xref: /linux/drivers/cpufreq/intel_pstate.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32 
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 
39 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40 
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62 
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 	return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67 
68 static inline int ceiling_fp(int32_t x)
69 {
70 	int mask, ret;
71 
72 	ret = fp_toint(x);
73 	mask = (1 << FRAC_BITS) - 1;
74 	if (x & mask)
75 		ret += 1;
76 	return ret;
77 }
78 
79 static inline int32_t percent_fp(int percent)
80 {
81 	return div_fp(percent, 100);
82 }
83 
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 	return (x * y) >> EXT_FRAC_BITS;
87 }
88 
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 	return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93 
94 static inline int32_t percent_ext_fp(int percent)
95 {
96 	return div_ext_fp(percent, 100);
97 }
98 
99 /**
100  * struct sample -	Store performance sample
101  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102  *			performance during last sample period
103  * @busy_scaled:	Scaled busy value which is used to calculate next
104  *			P state. This can be different than core_avg_perf
105  *			to account for cpu idle period
106  * @aperf:		Difference of actual performance frequency clock count
107  *			read from APERF MSR between last and current sample
108  * @mperf:		Difference of maximum performance frequency clock count
109  *			read from MPERF MSR between last and current sample
110  * @tsc:		Difference of time stamp counter between last and
111  *			current sample
112  * @time:		Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118 	int32_t core_avg_perf;
119 	int32_t busy_scaled;
120 	u64 aperf;
121 	u64 mperf;
122 	u64 tsc;
123 	u64 time;
124 };
125 
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:	Current requested P state
129  * @min_pstate:		Min P state possible for this platform
130  * @max_pstate:		Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *			This can be higher than the max_pstate which can
133  *			be limited by platform thermal design power limits
134  * @scaling:		Scaling factor to  convert frequency to cpufreq
135  *			frequency units
136  * @turbo_pstate:	Max Turbo P state possible for this platform
137  * @max_freq:		@max_pstate frequency in cpufreq units
138  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143 	int	current_pstate;
144 	int	min_pstate;
145 	int	max_pstate;
146 	int	max_pstate_physical;
147 	int	scaling;
148 	int	turbo_pstate;
149 	unsigned int max_freq;
150 	unsigned int turbo_freq;
151 };
152 
153 /**
154  * struct vid_data -	Stores voltage information data
155  * @min:		VID data for this platform corresponding to
156  *			the lowest P state
157  * @max:		VID data corresponding to the highest P State.
158  * @turbo:		VID data for turbo P state
159  * @ratio:		Ratio of (vid max - vid min) /
160  *			(max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167 	int min;
168 	int max;
169 	int turbo;
170 	int32_t ratio;
171 };
172 
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:		Whether or not to use turbo P-states.
176  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
177  *			based on the MSR_IA32_MISC_ENABLE value and whether or
178  *			not the maximum reported turbo P-state is different from
179  *			the maximum reported non-turbo one.
180  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
181  *			P-state capacity.
182  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
183  *			P-state capacity.
184  */
185 struct global_params {
186 	bool no_turbo;
187 	bool turbo_disabled;
188 	int max_perf_pct;
189 	int min_perf_pct;
190 };
191 
192 /**
193  * struct cpudata -	Per CPU instance data storage
194  * @cpu:		CPU number for this instance data
195  * @policy:		CPUFreq policy value
196  * @update_util:	CPUFreq utility callback information
197  * @update_util_set:	CPUFreq utility callback is set
198  * @iowait_boost:	iowait-related boost fraction
199  * @last_update:	Time of the last update.
200  * @pstate:		Stores P state limits for this CPU
201  * @vid:		Stores VID limits for this CPU
202  * @last_sample_time:	Last Sample time
203  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
204  *			This shift is a multiplier to mperf delta to
205  *			calculate CPU busy.
206  * @prev_aperf:		Last APERF value read from APERF MSR
207  * @prev_mperf:		Last MPERF value read from MPERF MSR
208  * @prev_tsc:		Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *			current sample
211  * @sample:		Storage for storing last Sample data
212  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
215  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:	Last saved HWP energy performance preference
217  *			(EPP) or energy performance bias (EPB),
218  *			when policy switched to performance
219  * @epp_policy:		Last saved policy used to set EPP/EPB
220  * @epp_default:	Power on default HWP energy performance
221  *			preference/bias
222  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
223  *			operation
224  * @hwp_req_cached:	Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226  * @last_io_update:	Last time when IO wake flag was set
227  * @sched_flags:	Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:	Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233 	int cpu;
234 
235 	unsigned int policy;
236 	struct update_util_data update_util;
237 	bool   update_util_set;
238 
239 	struct pstate_data pstate;
240 	struct vid_data vid;
241 
242 	u64	last_update;
243 	u64	last_sample_time;
244 	u64	aperf_mperf_shift;
245 	u64	prev_aperf;
246 	u64	prev_mperf;
247 	u64	prev_tsc;
248 	u64	prev_cummulative_iowait;
249 	struct sample sample;
250 	int32_t	min_perf_ratio;
251 	int32_t	max_perf_ratio;
252 #ifdef CONFIG_ACPI
253 	struct acpi_processor_performance acpi_perf_data;
254 	bool valid_pss_table;
255 #endif
256 	unsigned int iowait_boost;
257 	s16 epp_powersave;
258 	s16 epp_policy;
259 	s16 epp_default;
260 	s16 epp_saved;
261 	u64 hwp_req_cached;
262 	u64 hwp_cap_cached;
263 	u64 last_io_update;
264 	unsigned int sched_flags;
265 	u32 hwp_boost_min;
266 };
267 
268 static struct cpudata **all_cpu_data;
269 
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:		Callback to get maximum non turbo effective P state
273  * @get_max_physical:	Callback to get maximum non turbo physical P state
274  * @get_min:		Callback to get minimum P state
275  * @get_turbo:		Callback to get turbo P state
276  * @get_scaling:	Callback to get frequency scaling factor
277  * @get_val:		Callback to convert P state to actual MSR write value
278  * @get_vid:		Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284 	int (*get_max)(void);
285 	int (*get_max_physical)(void);
286 	int (*get_min)(void);
287 	int (*get_turbo)(void);
288 	int (*get_scaling)(void);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return false;
321 }
322 
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 	if (intel_pstate_acpi_pm_profile_server())
326 		return true;
327 
328 	return acpi_ppc;
329 }
330 
331 #ifdef CONFIG_ACPI_CPPC_LIB
332 
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 	sched_set_itmt_support();
337 }
338 
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340 
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343 	struct cppc_perf_caps cppc_perf;
344 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 	int ret;
346 
347 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 	if (ret)
349 		return;
350 
351 	/*
352 	 * The priorities can be set regardless of whether or not
353 	 * sched_set_itmt_support(true) has been called and it is valid to
354 	 * update them at any time after it has been called.
