xref: /linux/drivers/cpufreq/intel_pstate.c (revision c6f82787a5a193a5c4c49ddaeb362d320efa5fba)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 
39 #define ATOM_RATIOS		0x66a
40 #define ATOM_VIDS		0x66b
41 #define ATOM_TURBO_RATIOS	0x66c
42 #define ATOM_TURBO_VIDS		0x66d
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #endif
47 
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51 
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 
55 static inline int32_t mul_fp(int32_t x, int32_t y)
56 {
57 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
58 }
59 
60 static inline int32_t div_fp(s64 x, s64 y)
61 {
62 	return div64_s64((int64_t)x << FRAC_BITS, y);
63 }
64 
65 static inline int ceiling_fp(int32_t x)
66 {
67 	int mask, ret;
68 
69 	ret = fp_toint(x);
70 	mask = (1 << FRAC_BITS) - 1;
71 	if (x & mask)
72 		ret += 1;
73 	return ret;
74 }
75 
76 static inline u64 mul_ext_fp(u64 x, u64 y)
77 {
78 	return (x * y) >> EXT_FRAC_BITS;
79 }
80 
81 static inline u64 div_ext_fp(u64 x, u64 y)
82 {
83 	return div64_u64(x << EXT_FRAC_BITS, y);
84 }
85 
86 /**
87  * struct sample -	Store performance sample
88  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
89  *			performance during last sample period
90  * @busy_scaled:	Scaled busy value which is used to calculate next
91  *			P state. This can be different than core_avg_perf
92  *			to account for cpu idle period
93  * @aperf:		Difference of actual performance frequency clock count
94  *			read from APERF MSR between last and current sample
95  * @mperf:		Difference of maximum performance frequency clock count
96  *			read from MPERF MSR between last and current sample
97  * @tsc:		Difference of time stamp counter between last and
98  *			current sample
99  * @freq:		Effective frequency calculated from APERF/MPERF
100  * @time:		Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106 	int32_t core_avg_perf;
107 	int32_t busy_scaled;
108 	u64 aperf;
109 	u64 mperf;
110 	u64 tsc;
111 	int freq;
112 	u64 time;
113 };
114 
115 /**
116  * struct pstate_data - Store P state data
117  * @current_pstate:	Current requested P state
118  * @min_pstate:		Min P state possible for this platform
119  * @max_pstate:		Max P state possible for this platform
120  * @max_pstate_physical:This is physical Max P state for a processor
121  *			This can be higher than the max_pstate which can
122  *			be limited by platform thermal design power limits
123  * @scaling:		Scaling factor to  convert frequency to cpufreq
124  *			frequency units
125  * @turbo_pstate:	Max Turbo P state possible for this platform
126  *
127  * Stores the per cpu model P state limits and current P state.
128  */
129 struct pstate_data {
130 	int	current_pstate;
131 	int	min_pstate;
132 	int	max_pstate;
133 	int	max_pstate_physical;
134 	int	scaling;
135 	int	turbo_pstate;
136 };
137 
138 /**
139  * struct vid_data -	Stores voltage information data
140  * @min:		VID data for this platform corresponding to
141  *			the lowest P state
142  * @max:		VID data corresponding to the highest P State.
143  * @turbo:		VID data for turbo P state
144  * @ratio:		Ratio of (vid max - vid min) /
145  *			(max P state - Min P State)
146  *
147  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
148  * This data is used in Atom platforms, where in addition to target P state,
149  * the voltage data needs to be specified to select next P State.
150  */
151 struct vid_data {
152 	int min;
153 	int max;
154 	int turbo;
155 	int32_t ratio;
156 };
157 
158 /**
159  * struct _pid -	Stores PID data
160  * @setpoint:		Target set point for busyness or performance
161  * @integral:		Storage for accumulated error values
162  * @p_gain:		PID proportional gain
163  * @i_gain:		PID integral gain
164  * @d_gain:		PID derivative gain
165  * @deadband:		PID deadband
166  * @last_err:		Last error storage for integral part of PID calculation
167  *
168  * Stores PID coefficients and last error for PID controller.
169  */
170 struct _pid {
171 	int setpoint;
172 	int32_t integral;
173 	int32_t p_gain;
174 	int32_t i_gain;
175 	int32_t d_gain;
176 	int deadband;
177 	int32_t last_err;
178 };
179 
180 /**
181  * struct cpudata -	Per CPU instance data storage
182  * @cpu:		CPU number for this instance data
183  * @update_util:	CPUFreq utility callback information
184  * @update_util_set:	CPUFreq utility callback is set
185  * @pstate:		Stores P state limits for this CPU
186  * @vid:		Stores VID limits for this CPU
187  * @pid:		Stores PID parameters for this CPU
188  * @last_sample_time:	Last Sample time
189  * @prev_aperf:		Last APERF value read from APERF MSR
190  * @prev_mperf:		Last MPERF value read from MPERF MSR
191  * @prev_tsc:		Last timestamp counter (TSC) value
192  * @prev_cummulative_iowait: IO Wait time difference from last and
193  *			current sample
194  * @sample:		Storage for storing last Sample data
195  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
196  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
197  *
198  * This structure stores per CPU instance data for all CPUs.
199  */
200 struct cpudata {
201 	int cpu;
202 
203 	struct update_util_data update_util;
204 	bool   update_util_set;
205 
206 	struct pstate_data pstate;
207 	struct vid_data vid;
208 	struct _pid pid;
209 
210 	u64	last_sample_time;
211 	u64	prev_aperf;
212 	u64	prev_mperf;
213 	u64	prev_tsc;
214 	u64	prev_cummulative_iowait;
215 	struct sample sample;
216 #ifdef CONFIG_ACPI
217 	struct acpi_processor_performance acpi_perf_data;
218 	bool valid_pss_table;
219 #endif
220 };
221 
222 static struct cpudata **all_cpu_data;
223 
224 /**
225  * struct pid_adjust_policy - Stores static PID configuration data
226  * @sample_rate_ms:	PID calculation sample rate in ms
227  * @sample_rate_ns:	Sample rate calculation in ns
228  * @deadband:		PID deadband
229  * @setpoint:		PID Setpoint
230  * @p_gain_pct:		PID proportional gain
231  * @i_gain_pct:		PID integral gain
232  * @d_gain_pct:		PID derivative gain
233  *
234  * Stores per CPU model static PID configuration data.
235  */
236 struct pstate_adjust_policy {
237 	int sample_rate_ms;
238 	s64 sample_rate_ns;
239 	int deadband;
240 	int setpoint;
241 	int p_gain_pct;
242 	int d_gain_pct;
243 	int i_gain_pct;
244 };
245 
246 /**
247  * struct pstate_funcs - Per CPU model specific callbacks
248  * @get_max:		Callback to get maximum non turbo effective P state
249  * @get_max_physical:	Callback to get maximum non turbo physical P state
250  * @get_min:		Callback to get minimum P state
251  * @get_turbo:		Callback to get turbo P state
252  * @get_scaling:	Callback to get frequency scaling factor
253  * @get_val:		Callback to convert P state to actual MSR write value
254  * @get_vid:		Callback to get VID data for Atom platforms
255  * @get_target_pstate:	Callback to a function to calculate next P state to use
256  *
257  * Core and Atom CPU models have different way to get P State limits. This
258  * structure is used to store those callbacks.
