MSRs\n");
3458 		return -ENODEV;
3459 	}
3460 	/* Without HWP start in the passive mode. */
3461 	if (!default_driver)
3462 		default_driver = &intel_cpufreq;
3463 
3464 hwp_cpu_matched:
3465 	/*
3466 	 * The Intel pstate driver will be ignored if the platform
3467 	 * firmware has its own power management modes.
3468 	 */
3469 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3470 		pr_info("P-states controlled by the platform\n");
3471 		return -ENODEV;
3472 	}
3473 
3474 	if (!hwp_active && hwp_only)
3475 		return -ENOTSUPP;
3476 
3477 	pr_info("Intel P-state driver initializing\n");
3478 
3479 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3480 	if (!_all_cpu_data)
3481 		return -ENOMEM;
3482 
3483 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
3484 
3485 	intel_pstate_request_control_from_smm();
3486 
3487 	intel_pstate_sysfs_expose_params();
3488 
3489 	if (hwp_active) {
3490 		const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3491 
3492 		if (id)
3493 			epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3494 	}
3495 
3496 	mutex_lock(&intel_pstate_driver_lock);
3497 	rc = intel_pstate_register_driver(default_driver);
3498 	mutex_unlock(&intel_pstate_driver_lock);
3499 	if (rc) {
3500 		intel_pstate_sysfs_remove();
3501 		return rc;
3502 	}
3503 
3504 	if (hwp_active) {
3505 		const struct x86_cpu_id *id;
3506 
3507 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3508 		if (id) {
3509 			set_power_ctl_ee_state(false);
3510 			pr_info("Disabling energy efficiency optimization\n");
3511 		}
3512 
3513 		pr_info("HWP enabled\n");
3514 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3515 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3516 	}
3517 
3518 	return 0;
3519 }
3520 device_initcall(intel_pstate_init);
3521 
3522 static int __init intel_pstate_setup(char *str)
3523 {
3524 	if (!str)
3525 		return -EINVAL;
3526 
3527 	if (!strcmp(str, "disable"))
3528 		no_load = 1;
3529 	else if (!strcmp(str, "active"))
3530 		default_driver = &intel_pstate;
3531 	else if (!strcmp(str, "passive"))
3532 		default_driver = &intel_cpufreq;
3533 
3534 	if (!strcmp(str, "no_hwp"))
3535 		no_hwp = 1;
3536 
3537 	if (!strcmp(str, "force"))
3538 		force_load = 1;
3539 	if (!strcmp(str, "hwp_only"))
3540 		hwp_only = 1;
3541 	if (!strcmp(str, "per_cpu_perf_limits"))
3542 		per_cpu_limits = true;
3543 
3544 #ifdef CONFIG_ACPI
3545 	if (!strcmp(str, "support_acpi_ppc"))
3546 		acpi_ppc = true;
3547 #endif
3548 
3549 	return 0;
3550 }
3551 early_param("intel_pstate", intel_pstate_setup);
3552 
3553 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3554 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3555