355 	 */
356 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357 
358 	if (max_highest_perf <= min_highest_perf) {
359 		if (cppc_perf.highest_perf > max_highest_perf)
360 			max_highest_perf = cppc_perf.highest_perf;
361 
362 		if (cppc_perf.highest_perf < min_highest_perf)
363 			min_highest_perf = cppc_perf.highest_perf;
364 
365 		if (max_highest_perf > min_highest_perf) {
366 			/*
367 			 * This code can be run during CPU online under the
368 			 * CPU hotplug locks, so sched_set_itmt_support()
369 			 * cannot be called from here.  Queue up a work item
370 			 * to invoke it.
371 			 */
372 			schedule_work(&sched_itmt_work);
373 		}
374 	}
375 }
376 #else
377 static void intel_pstate_set_itmt_prio(int cpu)
378 {
379 }
380 #endif
381 
382 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
383 {
384 	struct cpudata *cpu;
385 	int ret;
386 	int i;
387 
388 	if (hwp_active) {
389 		intel_pstate_set_itmt_prio(policy->cpu);
390 		return;
391 	}
392 
393 	if (!intel_pstate_get_ppc_enable_status())
394 		return;
395 
396 	cpu = all_cpu_data[policy->cpu];
397 
398 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
399 						  policy->cpu);
400 	if (ret)
401 		return;
402 
403 	/*
404 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
405 	 * guarantee that the states returned by it map to the states in our
406 	 * list directly.
407 	 */
408 	if (cpu->acpi_perf_data.control_register.space_id !=
409 						ACPI_ADR_SPACE_FIXED_HARDWARE)
410 		goto err;
411 
412 	/*
413 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
414 	 * usual without taking _PSS into account
415 	 */
416 	if (cpu->acpi_perf_data.state_count < 2)
417 		goto err;
418 
419 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
420 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
421 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
422 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
423 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
424 			 (u32) cpu->acpi_perf_data.states[i].power,
425 			 (u32) cpu->acpi_perf_data.states[i].control);
426 	}
427 
428 	/*
429 	 * The _PSS table doesn't contain whole turbo frequency range.
430 	 * This just contains +1 MHZ above the max non turbo frequency,
431 	 * with control value corresponding to max turbo ratio. But
432 	 * when cpufreq set policy is called, it will call with this
433 	 * max frequency, which will cause a reduced performance as
434 	 * this driver uses real max turbo frequency as the max
435 	 * frequency. So correct this frequency in _PSS table to
436 	 * correct max turbo frequency based on the turbo state.
437 	 * Also need to convert to MHz as _PSS freq is in MHz.
438 	 */
439 	if (!global.turbo_disabled)
440 		cpu->acpi_perf_data.states[0].core_frequency =
441 					policy->cpuinfo.max_freq / 1000;
442 	cpu->valid_pss_table = true;
443 	pr_debug("_PPC limits will be enforced\n");
444 
445 	return;
446 
447  err:
448 	cpu->valid_pss_table = false;
449 	acpi_processor_unregister_performance(policy->cpu);
450 }
451 
452 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
453 {
454 	struct cpudata *cpu;
455 
456 	cpu = all_cpu_data[policy->cpu];
457 	if (!cpu->valid_pss_table)
458 		return;
459 
460 	acpi_processor_unregister_performance(policy->cpu);
461 }
462 #else
463 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
464 {
465 }
466 
467 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
468 {
469 }
470 
471 static inline bool intel_pstate_acpi_pm_profile_server(void)
472 {
473 	return false;
474 }
475 #endif
476 
477 static inline void update_turbo_state(void)
478 {
479 	u64 misc_en;
480 	struct cpudata *cpu;
481 
482 	cpu = all_cpu_data[0];
483 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
484 	global.turbo_disabled =
485 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
486 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
487 }
488 
489 static int min_perf_pct_min(void)
490 {
491 	struct cpudata *cpu = all_cpu_data[0];
492 	int turbo_pstate = cpu->pstate.turbo_pstate;
493 
494 	return turbo_pstate ?
495 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
496 }
497 
498 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
499 {
500 	u64 epb;
501 	int ret;
502 
503 	if (!static_cpu_has(X86_FEATURE_EPB))
504 		return -ENXIO;
505 
506 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
507 	if (ret)
508 		return (s16)ret;
509 
510 	return (s16)(epb & 0x0f);
511 }
512 
513 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
514 {
515 	s16 epp;
516 
517 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
518 		/*
519 		 * When hwp_req_data is 0, means that caller didn't read
520 		 * MSR_HWP_REQUEST, so need to read and get EPP.