259  */
260 struct pstate_funcs {
261 	int (*get_max)(void);
262 	int (*get_max_physical)(void);
263 	int (*get_min)(void);
264 	int (*get_turbo)(void);
265 	int (*get_scaling)(void);
266 	u64 (*get_val)(struct cpudata*, int pstate);
267 	void (*get_vid)(struct cpudata *);
268 	int32_t (*get_target_pstate)(struct cpudata *);
269 };
270 
271 /**
272  * struct cpu_defaults- Per CPU model default config data
273  * @pid_policy:	PID config data
274  * @funcs:		Callback function data
275  */
276 struct cpu_defaults {
277 	struct pstate_adjust_policy pid_policy;
278 	struct pstate_funcs funcs;
279 };
280 
281 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
282 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
283 
284 static struct pstate_adjust_policy pid_params;
285 static struct pstate_funcs pstate_funcs;
286 static int hwp_active;
287 
288 #ifdef CONFIG_ACPI
289 static bool acpi_ppc;
290 #endif
291 
292 /**
293  * struct perf_limits - Store user and policy limits
294  * @no_turbo:		User requested turbo state from intel_pstate sysfs
295  * @turbo_disabled:	Platform turbo status either from msr
296  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
297  *			matches the maximum turbo pstate
298  * @max_perf_pct:	Effective maximum performance limit in percentage, this
299  *			is minimum of either limits enforced by cpufreq policy
300  *			or limits from user set limits via intel_pstate sysfs
301  * @min_perf_pct:	Effective minimum performance limit in percentage, this
302  *			is maximum of either limits enforced by cpufreq policy
303  *			or limits from user set limits via intel_pstate sysfs
304  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
305  *			This value is used to limit max pstate
306  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
307  *			This value is used to limit min pstate
308  * @max_policy_pct:	The maximum performance in percentage enforced by
309  *			cpufreq setpolicy interface
310  * @max_sysfs_pct:	The maximum performance in percentage enforced by
311  *			intel pstate sysfs interface
312  * @min_policy_pct:	The minimum performance in percentage enforced by
313  *			cpufreq setpolicy interface
314  * @min_sysfs_pct:	The minimum performance in percentage enforced by
315  *			intel pstate sysfs interface
316  *
317  * Storage for user and policy defined limits.
318  */
319 struct perf_limits {
320 	int no_turbo;
321 	int turbo_disabled;
322 	int max_perf_pct;
323 	int min_perf_pct;
324 	int32_t max_perf;
325 	int32_t min_perf;
326 	int max_policy_pct;
327 	int max_sysfs_pct;
328 	int min_policy_pct;
329 	int min_sysfs_pct;
330 };
331 
332 static struct perf_limits performance_limits = {
333 	.no_turbo = 0,
334 	.turbo_disabled = 0,
335 	.max_perf_pct = 100,
336 	.max_perf = int_tofp(1),
337 	.min_perf_pct = 100,
338 	.min_perf = int_tofp(1),
339 	.max_policy_pct = 100,
340 	.max_sysfs_pct = 100,
341 	.min_policy_pct = 0,
342 	.min_sysfs_pct = 0,
343 };
344 
345 static struct perf_limits powersave_limits = {
346 	.no_turbo = 0,
347 	.turbo_disabled = 0,
348 	.max_perf_pct = 100,
349 	.max_perf = int_tofp(1),
350 	.min_perf_pct = 0,
351 	.min_perf = 0,
352 	.max_policy_pct = 100,
353 	.max_sysfs_pct = 100,
354 	.min_policy_pct = 0,
355 	.min_sysfs_pct = 0,
356 };
357 
358 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
359 static struct perf_limits *limits = &performance_limits;
360 #else
361 static struct perf_limits *limits = &powersave_limits;
362 #endif
363 
364 #ifdef CONFIG_ACPI
365 
366 static bool intel_pstate_get_ppc_enable_status(void)
367 {
368 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
369 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
370 		return true;
371 
372 	return acpi_ppc;
373 }
374 
375 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
376 {
377 	struct cpudata *cpu;
378 	int ret;
379 	int i;
380 
381 	if (hwp_active)
382 		return;
383 
384 	if (!intel_pstate_get_ppc_enable_status())
385 		return;
386 
387 	cpu = all_cpu_data[policy->cpu];
388 
389 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
390 						  policy->cpu);
391 	if (ret)
392 		return;
393 
394 	/*
395 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
396 	 * guarantee that the states returned by it map to the states in our
397 	 * list directly.
398 	 */
399 	if (cpu->acpi_perf_data.control_register.space_id !=
400 						ACPI_ADR_SPACE_FIXED_HARDWARE)
401 		goto err;
402 
403 	/*
404 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
405 	 * usual without taking _PSS into account
406 	 */
407 	if (cpu->acpi_perf_data.state_count < 2)
408 		goto err;
409 
410 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
411 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
412 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
413 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
414 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
415 			 (u32) cpu->acpi_perf_data.states[i].power,
416 			 (u32) cpu->acpi_perf_data.states[i].control);
417 	}
418 
419 	/*
420 	 * The _PSS table doesn't contain whole turbo frequency range.
421 	 * This just contains +1 MHZ above the max non turbo frequency,
422 	 * with control value corresponding to max turbo ratio. But
423 	 * when cpufreq set policy is called, it will call with this
424 	 * max frequency, which will cause a reduced performance as
425 	 * this driver uses real max turbo frequency as the max
426 	 * frequency. So correct this frequency in _PSS table to
427 	 * correct max turbo frequency based on the turbo state.
428 	 * Also need to convert to MHz as _PSS freq is in MHz.