521 		 */
522 		if (!hwp_req_data) {
523 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
524 					    &hwp_req_data);
525 			if (epp)
526 				return epp;
527 		}
528 		epp = (hwp_req_data >> 24) & 0xff;
529 	} else {
530 		/* When there is no EPP present, HWP uses EPB settings */
531 		epp = intel_pstate_get_epb(cpu_data);
532 	}
533 
534 	return epp;
535 }
536 
537 static int intel_pstate_set_epb(int cpu, s16 pref)
538 {
539 	u64 epb;
540 	int ret;
541 
542 	if (!static_cpu_has(X86_FEATURE_EPB))
543 		return -ENXIO;
544 
545 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
546 	if (ret)
547 		return ret;
548 
549 	epb = (epb & ~0x0f) | pref;
550 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
551 
552 	return 0;
553 }
554 
555 /*
556  * EPP/EPB display strings corresponding to EPP index in the
557  * energy_perf_strings[]
558  *	index		String
559  *-------------------------------------
560  *	0		default
561  *	1		performance
562  *	2		balance_performance
563  *	3		balance_power
564  *	4		power
565  */
566 static const char * const energy_perf_strings[] = {
567 	"default",
568 	"performance",
569 	"balance_performance",
570 	"balance_power",
571 	"power",
572 	NULL
573 };
574 static const unsigned int epp_values[] = {
575 	HWP_EPP_PERFORMANCE,
576 	HWP_EPP_BALANCE_PERFORMANCE,
577 	HWP_EPP_BALANCE_POWERSAVE,
578 	HWP_EPP_POWERSAVE
579 };
580 
581 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
582 {
583 	s16 epp;
584 	int index = -EINVAL;
585 
586 	epp = intel_pstate_get_epp(cpu_data, 0);
587 	if (epp < 0)
588 		return epp;
589 
590 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
591 		if (epp == HWP_EPP_PERFORMANCE)
592 			return 1;
593 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
594 			return 2;
595 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
596 			return 3;
597 		else
598 			return 4;
599 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
600 		/*
601 		 * Range:
602 		 *	0x00-0x03	:	Performance
603 		 *	0x04-0x07	:	Balance performance
604 		 *	0x08-0x0B	:	Balance power
605 		 *	0x0C-0x0F	:	Power
606 		 * The EPB is a 4 bit value, but our ranges restrict the
607 		 * value which can be set. Here only using top two bits
608 		 * effectively.
609 		 */
610 		index = (epp >> 2) + 1;
611 	}
612 
613 	return index;
614 }
615 
616 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
617 					      int pref_index)
618 {
619 	int epp = -EINVAL;
620 	int ret;
621 
622 	if (!pref_index)
623 		epp = cpu_data->epp_default;
624 
625 	mutex_lock(&intel_pstate_limits_lock);
626 
627 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
628 		u64 value;
629 
630 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
631 		if (ret)
632 			goto return_pref;
633 
634 		value &= ~GENMASK_ULL(31, 24);
635 
636 		if (epp == -EINVAL)
637 			epp = epp_values[pref_index - 1];
638 
639 		value |= (u64)epp << 24;
640 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
641 	} else {
642 		if (epp == -EINVAL)
643 			epp = (pref_index - 1) << 2;
644 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
645 	}
646 return_pref:
647 	mutex_unlock(&intel_pstate_limits_lock);
648 
649 	return ret;
650 }
651 
652 static ssize_t show_energy_performance_available_preferences(
653 				struct cpufreq_policy *policy, char *buf)
654 {
655 	int i = 0;
656 	int ret = 0;
657 
658 	while (energy_perf_strings[i] != NULL)
659 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
660 
661 	ret += sprintf(&buf[ret], "\n");
662 
663 	return ret;
664 }
665 
666 cpufreq_freq_attr_ro(energy_performance_available_preferences);
667 
668 static ssize_t store_energy_performance_preference(
669 		struct cpufreq_policy *policy, const char *buf, size_t count)
670 {
671 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
672 	char str_preference[21];
673 	int ret, i = 0;
674 
675 	ret = sscanf(buf, "%20s", str_preference);
676 	if (ret != 1)
677 		return -EINVAL;
678 
679 	while (energy_perf_strings[i] != NULL) {
680 		if (!strcmp(str_preference, energy_perf_strings[i])) {
681 			intel_pstate_set_energy_pref_index(cpu_data, i);
682 			return count;
683 		}
684 		++i;
685 	}
686 
687 	return -EINVAL;
688 }
689 
690 static ssize_t show_energy_performance_preference(
691 				struct cpufreq_policy *policy, char *buf)
692 {
693 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
694 	int preference;
695 
696 	preference = intel_pstate_get_energy_pref_index(cpu_data);
697 	if (preference < 0)
698 		return preference;
699 
700 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
701 }
702 
703 cpufreq_freq_attr_rw(energy_performance_preference);
704 
705 static struct freq_attr *hwp_cpufreq_attrs[] = {
706 	&energy_performance_preference,
707 	&energy_performance_available_preferences,
708 	NULL,
709 };
710 
711 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
712 				     int *current_max)
713 {
714 	u64 cap;
715 
716 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
717 	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
718 	if (global.no_turbo)
719 		*current_max = HWP_GUARANTEED_PERF(cap);
720 	else
721 		*current_max = HWP_HIGHEST_PERF(cap);
722 
723 	*phy_max = HWP_HIGHEST_PERF(cap);
724 }
725 
726 static void intel_pstate_hwp_set(unsigned int cpu)
727 {
728 	struct cpudata *cpu_data = all_cpu_data[cpu];
729 	int max, min;
730 	u64 value;
731 	s16 epp;
732 
733 	max = cpu_data->max_perf_ratio;
734 	min = cpu_data->min_perf_ratio;
735 
736 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
737 		min = max;
738 
739 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
740 
741 	value &= ~HWP_MIN_PERF(~0L);
742 	value |= HWP_MIN_PERF(min);
743 
744 	value &= ~HWP_MAX_PERF(~0L);
745 	value |= HWP_MAX_PERF(max);
746 
747 	if (cpu_data->epp_policy == cpu_data->policy)
748 		goto skip_epp;
749 
750 	cpu_data->epp_policy = cpu_data->policy;
751 
752 	if (cpu_data->epp_saved >= 0) {
753 		epp = cpu_data->epp_saved;
754 		cpu_data->epp_saved = -EINVAL;
755 		goto update_epp;
756 	}
757 
758 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
759 		epp = intel_pstate_get_epp(cpu_data, value);
760 		cpu_data->epp_powersave = epp;
761 		/* If EPP read was failed, then don't try to write */
762 		if (epp < 0)
763 			goto skip_epp;
764 
765 		epp = 0;
766 	} else {
767 		/* skip setting EPP, when saved value is invalid */
768 		if (cpu_data->epp_powersave < 0)
769 			goto skip_epp;
770 
771 		/*
772 		 * No need to restore EPP when it is not zero. This
773 		 * means:
774 		 *  - Policy is not changed
775 		 *  - user has manually changed
776 		 *  - Error reading EPB
777 		 */
778 		epp = intel_pstate_get_epp(cpu_data, value);
779 		if (epp)
780 			goto skip_epp;
781 
782 		epp = cpu_data->epp_powersave;
783 	}
784 update_epp:
785 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
786 		value &= ~GENMASK_ULL(31, 24);
787 		value |= (u64)epp << 24;
788 	} else {
789 		intel_pstate_set_epb(cpu, epp);
790 	}
791 skip_epp:
792 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
793 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
794 }
795 
796 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
797 {
798 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
799 
800 	if (!hwp_active)
801 		return 0;
802 
803 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
804 
805 	return 0;
806 }
807 
808 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
809 
810 static int intel_pstate_resume(struct cpufreq_policy *policy)
811 {
812 	if (!hwp_active)
813 		return 0;
814 
815 	mutex_lock(&intel_pstate_limits_lock);
816 
817 	if (policy->cpu == 0)
818 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
819 
820 	all_cpu_data[policy->cpu]->epp_policy = 0;
821 	intel_pstate_hwp_set(policy->cpu);
822 
823 	mutex_unlock(&intel_pstate_limits_lock);
824 
825 	return 0;
826 }
827 
828 static void intel_pstate_update_policies(void)
829 {
830 	int cpu;
831 
832 	for_each_possible_cpu(cpu)
833 		cpufreq_update_policy(cpu);
834 }
835 
836 /************************** sysfs begin ************************/
837 #define show_one(file_name, object)					\
838 	static ssize_t show_##file_name					\
839 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
840 	{								\
841 		return sprintf(buf, "%u\n", global.object);		\
842 	}
843 
844 static ssize_t intel_pstate_show_status(char *buf);
845 static int intel_pstate_update_status(const char *buf, size_t size);
846 
847 static ssize_t show_status(struct kobject *kobj,
848 			   struct attribute *attr, char *buf)
849 {
850 	ssize_t ret;
851 
852 	mutex_lock(&intel_pstate_driver_lock);
853 	ret = intel_pstate_show_status(buf);
854 	mutex_unlock(&intel_pstate_driver_lock);
855 
856 	return ret;
857 }
858 
859 static ssize_t store_status(struct kobject *a, struct attribute *b,
860 			    const char *buf, size_t count)
861 {
862 	char *p = memchr(buf, '\n', count);
863 	int ret;
864 
865 	mutex_lock(&intel_pstate_driver_lock);
866 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
867 	mutex_unlock(&intel_pstate_driver_lock);
868 
869 	return ret < 0 ? ret : count;
870 }
871 
872 static ssize_t show_turbo_pct(struct kobject *kobj,
873 				struct attribute *attr, char *buf)
874 {
875 	struct cpudata *cpu;
876 	int total, no_turbo, turbo_pct;
877 	uint32_t turbo_fp;
878 
879 	mutex_lock(&intel_pstate_driver_lock);
880 
881 	if (!intel_pstate_driver) {
882 		mutex_unlock(&intel_pstate_driver_lock);
883 		return -EAGAIN;
884 	}
885 
886 	cpu = all_cpu_data[0];
887 
888 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
889 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
890 	turbo_fp = div_fp(no_turbo, total);
891 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
892 
893 	mutex_unlock(&intel_pstate_driver_lock);
894 
895 	return sprintf(buf, "%u\n", turbo_pct);
896 }
897 
898 static ssize_t show_num_pstates(struct kobject *kobj,
899 				struct attribute *attr, char *buf)
900 {
901 	struct cpudata *cpu;
902 	int total;
903 
904 	mutex_lock(&intel_pstate_driver_lock);
905 
906 	if (!intel_pstate_driver) {
907 		mutex_unlock(&intel_pstate_driver_lock);
908 		return -EAGAIN;
909 	}
910 
911 	cpu = all_cpu_data[0];
912 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
913 
914 	mutex_unlock(&intel_pstate_driver_lock);
915 
916 	return sprintf(buf, "%u\n", total);
917 }
918 
919 static ssize_t show_no_turbo(struct kobject *kobj,
920 			     struct attribute *attr, char *buf)
921 {
922 	ssize_t ret;
923 
924 	mutex_lock(&intel_pstate_driver_lock);
925 
926 	if (!intel_pstate_driver) {
927 		mutex_unlock(&intel_pstate_driver_lock);
928 		return -EAGAIN;
929 	}
930 
931 	update_turbo_state();
932 	if (global.turbo_disabled)
933 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
934 	else
935 		ret = sprintf(buf, "%u\n", global.no_turbo);
936 
937 	mutex_unlock(&intel_pstate_driver_lock);
938 
939 	return ret;
940 }
941 
942 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
943 			      const char *buf, size_t count)
944 {
945 	unsigned int input;