429 	 */
430 	if (!limits->turbo_disabled)
431 		cpu->acpi_perf_data.states[0].core_frequency =
432 					policy->cpuinfo.max_freq / 1000;
433 	cpu->valid_pss_table = true;
434 	pr_debug("_PPC limits will be enforced\n");
435 
436 	return;
437 
438  err:
439 	cpu->valid_pss_table = false;
440 	acpi_processor_unregister_performance(policy->cpu);
441 }
442 
443 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
444 {
445 	struct cpudata *cpu;
446 
447 	cpu = all_cpu_data[policy->cpu];
448 	if (!cpu->valid_pss_table)
449 		return;
450 
451 	acpi_processor_unregister_performance(policy->cpu);
452 }
453 
454 #else
455 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
456 {
457 }
458 
459 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
460 {
461 }
462 #endif
463 
464 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
465 			     int deadband, int integral) {
466 	pid->setpoint = int_tofp(setpoint);
467 	pid->deadband  = int_tofp(deadband);
468 	pid->integral  = int_tofp(integral);
469 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
470 }
471 
472 static inline void pid_p_gain_set(struct _pid *pid, int percent)
473 {
474 	pid->p_gain = div_fp(percent, 100);
475 }
476 
477 static inline void pid_i_gain_set(struct _pid *pid, int percent)
478 {
479 	pid->i_gain = div_fp(percent, 100);
480 }
481 
482 static inline void pid_d_gain_set(struct _pid *pid, int percent)
483 {
484 	pid->d_gain = div_fp(percent, 100);
485 }
486 
487 static signed int pid_calc(struct _pid *pid, int32_t busy)
488 {
489 	signed int result;
490 	int32_t pterm, dterm, fp_error;
491 	int32_t integral_limit;
492 
493 	fp_error = pid->setpoint - busy;
494 
495 	if (abs(fp_error) <= pid->deadband)
496 		return 0;
497 
498 	pterm = mul_fp(pid->p_gain, fp_error);
499 
500 	pid->integral += fp_error;
501 
502 	/*
503 	 * We limit the integral here so that it will never
504 	 * get higher than 30.  This prevents it from becoming
505 	 * too large an input over long periods of time and allows
506 	 * it to get factored out sooner.
507 	 *
508 	 * The value of 30 was chosen through experimentation.
509 	 */
510 	integral_limit = int_tofp(30);
511 	if (pid->integral > integral_limit)
512 		pid->integral = integral_limit;
513 	if (pid->integral < -integral_limit)
514 		pid->integral = -integral_limit;
515 
516 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
517 	pid->last_err = fp_error;
518 
519 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
520 	result = result + (1 << (FRAC_BITS-1));
521 	return (signed int)fp_toint(result);
522 }
523 
524 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
525 {
526 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
527 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
528 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
529 
530 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
531 }
532 
533 static inline void intel_pstate_reset_all_pid(void)
534 {
535 	unsigned int cpu;
536 
537 	for_each_online_cpu(cpu) {
538 		if (all_cpu_data[cpu])
539 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
540 	}
541 }
542 
543 static inline void update_turbo_state(void)
544 {
545 	u64 misc_en;
546 	struct cpudata *cpu;
547 
548 	cpu = all_cpu_data[0];
549 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
550 	limits->turbo_disabled =
551 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
552 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
553 }
554 
555 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
556 {
557 	int min, hw_min, max, hw_max, cpu, range, adj_range;
558 	u64 value, cap;
559 
560 	rdmsrl(MSR_HWP_CAPABILITIES, cap);
561 	hw_min = HWP_LOWEST_PERF(cap);
562 	hw_max = HWP_HIGHEST_PERF(cap);
563 	range = hw_max - hw_min;
564 
565 	for_each_cpu(cpu, cpumask) {
566 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
567 		adj_range = limits->min_perf_pct * range / 100;
568 		min = hw_min + adj_range;
569 		value &= ~HWP_MIN_PERF(~0L);
570 		value |= HWP_MIN_PERF(min);
571 
572 		adj_range = limits->max_perf_pct * range / 100;
573 		max = hw_min + adj_range;
574 		if (limits->no_turbo) {
575 			hw_max = HWP_GUARANTEED_PERF(cap);
576 			if (hw_max < max)
577 				max = hw_max;
578 		}
579 
580 		value &= ~HWP_MAX_PERF(~0L);
581 		value |= HWP_MAX_PERF(max);
582 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
583 	}
584 }
585 
586 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
587 {
588 	if (hwp_active)
589 		intel_pstate_hwp_set(policy->cpus);
590 
591 	return 0;
592 }
593 
594 static void intel_pstate_hwp_set_online_cpus(void)
595 {
596 	get_online_cpus();
597 	intel_pstate_hwp_set(cpu_online_mask);
598 	put_online_cpus();
599 }
600 
601 /************************** debugfs begin ************************/
602 static int pid_param_set(void *data, u64 val)
603 {
604 	*(u32 *)data = val;
605 	intel_pstate_reset_all_pid();
606 	return 0;
607 }
608 
609 static int pid_param_get(void *data, u64 *val)
610 {
611 	*val = *(u32 *)data;
612 	return 0;
613 }
614 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
615 
616 struct pid_param {
617 	char *name;
618 	void *value;
619 };
620 
621 static struct pid_param pid_files[] = {
622 	{"sample_rate_ms", &pid_params.sample_rate_ms},
623 	{"d_gain_pct", &pid_params.d_gain_pct},
624 	{"i_gain_pct", &pid_params.i_gain_pct},
625 	{"deadband", &pid_params.deadband},
626 	{"setpoint", &pid_params.setpoint},
627 	{"p_gain_pct", &pid_params.p_gain_pct},
628 	{NULL, NULL}
629 };
630 
631 static void __init intel_pstate_debug_expose_params(void)
632 {
633 	struct dentry *debugfs_parent;
634 	int i = 0;
635 
636 	if (hwp_active)
637 		return;
638 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
639 	if (IS_ERR_OR_NULL(debugfs_parent))
640 		return;
641 	while (pid_files[i].name) {
642 		debugfs_create_file(pid_files[i].name, 0660,
643 				    debugfs_parent, pid_files[i].value,
644 				    &fops_pid_param);
645 		i++;
646 	}
647 }
648 
649 /************************** debugfs end ************************/
650 
651 /************************** sysfs begin ************************/
652 #define show_one(file_name, object)					\
653 	static ssize_t show_##file_name					\
654 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
655 	{								\
656 		return sprintf(buf, "%u\n", limits->object);		\
657 	}
658 
659 static ssize_t show_turbo_pct(struct kobject *kobj,
660 				struct attribute *attr, char *buf)
661 {
662 	struct cpudata *cpu;
663 	int total, no_turbo, turbo_pct;
664 	uint32_t turbo_fp;
665 
666 	cpu = all_cpu_data[0];
667 
668 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
669 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
670 	turbo_fp = div_fp(no_turbo, total);
671 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
672 	return sprintf(buf, "%u\n", turbo_pct);
673 }
674 
675 static ssize_t show_num_pstates(struct kobject *kobj,
676 				struct attribute *attr, char *buf)
677 {
678 	struct cpudata *cpu;
679 	int total;
680 
681 	cpu = all_cpu_data[0];
682 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
683 	return sprintf(buf, "%u\n", total);
684 }
685 
686 static ssize_t show_no_turbo(struct kobject *kobj,
687 			     struct attribute *attr, char *buf)
688 {
689 	ssize_t ret;
690 
691 	update_turbo_state();
692 	if (limits->turbo_disabled)
693 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
694 	else
695 		ret = sprintf(buf, "%u\n", limits->no_turbo);
696 
697 	return ret;
698 }
699 
700 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
701 			      const char *buf, size_t count)
702 {
703 	unsigned int input;
704 	int ret;
705 
706 	ret = sscanf(buf, "%u", &input);
707 	if (ret != 1)
708 		return -EINVAL;
709 
710 	update_turbo_state();
711 	if (limits->turbo_disabled) {
712 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
713 		return -EPERM;
714 	}
715 
716 	limits->no_turbo = clamp_t(int, input, 0, 1);
717 
718 	if (hwp_active)
719 		intel_pstate_hwp_set_online_cpus();
720 
721 	return count;
722 }
723 
724 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
725 				  const char *buf, size_t count)
726 {
727 	unsigned int input;
728 	int ret;
729 
730 	ret = sscanf(buf, "%u", &input);
731 	if (ret != 1)
732 		return -EINVAL;
733 
734 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
735 	limits->max_perf_pct = min(limits->max_policy_pct,
736 				   limits->max_sysfs_pct);
737 	limits->max_perf_pct = max(limits->min_policy_pct,
738 				   limits->max_perf_pct);
739 	limits->max_perf_pct = max(limits->min_perf_pct,
740 				   limits->max_perf_pct);
741 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
742 
743 	if (hwp_active)
744 		intel_pstate_hwp_set_online_cpus();
745 	return count;
746 }
747 
748 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
749 				  const char *buf, size_t count)
750 {
751 	unsigned int input;
752 	int ret;
753 
754 	ret = sscanf(buf, "%u", &input);
755 	if (ret != 1)
756 		return -EINVAL;
757 
758 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
759 	limits->min_perf_pct = max(limits->min_policy_pct,
760 				   limits->min_sysfs_pct);
761 	limits->min_perf_pct = min(limits->max_policy_pct,
762 				   limits->min_perf_pct);
763 	limits->min_perf_pct = min(limits->max_perf_pct,
764 				   limits->min_perf_pct);
765 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
766 
767 	if (hwp_active)
768 		intel_pstate_hwp_set_online_cpus();
769 	return count;
770 }
771 
772 show_one(max_perf_pct, max_perf_pct);
773 show_one(min_perf_pct, min_perf_pct);
774 
775 define_one_global_rw(no_turbo);
776 define_one_global_rw(max_perf_pct);
777 define_one_global_rw(min_perf_pct);
778 define_one_global_ro(turbo_pct);
779 define_one_global_ro(num_pstates);
780 
781 static struct attribute *intel_pstate_attributes[] = {
782 	&no_turbo.attr,
783 	&max_perf_pct.attr,
784 	&min_perf_pct.attr,
785 	&turbo_pct.attr,
786 	&num_pstates.attr,
787 	NULL
788 };
789 
790 static struct attribute_group intel_pstate_attr_group = {
791 	.attrs = intel_pstate_attributes,
792 };
793 
794 static void __init intel_pstate_sysfs_expose_params(void)
795 {
796 	struct kobject *intel_pstate_kobject;
797 	int rc;
798 
799 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
800 						&cpu_subsys.dev_root->kobj);
801 	BUG_ON(!intel_pstate_kobject);
802 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
803 	BUG_ON(rc);
804 }
805 /************************** sysfs end ************************/
806 
807 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
808 {
809 	/* First disable HWP notification interrupt as we don't process them */
810 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
811 
812 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
813 }
814 
815 static int atom_get_min_pstate(void)
816 {
817 	u64 value;
818 
819 	rdmsrl(ATOM_RATIOS, value);
820 	return (value >> 8) & 0x7F;
821 }
822 
823 static int atom_get_max_pstate(void)
824 {
825 	u64 value;
826 
827 	rdmsrl(ATOM_RATIOS, value);
828 	return (value >> 16) & 0x7F;
829 }
830 
831 static int atom_get_turbo_pstate(void)
832 {
833 	u64 value;
834 
835 	rdmsrl(ATOM_TURBO_RATIOS, value);
836 	return value & 0x7F;
837 }
838 
839 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
840 {
841 	u64 val;
842 	int32_t vid_fp;
843 	u32 vid;
844 
845 	val = (u64)pstate << 8;
846 	if (limits->no_turbo && !limits->turbo_disabled)
847 		val |= (u64)1 << 32;
848 
849 	vid_fp = cpudata->vid.min + mul_fp(
850 		int_tofp(pstate - cpudata->pstate.min_pstate),
851 		cpudata->vid.ratio);
852 
853 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
854 	vid = ceiling_fp(vid_fp);
855 
856 	if (pstate > cpudata->pstate.max_pstate)
857 		vid = cpudata->vid.turbo;
858 
859 	return val | vid;
860 }
861 
862 static int silvermont_get_scaling(void)
863 {
864 	u64 value;
865 	int i;
866 	/* Defined in Table 35-6 from SDM (Sept 2015) */
867 	static int silvermont_freq_table[] = {
868 		83300, 100000, 133300, 116700, 80000};
869 
870 	rdmsrl(MSR_FSB_FREQ, value);
871 	i = value & 0x7;
872 	WARN_ON(i > 4);
873 
874 	return silvermont_freq_table[i];
875 }
876 
877 static int airmont_get_scaling(void)
878 {
879 	u64 value;
880 	int i;
881 	/* Defined in Table 35-10 from SDM (Sept 2015) */
882 	static int airmont_freq_table[] = {
883 		83300, 100000, 133300, 116700, 80000,
884 		93300, 90000, 88900, 87500};
885 
886 	rdmsrl(MSR_FSB_FREQ, value);
887 	i = value & 0xF;
888 	WARN_ON(i > 8);
889 
890 	return airmont_freq_table[i];
891 }
892 
893 static void atom_get_vid(struct cpudata *cpudata)
894 {
895 	u64 value;
896 
897 	rdmsrl(ATOM_VIDS, value);
898 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
899 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
900 	cpudata->vid.ratio = div_fp(
901 		cpudata->vid.max - cpudata->vid.min,
902 		int_tofp(cpudata->pstate.max_pstate -
903 			cpudata->pstate.min_pstate));
904 
905 	rdmsrl(ATOM_TURBO_VIDS, value);
906 	cpudata->vid.turbo = value & 0x7f;
907 }
908 
909 static int core_get_min_pstate(void)
910 {
911 	u64 value;
912 
913 	rdmsrl(MSR_PLATFORM_INFO, value);
914 	return (value >> 40) & 0xFF;
915 }
916 
917 static int core_get_max_pstate_physical(void)
918 {
919 	u64 value;
920 
921 	rdmsrl(MSR_PLATFORM_INFO, value);
922 	return (value >> 8) & 0xFF;
923 }
924 
925 static int core_get_max_pstate(void)
926 {
927 	u64 tar;
928 	u64 plat_info;
929 	int max_pstate;
930 	int err;
931 
932 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
933 	max_pstate = (plat_info >> 8) & 0xFF;
934 
935 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
936 	if (!err) {
937 		/* Do some sanity checking for safety */
938 		if (plat_info & 0x600000000) {
939 			u64 tdp_ctrl;
940 			u64 tdp_ratio;
941 			int tdp_msr;
942 
943 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
944 			if (err)
945 				goto skip_tar;
946 
947 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
948 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