946 	int ret;
947 
948 	ret = sscanf(buf, "%u", &input);
949 	if (ret != 1)
950 		return -EINVAL;
951 
952 	mutex_lock(&intel_pstate_driver_lock);
953 
954 	if (!intel_pstate_driver) {
955 		mutex_unlock(&intel_pstate_driver_lock);
956 		return -EAGAIN;
957 	}
958 
959 	mutex_lock(&intel_pstate_limits_lock);
960 
961 	update_turbo_state();
962 	if (global.turbo_disabled) {
963 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
964 		mutex_unlock(&intel_pstate_limits_lock);
965 		mutex_unlock(&intel_pstate_driver_lock);
966 		return -EPERM;
967 	}
968 
969 	global.no_turbo = clamp_t(int, input, 0, 1);
970 
971 	if (global.no_turbo) {
972 		struct cpudata *cpu = all_cpu_data[0];
973 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
974 
975 		/* Squash the global minimum into the permitted range. */
976 		if (global.min_perf_pct > pct)
977 			global.min_perf_pct = pct;
978 	}
979 
980 	mutex_unlock(&intel_pstate_limits_lock);
981 
982 	intel_pstate_update_policies();
983 
984 	mutex_unlock(&intel_pstate_driver_lock);
985 
986 	return count;
987 }
988 
989 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
990 				  const char *buf, size_t count)
991 {
992 	unsigned int input;
993 	int ret;
994 
995 	ret = sscanf(buf, "%u", &input);
996 	if (ret != 1)
997 		return -EINVAL;
998 
999 	mutex_lock(&intel_pstate_driver_lock);
1000 
1001 	if (!intel_pstate_driver) {
1002 		mutex_unlock(&intel_pstate_driver_lock);
1003 		return -EAGAIN;
1004 	}
1005 
1006 	mutex_lock(&intel_pstate_limits_lock);
1007 
1008 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1009 
1010 	mutex_unlock(&intel_pstate_limits_lock);
1011 
1012 	intel_pstate_update_policies();
1013 
1014 	mutex_unlock(&intel_pstate_driver_lock);
1015 
1016 	return count;
1017 }
1018 
1019 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1020 				  const char *buf, size_t count)
1021 {
1022 	unsigned int input;
1023 	int ret;
1024 
1025 	ret = sscanf(buf, "%u", &input);
1026 	if (ret != 1)
1027 		return -EINVAL;
1028 
1029 	mutex_lock(&intel_pstate_driver_lock);
1030 
1031 	if (!intel_pstate_driver) {
1032 		mutex_unlock(&intel_pstate_driver_lock);
1033 		return -EAGAIN;
1034 	}
1035 
1036 	mutex_lock(&intel_pstate_limits_lock);
1037 
1038 	global.min_perf_pct = clamp_t(int, input,
1039 				      min_perf_pct_min(), global.max_perf_pct);
1040 
1041 	mutex_unlock(&intel_pstate_limits_lock);
1042 
1043 	intel_pstate_update_policies();
1044 
1045 	mutex_unlock(&intel_pstate_driver_lock);
1046 
1047 	return count;
1048 }
1049 
1050 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1051 				struct attribute *attr, char *buf)
1052 {
1053 	return sprintf(buf, "%u\n", hwp_boost);
1054 }
1055 
1056 static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1057 				       const char *buf, size_t count)
1058 {
1059 	unsigned int input;
1060 	int ret;
1061 
1062 	ret = kstrtouint(buf, 10, &input);
1063 	if (ret)
1064 		return ret;
1065 
1066 	mutex_lock(&intel_pstate_driver_lock);
1067 	hwp_boost = !!input;
1068 	intel_pstate_update_policies();
1069 	mutex_unlock(&intel_pstate_driver_lock);
1070 
1071 	return count;
1072 }
1073 
1074 show_one(max_perf_pct, max_perf_pct);
1075 show_one(min_perf_pct, min_perf_pct);
1076 
1077 define_one_global_rw(status);
1078 define_one_global_rw(no_turbo);
1079 define_one_global_rw(max_perf_pct);
1080 define_one_global_rw(min_perf_pct);
1081 define_one_global_ro(turbo_pct);
1082 define_one_global_ro(num_pstates);
1083 define_one_global_rw(hwp_dynamic_boost);
1084 
1085 static struct attribute *intel_pstate_attributes[] = {
1086 	&status.attr,
1087 	&no_turbo.attr,
1088 	&turbo_pct.attr,
1089 	&num_pstates.attr,
1090 	NULL
1091 };
1092 
1093 static const struct attribute_group intel_pstate_attr_group = {
1094 	.attrs = intel_pstate_attributes,
1095 };
1096 
1097 static void __init intel_pstate_sysfs_expose_params(void)
1098 {
1099 	struct kobject *intel_pstate_kobject;
1100 	int rc;
1101 
1102 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1103 						&cpu_subsys.dev_root->kobj);
1104 	if (WARN_ON(!intel_pstate_kobject))
1105 		return;
1106 
1107 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1108 	if (WARN_ON(rc))
1109 		return;
1110 
1111 	/*
1112 	 * If per cpu limits are enforced there are no global limits, so
1113 	 * return without creating max/min_perf_pct attributes
1114 	 */
1115 	if (per_cpu_limits)
1116 		return;
1117 
1118 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1119 	WARN_ON(rc);
1120 
1121 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1122 	WARN_ON(rc);
1123 
1124 	if (hwp_active) {
1125 		rc = sysfs_create_file(intel_pstate_kobject,
1126 				       &hwp_dynamic_boost.attr);
1127 		WARN_ON(rc);
1128 	}
1129 }
1130 /************************** sysfs end ************************/
1131 
1132 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1133 {
1134 	/* First disable HWP notification interrupt as we don't process them */
1135 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1136 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1137 
1138 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1139 	cpudata->epp_policy = 0;
1140 	if (cpudata->epp_default == -EINVAL)
1141 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1142 }
1143 
1144 #define MSR_IA32_POWER_CTL_BIT_EE	19
1145 
1146 /* Disable energy efficiency optimization */
1147 static void intel_pstate_disable_ee(int cpu)
1148 {
1149 	u64 power_ctl;
1150 	int ret;
1151 