949 			if (err)
950 				goto skip_tar;
951 
952 			/* For level 1 and 2, bits[23:16] contain the ratio */
953 			if (tdp_ctrl)
954 				tdp_ratio >>= 16;
955 
956 			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
957 			if (tdp_ratio - 1 == tar) {
958 				max_pstate = tar;
959 				pr_debug("max_pstate=TAC %x\n", max_pstate);
960 			} else {
961 				goto skip_tar;
962 			}
963 		}
964 	}
965 
966 skip_tar:
967 	return max_pstate;
968 }
969 
970 static int core_get_turbo_pstate(void)
971 {
972 	u64 value;
973 	int nont, ret;
974 
975 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
976 	nont = core_get_max_pstate();
977 	ret = (value) & 255;
978 	if (ret <= nont)
979 		ret = nont;
980 	return ret;
981 }
982 
983 static inline int core_get_scaling(void)
984 {
985 	return 100000;
986 }
987 
988 static u64 core_get_val(struct cpudata *cpudata, int pstate)
989 {
990 	u64 val;
991 
992 	val = (u64)pstate << 8;
993 	if (limits->no_turbo && !limits->turbo_disabled)
994 		val |= (u64)1 << 32;
995 
996 	return val;
997 }
998 
999 static int knl_get_turbo_pstate(void)
1000 {
1001 	u64 value;
1002 	int nont, ret;
1003 
1004 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1005 	nont = core_get_max_pstate();
1006 	ret = (((value) >> 8) & 0xFF);
1007 	if (ret <= nont)
1008 		ret = nont;
1009 	return ret;
1010 }
1011 
1012 static struct cpu_defaults core_params = {
1013 	.pid_policy = {
1014 		.sample_rate_ms = 10,
1015 		.deadband = 0,
1016 		.setpoint = 97,
1017 		.p_gain_pct = 20,
1018 		.d_gain_pct = 0,
1019 		.i_gain_pct = 0,
1020 	},
1021 	.funcs = {
1022 		.get_max = core_get_max_pstate,
1023 		.get_max_physical = core_get_max_pstate_physical,
1024 		.get_min = core_get_min_pstate,
1025 		.get_turbo = core_get_turbo_pstate,
1026 		.get_scaling = core_get_scaling,
1027 		.get_val = core_get_val,
1028 		.get_target_pstate = get_target_pstate_use_performance,
1029 	},
1030 };
1031 
1032 static struct cpu_defaults silvermont_params = {
1033 	.pid_policy = {
1034 		.sample_rate_ms = 10,
1035 		.deadband = 0,
1036 		.setpoint = 60,
1037 		.p_gain_pct = 14,
1038 		.d_gain_pct = 0,
1039 		.i_gain_pct = 4,
1040 	},
1041 	.funcs = {
1042 		.get_max = atom_get_max_pstate,
1043 		.get_max_physical = atom_get_max_pstate,
1044 		.get_min = atom_get_min_pstate,
1045 		.get_turbo = atom_get_turbo_pstate,
1046 		.get_val = atom_get_val,
1047 		.get_scaling = silvermont_get_scaling,
1048 		.get_vid = atom_get_vid,
1049 		.get_target_pstate = get_target_pstate_use_cpu_load,
1050 	},
1051 };
1052 
1053 static struct cpu_defaults airmont_params = {
1054 	.pid_policy = {
1055 		.sample_rate_ms = 10,
1056 		.deadband = 0,
1057 		.setpoint = 60,
1058 		.p_gain_pct = 14,
1059 		.d_gain_pct = 0,
1060 		.i_gain_pct = 4,
1061 	},
1062 	.funcs = {
1063 		.get_max = atom_get_max_pstate,
1064 		.get_max_physical = atom_get_max_pstate,
1065 		.get_min = atom_get_min_pstate,
1066 		.get_turbo = atom_get_turbo_pstate,
1067 		.get_val = atom_get_val,
1068 		.get_scaling = airmont_get_scaling,
1069 		.get_vid = atom_get_vid,
1070 		.get_target_pstate = get_target_pstate_use_cpu_load,
1071 	},
1072 };
1073 
1074 static struct cpu_defaults knl_params = {
1075 	.pid_policy = {
1076 		.sample_rate_ms = 10,
1077 		.deadband = 0,
1078 		.setpoint = 97,
1079 		.p_gain_pct = 20,
1080 		.d_gain_pct = 0,
1081 		.i_gain_pct = 0,
1082 	},
1083 	.funcs = {
1084 		.get_max = core_get_max_pstate,
1085 		.get_max_physical = core_get_max_pstate_physical,
1086 		.get_min = core_get_min_pstate,
1087 		.get_turbo = knl_get_turbo_pstate,
1088 		.get_scaling = core_get_scaling,
1089 		.get_val = core_get_val,
1090 		.get_target_pstate = get_target_pstate_use_performance,
1091 	},
1092 };
1093 
1094 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1095 {
1096 	int max_perf = cpu->pstate.turbo_pstate;
1097 	int max_perf_adj;
1098 	int min_perf;
1099 
1100 	if (limits->no_turbo || limits->turbo_disabled)
1101 		max_perf = cpu->pstate.max_pstate;
1102 
1103 	/*
1104 	 * performance can be limited by user through sysfs, by cpufreq
1105 	 * policy, or by cpu specific default values determined through
1106 	 * experimentation.
1107 	 */
1108 	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1109 	*max = clamp_t(int, max_perf_adj,
1110 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1111 
1112 	min_perf = fp_toint(max_perf * limits->min_perf);
1113 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1114 }
1115 
1116 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1117 {
1118 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1119 	cpu->pstate.current_pstate = pstate;
1120 }
1121 
1122 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1123 {
1124 	int pstate = cpu->pstate.min_pstate;
1125 
1126 	intel_pstate_record_pstate(cpu, pstate);
1127 	/*
1128 	 * Generally, there is no guarantee that this code will always run on
1129 	 * the CPU being updated, so force the register update to run on the
1130 	 * right CPU.
1131 	 */
1132 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1133 		      pstate_funcs.get_val(cpu, pstate));
1134 }
1135 
1136 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1137 {
1138 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1139 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1140 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1141 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1142 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1143 
1144 	if (pstate_funcs.get_vid)
1145 		pstate_funcs.get_vid(cpu);
1146 
1147 	intel_pstate_set_min_pstate(cpu);
1148 }
1149 
1150 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1151 {
1152 	struct sample *sample = &cpu->sample;
1153 
1154 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1155 }
1156 
1157 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1158 {
1159 	u64 aperf, mperf;
1160 	unsigned long flags;
1161 	u64 tsc;
1162 
1163 	local_irq_save(flags);
1164 	rdmsrl(MSR_IA32_APERF, aperf);
1165 	rdmsrl(MSR_IA32_MPERF, mperf);
1166 	tsc = rdtsc();
1167 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1168 		local_irq_restore(flags);
1169 		return false;
1170 	}
1171 	local_irq_restore(flags);
1172 
1173 	cpu->last_sample_time = cpu->sample.time;
1174 	cpu->sample.time = time;
1175 	cpu->sample.aperf = aperf;
1176 	cpu->sample.mperf = mperf;
1177 	cpu->sample.tsc =  tsc;
1178 	cpu->sample.aperf -= cpu->prev_aperf;
1179 	cpu->sample.mperf -= cpu->prev_mperf;
1180 	cpu->sample.tsc -= cpu->prev_tsc;
1181 
1182 	cpu->prev_aperf = aperf;
1183 	cpu->prev_mperf = mperf;
1184 	cpu->prev_tsc = tsc;
1185 	/*
1186 	 * First time this function is invoked in a given cycle, all of the
1187 	 * previous sample data fields are equal to zero or stale and they must
1188 	 * be populated with meaningful numbers for things to work, so assume
1189 	 * that sample.time will always be reset before setting the utilization
1190 	 * update hook and make the caller skip the sample then.
1191 	 */
1192 	return !!cpu->last_sample_time;
1193 }
1194 
1195 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1196 {
1197 	return mul_ext_fp(cpu->sample.core_avg_perf,
1198 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1199 }
1200 
1201 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1202 {
1203 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1204 			  cpu->sample.core_avg_perf);
1205 }
1206 
1207 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1208 {
1209 	struct sample *sample = &cpu->sample;
1210 	u64 cummulative_iowait, delta_iowait_us;
1211 	u64 delta_iowait_mperf;
1212 	u64 mperf, now;
1213 	int32_t cpu_load;
1214 
1215 	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1216 
1217 	/*
1218 	 * Convert iowait time into number of IO cycles spent at max_freq.
1219 	 * IO is considered as busy only for the cpu_load algorithm. For
1220 	 * performance this is not needed since we always try to reach the
1221 	 * maximum P-State, so we are already boosting the IOs.
1222 	 */
1223 	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1224 	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1225 		cpu->pstate.max_pstate, MSEC_PER_SEC);
1226 
1227 	mperf = cpu->sample.mperf + delta_iowait_mperf;
1228 	cpu->prev_cummulative_iowait = cummulative_iowait;
1229 
1230 	/*
1231 	 * The load can be estimated as the ratio of the mperf counter
1232 	 * running at a constant frequency during active periods
1233 	 * (C0) and the time stamp counter running at the same frequency
1234 	 * also during C-states.
1235 	 */
1236 	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1237 	cpu->sample.busy_scaled = cpu_load;
1238 
1239 	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1240 }
1241 
1242 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1243 {
1244 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1245 	u64 duration_ns;
1246 
1247 	/*
1248 	 * perf_scaled is the average performance during the last sampling
1249 	 * period scaled by the ratio of the maximum P-state to the P-state
1250 	 * requested last time (in percent).  That measures the system's
1251 	 * response to the previous P-state selection.
1252 	 */
1253 	max_pstate = cpu->pstate.max_pstate_physical;
1254 	current_pstate = cpu->pstate.current_pstate;
1255 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1256 			       div_fp(100 * max_pstate, current_pstate));
1257 
1258 	/*
1259 	 * Since our utilization update callback will not run unless we are
1260 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1261 	 * than our sample interval.  If it is, then we were idle for a long
1262 	 * enough period of time to adjust our performance metric.
1263 	 */
1264 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1265 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1266 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1267 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1268 	} else {
1269 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1270 		if (sample_ratio < int_tofp(1))
1271 			perf_scaled = 0;
1272 	}
1273 
1274 	cpu->sample.busy_scaled = perf_scaled;
1275 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1276 }
1277 
1278 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1279 {
1280 	int max_perf, min_perf;
1281 
1282 	update_turbo_state();
1283 
1284 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1285 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1286 	if (pstate == cpu->pstate.current_pstate)
1287 		return;
1288 
1289 	intel_pstate_record_pstate(cpu, pstate);
1290 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1291 }
1292 
1293 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1294 {
1295 	int from, target_pstate;
1296 	struct sample *sample;
1297 
1298 	from = cpu->pstate.current_pstate;
1299 
1300 	target_pstate = pstate_funcs.get_target_pstate(cpu);
1301 
1302 	intel_pstate_update_pstate(cpu, target_pstate);
1303 
1304 	sample = &cpu->sample;
1305 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1306 		fp_toint(sample->busy_scaled),
1307 		from,
1308 		cpu->pstate.current_pstate,
1309 		sample->mperf,
1310 		sample->aperf,
1311 		sample->tsc,
1312 		get_avg_frequency(cpu));
1313 }
1314 
1315 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1316 				     unsigned long util, unsigned long max)
1317 {
1318 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1319 	u64 delta_ns = time - cpu->sample.time;
1320 
1321 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1322 		bool sample_taken = intel_pstate_sample(cpu, time);
1323 
1324 		if (sample_taken) {
1325 			intel_pstate_calc_avg_perf(cpu);
1326 			if (!hwp_active)
1327 				intel_pstate_adjust_busy_pstate(cpu);
1328 		}
1329 	}
1330 }
1331 
1332 #define ICPU(model, policy) \
1333 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1334 			(unsigned long)&policy }
1335 
1336 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1337 	ICPU(0x2a, core_params),
1338 	ICPU(0x2d, core_params),
1339 	ICPU(0x37, silvermont_params),
1340 	ICPU(0x3a, core_params),
1341 	ICPU(0x3c, core_params),
1342 	ICPU(0x3d, core_params),
1343 	ICPU(0x3e, core_params),
1344 	ICPU(0x3f, core_params),
1345 	ICPU(0x45, core_params),
1346 	ICPU(0x46, core_params),
1347 	ICPU(0x47, core_params),
1348 	ICPU(0x4c, airmont_params),
1349 	ICPU(0x4e, core_params),
1350 	ICPU(0x4f, core_params),
1351 	ICPU(0x5e, core_params),
1352 	ICPU(0x56, core_params),
1353 	ICPU(0x57, knl_params),
1354 	{}
1355 };
1356 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1357 
1358 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1359 	ICPU(0x56, core_params),
1360 	{}
1361 };
1362 
1363 static int intel_pstate_init_cpu(unsigned int cpunum)
1364 {
1365 	struct cpudata *cpu;
1366 
1367 	if (!all_cpu_data[cpunum])
1368 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1369 					       GFP_KERNEL);
1370 	if (!all_cpu_data[cpunum])
1371 		return -ENOMEM;
1372 
1373 	cpu = all_cpu_data[cpunum];
1374 
1375 	cpu->cpu = cpunum;
1376 
1377 	if (hwp_active) {
1378 		intel_pstate_hwp_enable(cpu);
1379 		pid_params.sample_rate_ms = 50;
1380 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1381 	}
1382 
1383 	intel_pstate_get_cpu_pstates(cpu);
1384 
1385 	intel_pstate_busy_pid_reset(cpu);
1386 
1387 	pr_debug("controlling: cpu %d\n", cpunum);
1388 
1389 	return 0;
1390 }
1391 