1152 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1153 	if (ret)
1154 		return;
1155 
1156 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1157 		pr_info("Disabling energy efficiency optimization\n");
1158 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1159 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1160 	}
1161 }
1162 
1163 static int atom_get_min_pstate(void)
1164 {
1165 	u64 value;
1166 
1167 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1168 	return (value >> 8) & 0x7F;
1169 }
1170 
1171 static int atom_get_max_pstate(void)
1172 {
1173 	u64 value;
1174 
1175 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1176 	return (value >> 16) & 0x7F;
1177 }
1178 
1179 static int atom_get_turbo_pstate(void)
1180 {
1181 	u64 value;
1182 
1183 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1184 	return value & 0x7F;
1185 }
1186 
1187 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1188 {
1189 	u64 val;
1190 	int32_t vid_fp;
1191 	u32 vid;
1192 
1193 	val = (u64)pstate << 8;
1194 	if (global.no_turbo && !global.turbo_disabled)
1195 		val |= (u64)1 << 32;
1196 
1197 	vid_fp = cpudata->vid.min + mul_fp(
1198 		int_tofp(pstate - cpudata->pstate.min_pstate),
1199 		cpudata->vid.ratio);
1200 
1201 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1202 	vid = ceiling_fp(vid_fp);
1203 
1204 	if (pstate > cpudata->pstate.max_pstate)
1205 		vid = cpudata->vid.turbo;
1206 
1207 	return val | vid;
1208 }
1209 
1210 static int silvermont_get_scaling(void)
1211 {
1212 	u64 value;
1213 	int i;
1214 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1215 	static int silvermont_freq_table[] = {
1216 		83300, 100000, 133300, 116700, 80000};
1217 
1218 	rdmsrl(MSR_FSB_FREQ, value);
1219 	i = value & 0x7;
1220 	WARN_ON(i > 4);
1221 
1222 	return silvermont_freq_table[i];
1223 }
1224 
1225 static int airmont_get_scaling(void)
1226 {
1227 	u64 value;
1228 	int i;
1229 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1230 	static int airmont_freq_table[] = {
1231 		83300, 100000, 133300, 116700, 80000,
1232 		93300, 90000, 88900, 87500};
1233 
1234 	rdmsrl(MSR_FSB_FREQ, value);
1235 	i = value & 0xF;
1236 	WARN_ON(i > 8);
1237 
1238 	return airmont_freq_table[i];
1239 }
1240 
1241 static void atom_get_vid(struct cpudata *cpudata)
1242 {
1243 	u64 value;
1244 
1245 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1246 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1247 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1248 	cpudata->vid.ratio = div_fp(
1249 		cpudata->vid.max - cpudata->vid.min,
1250 		int_tofp(cpudata->pstate.max_pstate -
1251 			cpudata->pstate.min_pstate));
1252 
1253 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1254 	cpudata->vid.turbo = value & 0x7f;
1255 }
1256 
1257 static int core_get_min_pstate(void)
1258 {
1259 	u64 value;
1260 
1261 	rdmsrl(MSR_PLATFORM_INFO, value);
1262 	return (value >> 40) & 0xFF;
1263 }
1264 
1265 static int core_get_max_pstate_physical(void)
1266 {
1267 	u64 value;
1268 
1269 	rdmsrl(MSR_PLATFORM_INFO, value);
1270 	return (value >> 8) & 0xFF;
1271 }
1272 
1273 static int core_get_tdp_ratio(u64 plat_info)
1274 {
1275 	/* Check how many TDP levels present */
1276 	if (plat_info & 0x600000000) {
1277 		u64 tdp_ctrl;
1278 		u64 tdp_ratio;
1279 		int tdp_msr;
1280 		int err;
1281 
1282 		/* Get the TDP level (0, 1, 2) to get ratios */
1283 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1284 		if (err)
1285 			return err;
1286 
1287 		/* TDP MSR are continuous starting at 0x648 */
1288 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1289 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1290 		if (err)
1291 			return err;
1292 
1293 		/* For level 1 and 2, bits[23:16] contain the ratio */
1294 		if (tdp_ctrl & 0x03)
1295 			tdp_ratio >>= 16;
1296 
1297 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1298 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1299 
1300 		return (int)tdp_ratio;
1301 	}
1302 
1303 	return -ENXIO;
1304 }
1305 
1306 static int core_get_max_pstate(void)
1307 {
1308 	u64 tar;
1309 	u64 plat_info;
1310 	int max_pstate;
1311 	int tdp_ratio;
1312 	int err;
1313 
1314 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1315 	max_pstate = (plat_info >> 8) & 0xFF;
1316 
1317 	tdp_ratio = core_get_tdp_ratio(plat_info);
1318 	if (tdp_ratio <= 0)
1319 		return max_pstate;
1320 
1321 	if (hwp_active) {
1322 		/* Turbo activation ratio is not used on HWP platforms */
1323 		return tdp_ratio;
1324 	}
1325 
1326 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1327 	if (!err) {
1328 		int tar_levels;
1329 
1330 		/* Do some sanity checking for safety */
1331 		tar_levels = tar & 0xff;
1332 		if (tdp_ratio - 1 == tar_levels) {
1333 			max_pstate = tar_levels;
1334 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1335 		}
1336 	}
1337 
1338 	return max_pstate;
1339 }
1340 
1341 static int core_get_turbo_pstate(void)
1342 {
1343 	u64 value;
1344 	int nont, ret;
1345 
1346 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1347 	nont = core_get_max_pstate();
1348 	ret = (value) & 255;
1349 	if (ret <= nont)
1350 		ret = nont;
1351 	return ret;
1352 }
1353 
1354 static inline int core_get_scaling(void)
1355 {
1356 	return 100000;
1357 }
1358 
1359 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1360 {
1361 	u64 val;
1362 
1363 	val = (u64)pstate << 8;
1364 	if (global.no_turbo && !global.turbo_disabled)
1365 		val |= (u64)1 << 32;
1366 
1367 	return val;
1368 }
1369 