1392 static unsigned int intel_pstate_get(unsigned int cpu_num)
1393 {
1394 	struct cpudata *cpu = all_cpu_data[cpu_num];
1395 
1396 	return cpu ? get_avg_frequency(cpu) : 0;
1397 }
1398 
1399 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1400 {
1401 	struct cpudata *cpu = all_cpu_data[cpu_num];
1402 
1403 	/* Prevent intel_pstate_update_util() from using stale data. */
1404 	cpu->sample.time = 0;
1405 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1406 				     intel_pstate_update_util);
1407 	cpu->update_util_set = true;
1408 }
1409 
1410 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1411 {
1412 	struct cpudata *cpu_data = all_cpu_data[cpu];
1413 
1414 	if (!cpu_data->update_util_set)
1415 		return;
1416 
1417 	cpufreq_remove_update_util_hook(cpu);
1418 	cpu_data->update_util_set = false;
1419 	synchronize_sched();
1420 }
1421 
1422 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1423 {
1424 	limits->no_turbo = 0;
1425 	limits->turbo_disabled = 0;
1426 	limits->max_perf_pct = 100;
1427 	limits->max_perf = int_tofp(1);
1428 	limits->min_perf_pct = 100;
1429 	limits->min_perf = int_tofp(1);
1430 	limits->max_policy_pct = 100;
1431 	limits->max_sysfs_pct = 100;
1432 	limits->min_policy_pct = 0;
1433 	limits->min_sysfs_pct = 0;
1434 }
1435 
1436 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1437 {
1438 	struct cpudata *cpu;
1439 
1440 	if (!policy->cpuinfo.max_freq)
1441 		return -ENODEV;
1442 
1443 	intel_pstate_clear_update_util_hook(policy->cpu);
1444 
1445 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1446 		 policy->cpuinfo.max_freq, policy->max);
1447 
1448 	cpu = all_cpu_data[0];
1449 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1450 	    policy->max < policy->cpuinfo.max_freq &&
1451 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1452 		pr_debug("policy->max > max non turbo frequency\n");
1453 		policy->max = policy->cpuinfo.max_freq;
1454 	}
1455 
1456 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1457 		limits = &performance_limits;
1458 		if (policy->max >= policy->cpuinfo.max_freq) {
1459 			pr_debug("set performance\n");
1460 			intel_pstate_set_performance_limits(limits);
1461 			goto out;
1462 		}
1463 	} else {
1464 		pr_debug("set powersave\n");
1465 		limits = &powersave_limits;
1466 	}
1467 
1468 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1469 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1470 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1471 					      policy->cpuinfo.max_freq);
1472 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1473 
1474 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1475 	limits->min_perf_pct = max(limits->min_policy_pct,
1476 				   limits->min_sysfs_pct);
1477 	limits->min_perf_pct = min(limits->max_policy_pct,
1478 				   limits->min_perf_pct);
1479 	limits->max_perf_pct = min(limits->max_policy_pct,
1480 				   limits->max_sysfs_pct);
1481 	limits->max_perf_pct = max(limits->min_policy_pct,
1482 				   limits->max_perf_pct);
1483 
1484 	/* Make sure min_perf_pct <= max_perf_pct */
1485 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1486 
1487 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
1488 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1489 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1490 
1491  out:
1492 	intel_pstate_set_update_util_hook(policy->cpu);
1493 
1494 	intel_pstate_hwp_set_policy(policy);
1495 
1496 	return 0;
1497 }
1498 
1499 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1500 {
1501 	cpufreq_verify_within_cpu_limits(policy);
1502 
1503 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1504 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1505 		return -EINVAL;
1506 
1507 	return 0;
1508 }
1509 
1510 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1511 {
1512 	int cpu_num = policy->cpu;
1513 	struct cpudata *cpu = all_cpu_data[cpu_num];
1514 
1515 	pr_debug("CPU %d exiting\n", cpu_num);
1516 
1517 	intel_pstate_clear_update_util_hook(cpu_num);
1518 
1519 	if (hwp_active)
1520 		return;
1521 
1522 	intel_pstate_set_min_pstate(cpu);
1523 }
1524 
1525 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1526 {
1527 	struct cpudata *cpu;
1528 	int rc;
1529 
1530 	rc = intel_pstate_init_cpu(policy->cpu);
1531 	if (rc)
1532 		return rc;
1533 
1534 	cpu = all_cpu_data[policy->cpu];
1535 
1536 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1537 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1538 	else
1539 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1540 
1541 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1542 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1543 
1544 	/* cpuinfo and default policy values */
1545 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1546 	update_turbo_state();
1547 	policy->cpuinfo.max_freq = limits->turbo_disabled ?
1548 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1549 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1550 
1551 	intel_pstate_init_acpi_perf_limits(policy);
1552 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1553 	cpumask_set_cpu(policy->cpu, policy->cpus);
1554 
1555 	return 0;
1556 }
1557 
1558 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1559 {
1560 	intel_pstate_exit_perf_limits(policy);
1561 
1562 	return 0;
1563 }
1564 
1565 static struct cpufreq_driver intel_pstate_driver = {
1566 	.flags		= CPUFREQ_CONST_LOOPS,
1567 	.verify		= intel_pstate_verify_policy,
1568 	.setpolicy	= intel_pstate_set_policy,
1569 	.resume		= intel_pstate_hwp_set_policy,
1570 	.get		= intel_pstate_get,
1571 	.init		= intel_pstate_cpu_init,
1572 	.exit		= intel_pstate_cpu_exit,
1573 	.stop_cpu	= intel_pstate_stop_cpu,
1574 	.name		= "intel_pstate",
1575 };
1576 
1577 static int __initdata no_load;
1578 static int __initdata no_hwp;
1579 static int __initdata hwp_only;
1580 static unsigned int force_load;
1581 
1582 static int intel_pstate_msrs_not_valid(void)
1583 {
1584 	if (!pstate_funcs.get_max() ||
1585 	    !pstate_funcs.get_min() ||
1586 	    !pstate_funcs.get_turbo())
1587 		return -ENODEV;
1588 
1589 	return 0;
1590 }
1591 
1592 static void copy_pid_params(struct pstate_adjust_policy *policy)
1593 {
1594 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1595 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1596 	pid_params.p_gain_pct = policy->p_gain_pct;
1597 	pid_params.i_gain_pct = policy->i_gain_pct;