1370 static int knl_get_aperf_mperf_shift(void)
1371 {
1372 	return 10;
1373 }
1374 
1375 static int knl_get_turbo_pstate(void)
1376 {
1377 	u64 value;
1378 	int nont, ret;
1379 
1380 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1381 	nont = core_get_max_pstate();
1382 	ret = (((value) >> 8) & 0xFF);
1383 	if (ret <= nont)
1384 		ret = nont;
1385 	return ret;
1386 }
1387 
1388 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1389 {
1390 	return global.no_turbo || global.turbo_disabled ?
1391 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1392 }
1393 
1394 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1395 {
1396 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1397 	cpu->pstate.current_pstate = pstate;
1398 	/*
1399 	 * Generally, there is no guarantee that this code will always run on
1400 	 * the CPU being updated, so force the register update to run on the
1401 	 * right CPU.
1402 	 */
1403 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1404 		      pstate_funcs.get_val(cpu, pstate));
1405 }
1406 
1407 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1408 {
1409 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1410 }
1411 
1412 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1413 {
1414 	int pstate;
1415 
1416 	update_turbo_state();
1417 	pstate = intel_pstate_get_base_pstate(cpu);
1418 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1419 	intel_pstate_set_pstate(cpu, pstate);
1420 }
1421 
1422 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1423 {
1424 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1425 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1426 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1427 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1428 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1429 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1430 
1431 	if (hwp_active && !hwp_mode_bdw) {
1432 		unsigned int phy_max, current_max;
1433 
1434 		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1435 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1436 	} else {
1437 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1438 	}
1439 
1440 	if (pstate_funcs.get_aperf_mperf_shift)
1441 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1442 
1443 	if (pstate_funcs.get_vid)
1444 		pstate_funcs.get_vid(cpu);
1445 
1446 	intel_pstate_set_min_pstate(cpu);
1447 }
1448 
1449 /*
1450  * Long hold time will keep high perf limits for long time,
1451  * which negatively impacts perf/watt for some workloads,
1452  * like specpower. 3ms is based on experiements on some
1453  * workoads.
1454  */
1455 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1456 
1457 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1458 {
1459 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1460 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1461 	u32 min_limit = (hwp_req & 0xff);
1462 	u32 boost_level1;
1463 
1464 	/*
1465 	 * Cases to consider (User changes via sysfs or boot time):
1466 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1467 	 *	No boost, return.
1468 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1469 	 *     Should result in one level boost only for P0.
1470 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1471 	 *     Should result in two level boost:
1472 	 *         (min + p1)/2 and P1.
1473 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1474 	 *     Should result in three level boost:
1475 	 *        (min + p1)/2, P1 and P0.
1476 	 */
1477 
1478 	/* If max and min are equal or already at max, nothing to boost */
1479 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1480 		return;
1481 
1482 	if (!cpu->hwp_boost_min)
1483 		cpu->hwp_boost_min = min_limit;
1484 
1485 	/* level at half way mark between min and guranteed */
1486 	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1487 
1488 	if (cpu->hwp_boost_min < boost_level1)
1489 		cpu->hwp_boost_min = boost_level1;
1490 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1491 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1492 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1493 		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1494 		cpu->hwp_boost_min = max_limit;
1495 	else
1496 		return;
1497 
1498 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1499 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1500 	cpu->last_update = cpu->sample.time;
1501 }
1502 
1503 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1504 {
1505 	if (cpu->hwp_boost_min) {
1506 		bool expired;
1507 
1508 		/* Check if we are idle for hold time to boost down */
1509 		expired = time_after64(cpu->sample.time, cpu->last_update +
1510 				       hwp_boost_hold_time_ns);
1511 		if (expired) {
1512 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1513 			cpu->hwp_boost_min = 0;
1514 		}
1515 	}
1516 	cpu->last_update = cpu->sample.time;
1517 }
1518 
1519 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1520 						      u64 time)
1521 {
1522 	cpu->sample.time = time;
1523 
1524 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1525 		bool do_io = false;
1526 
1527 		cpu->sched_flags = 0;
1528 		/*
1529 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1530 		 * is set all the time, we can't just conclude that there is
1531 		 * some IO bound activity is scheduled on this CPU with just
1532 		 * one occurrence. If we receive at least two in two
1533 		 * consecutive ticks, then we treat as boost candidate.