1598 	pid_params.d_gain_pct = policy->d_gain_pct;
1599 	pid_params.deadband = policy->deadband;
1600 	pid_params.setpoint = policy->setpoint;
1601 }
1602 
1603 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1604 {
1605 	pstate_funcs.get_max   = funcs->get_max;
1606 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1607 	pstate_funcs.get_min   = funcs->get_min;
1608 	pstate_funcs.get_turbo = funcs->get_turbo;
1609 	pstate_funcs.get_scaling = funcs->get_scaling;
1610 	pstate_funcs.get_val   = funcs->get_val;
1611 	pstate_funcs.get_vid   = funcs->get_vid;
1612 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1613 
1614 }
1615 
1616 #ifdef CONFIG_ACPI
1617 
1618 static bool intel_pstate_no_acpi_pss(void)
1619 {
1620 	int i;
1621 
1622 	for_each_possible_cpu(i) {
1623 		acpi_status status;
1624 		union acpi_object *pss;
1625 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1626 		struct acpi_processor *pr = per_cpu(processors, i);
1627 
1628 		if (!pr)
1629 			continue;
1630 
1631 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1632 		if (ACPI_FAILURE(status))
1633 			continue;
1634 
1635 		pss = buffer.pointer;
1636 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1637 			kfree(pss);
1638 			return false;
1639 		}
1640 
1641 		kfree(pss);
1642 	}
1643 
1644 	return true;
1645 }
1646 
1647 static bool intel_pstate_has_acpi_ppc(void)
1648 {
1649 	int i;
1650 
1651 	for_each_possible_cpu(i) {
1652 		struct acpi_processor *pr = per_cpu(processors, i);
1653 
1654 		if (!pr)
1655 			continue;
1656 		if (acpi_has_method(pr->handle, "_PPC"))
1657 			return true;
1658 	}
1659 	return false;
1660 }
1661 
1662 enum {
1663 	PSS,
1664 	PPC,
1665 };
1666 
1667 struct hw_vendor_info {
1668 	u16  valid;
1669 	char oem_id[ACPI_OEM_ID_SIZE];
1670 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1671 	int  oem_pwr_table;
1672 };
1673 
1674 /* Hardware vendor-specific info that has its own power management modes */
1675 static struct hw_vendor_info vendor_info[] = {
1676 	{1, "HP    ", "ProLiant", PSS},
1677 	{1, "ORACLE", "X4-2    ", PPC},
1678 	{1, "ORACLE", "X4-2L   ", PPC},
1679 	{1, "ORACLE", "X4-2B   ", PPC},
1680 	{1, "ORACLE", "X3-2    ", PPC},
1681 	{1, "ORACLE", "X3-2L   ", PPC},
1682 	{1, "ORACLE", "X3-2B   ", PPC},
1683 	{1, "ORACLE", "X4470M2 ", PPC},
1684 	{1, "ORACLE", "X4270M3 ", PPC},
1685 	{1, "ORACLE", "X4270M2 ", PPC},
1686 	{1, "ORACLE", "X4170M2 ", PPC},
1687 	{1, "ORACLE", "X4170 M3", PPC},
1688 	{1, "ORACLE", "X4275 M3", PPC},
1689 	{1, "ORACLE", "X6-2    ", PPC},
1690 	{1, "ORACLE", "Sudbury ", PPC},
1691 	{0, "", ""},
1692 };
1693 
1694 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1695 {
1696 	struct acpi_table_header hdr;
1697 	struct hw_vendor_info *v_info;
1698 	const struct x86_cpu_id *id;
1699 	u64 misc_pwr;
1700 
1701 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1702 	if (id) {
1703 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1704 		if ( misc_pwr & (1 << 8))
1705 			return true;
1706 	}
1707 
1708 	if (acpi_disabled ||
1709 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1710 		return false;
1711 
1712 	for (v_info = vendor_info; v_info->valid; v_info++) {
1713 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1714 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1715 						ACPI_OEM_TABLE_ID_SIZE))
1716 			switch (v_info->oem_pwr_table) {
1717 			case PSS:
1718 				return intel_pstate_no_acpi_pss();
1719 			case PPC:
1720 				return intel_pstate_has_acpi_ppc() &&
1721 					(!force_load);
1722 			}
1723 	}
1724 
1725 	return false;
1726 }
1727 #else /* CONFIG_ACPI not enabled */
1728 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1729 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1730 #endif /* CONFIG_ACPI */
1731 
1732 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1733 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1734 	{}
1735 };
1736 
1737 static int __init intel_pstate_init(void)
1738 {
1739 	int cpu, rc = 0;
1740 	const struct x86_cpu_id *id;
1741 	struct cpu_defaults *cpu_def;
1742 
1743 	if (no_load)
1744 		return -ENODEV;
1745 
1746 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1747 		copy_cpu_funcs(&core_params.funcs);
1748 		hwp_active++;
1749 		goto hwp_cpu_matched;
1750 	}
1751 
1752 	id = x86_match_cpu(intel_pstate_cpu_ids);
1753 	if (!id)
1754 		return -ENODEV;
1755 
1756 	cpu_def = (struct cpu_defaults *)id->driver_data;
1757 
1758 	copy_pid_params(&cpu_def->pid_policy);
1759 	copy_cpu_funcs(&cpu_def->funcs);
1760 
1761 	if (intel_pstate_msrs_not_valid())
1762 		return -ENODEV;
1763 
1764 hwp_cpu_matched:
1765 	/*
1766 	 * The Intel pstate driver will be ignored if the platform
1767 	 * firmware has its own power management modes.
1768 	 */
1769 	if (intel_pstate_platform_pwr_mgmt_exists())
1770 		return -ENODEV;
1771 
1772 	pr_info("Intel P-state driver initializing\n");
1773 
1774 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1775 	if (!all_cpu_data)
1776 		return -ENOMEM;
1777 
1778 	if (!hwp_active && hwp_only)
1779 		goto out;
1780 
1781 	rc = cpufreq_register_driver(&intel_pstate_driver);
1782 	if (rc)
1783 		goto out;
1784 
1785 	intel_pstate_debug_expose_params();
1786 	intel_pstate_sysfs_expose_params();
1787 
1788 	if (hwp_active)
1789 		pr_info("HWP enabled\n");
1790 
1791 	return rc;
1792 out:
1793 	get_online_cpus();
1794 	for_each_online_cpu(cpu) {
1795 		if (all_cpu_data[cpu]) {
1796 			intel_pstate_clear_update_util_hook(cpu);
1797 			kfree(all_cpu_data[cpu]);
1798 		}
1799 	}
1800 
1801 	put_online_cpus();
1802 	vfree(all_cpu_data);
1803 	return -ENODEV;
1804 }
1805 device_initcall(intel_pstate_init);
1806 
1807 static int __init intel_pstate_setup(char *str)
1808 {
1809 	if (!str)
1810 		return -EINVAL;
1811 
1812 	if (!strcmp(str, "disable"))
1813 		no_load = 1;
1814 	if (!strcmp(str, "no_hwp")) {
1815 		pr_info("HWP disabled\n");
1816 		no_hwp = 1;
1817 	}
1818 	if (!strcmp(str, "force"))
1819 		force_load = 1;
1820 	if (!strcmp(str, "hwp_only"))
1821 		hwp_only = 1;
1822 
1823 #ifdef CONFIG_ACPI
1824 	if (!strcmp(str, "support_acpi_ppc"))
1825 		acpi_ppc = true;
1826 #endif
1827 
1828 	return 0;
1829 }
1830 early_param("intel_pstate", intel_pstate_setup);
1831 
1832 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1833 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1834 MODULE_LICENSE("GPL");
1835