1534 		 */
1535 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1536 			do_io = true;
1537 
1538 		cpu->last_io_update = time;
1539 
1540 		if (do_io)
1541 			intel_pstate_hwp_boost_up(cpu);
1542 
1543 	} else {
1544 		intel_pstate_hwp_boost_down(cpu);
1545 	}
1546 }
1547 
1548 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1549 						u64 time, unsigned int flags)
1550 {
1551 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1552 
1553 	cpu->sched_flags |= flags;
1554 
1555 	if (smp_processor_id() == cpu->cpu)
1556 		intel_pstate_update_util_hwp_local(cpu, time);
1557 }
1558 
1559 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1560 {
1561 	struct sample *sample = &cpu->sample;
1562 
1563 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1564 }
1565 
1566 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1567 {
1568 	u64 aperf, mperf;
1569 	unsigned long flags;
1570 	u64 tsc;
1571 
1572 	local_irq_save(flags);
1573 	rdmsrl(MSR_IA32_APERF, aperf);
1574 	rdmsrl(MSR_IA32_MPERF, mperf);
1575 	tsc = rdtsc();
1576 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1577 		local_irq_restore(flags);
1578 		return false;
1579 	}
1580 	local_irq_restore(flags);
1581 
1582 	cpu->last_sample_time = cpu->sample.time;
1583 	cpu->sample.time = time;
1584 	cpu->sample.aperf = aperf;
1585 	cpu->sample.mperf = mperf;
1586 	cpu->sample.tsc =  tsc;
1587 	cpu->sample.aperf -= cpu->prev_aperf;
1588 	cpu->sample.mperf -= cpu->prev_mperf;
1589 	cpu->sample.tsc -= cpu->prev_tsc;
1590 
1591 	cpu->prev_aperf = aperf;
1592 	cpu->prev_mperf = mperf;
1593 	cpu->prev_tsc = tsc;
1594 	/*
1595 	 * First time this function is invoked in a given cycle, all of the
1596 	 * previous sample data fields are equal to zero or stale and they must
1597 	 * be populated with meaningful numbers for things to work, so assume
1598 	 * that sample.time will always be reset before setting the utilization
1599 	 * update hook and make the caller skip the sample then.
1600 	 */
1601 	if (cpu->last_sample_time) {
1602 		intel_pstate_calc_avg_perf(cpu);
1603 		return true;
1604 	}
1605 	return false;
1606 }
1607 
1608 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1609 {
1610 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1611 }
1612 
1613 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1614 {
1615 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1616 			  cpu->sample.core_avg_perf);
1617 }
1618 
1619 static inline int32_t get_target_pstate(struct cpudata *cpu)
1620 {
1621 	struct sample *sample = &cpu->sample;
1622 	int32_t busy_frac, boost;
1623 	int target, avg_pstate;
1624 
1625 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1626 			   sample->tsc);
1627 
1628 	boost = cpu->iowait_boost;
1629 	cpu->iowait_boost >>= 1;
1630 
1631 	if (busy_frac < boost)
1632 		busy_frac = boost;
1633 
1634 	sample->busy_scaled = busy_frac * 100;
1635 
1636 	target = global.no_turbo || global.turbo_disabled ?
1637 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1638 	target += target >> 2;
1639 	target = mul_fp(target, busy_frac);
1640 	if (target < cpu->pstate.min_pstate)
1641 		target = cpu->pstate.min_pstate;
1642 
1643 	/*
1644 	 * If the average P-state during the previous cycle was higher than the
1645 	 * current target, add 50% of the difference to the target to reduce
1646 	 * possible performance oscillations and offset possible performance
1647 	 * loss related to moving the workload from one CPU to another within
1648 	 * a package/module.
1649 	 */
1650 	avg_pstate = get_avg_pstate(cpu);
1651 	if (avg_pstate > target)
1652 		target += (avg_pstate - target) >> 1;
1653 
1654 	return target;
1655 }
1656 
1657 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1658 {
1659 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1660 	int min_pstate;
1661 
1662 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1663 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1664 	return clamp_t(int, pstate, min_pstate, max_pstate);
1665 }
1666 
1667 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1668 {
1669 	if (pstate == cpu->pstate.current_pstate)
1670 		return;
1671 
1672 	cpu->pstate.current_pstate = pstate;
1673 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1674 }
1675 
1676 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1677 {
1678 	int from = cpu->pstate.current_pstate;
1679 	struct sample *sample;
1680 	int target_pstate;
1681 
1682 	update_turbo_state();
1683 
1684 	target_pstate = get_target_pstate(cpu);
1685 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1686 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1687 	intel_pstate_update_pstate(cpu, target_pstate);
1688 
1689 	sample = &cpu->sample;
1690 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1691 		fp_toint(sample->busy_scaled),
1692 		from,
1693 		cpu->pstate.current_pstate,
1694 		sample->mperf,
1695 		sample->aperf,
1696 		sample->tsc,
1697 		get_avg_frequency(cpu),
1698 		fp_toint(cpu->iowait_boost * 100));
1699 }
1700 
1701 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1702 				     unsigned int flags)
1703 {
1704 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1705 	u64 delta_ns;
1706 
1707 	/* Don't allow remote callbacks */
1708 	if (smp_processor_id() != cpu->cpu)
1709 		return;
1710 
1711 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1712 		cpu->iowait_boost = int_tofp(1);
1713 		cpu->last_update = time;
1714 		/*
1715 		 * The last time the busy was 100% so P-state was max anyway
1716 		 * so avoid overhead of computation.
1717 		 */
1718 		if (fp_toint(cpu->sample.busy_scaled) == 100)
1719 			return;
1720 
1721 		goto set_pstate;
1722 	} else if (cpu->iowait_boost) {
1723 		/* Clear iowait_boost if the CPU may have been idle. */
1724 		delta_ns = time - cpu->last_update;
1725 		if (delta_ns > TICK_NSEC)
1726 			cpu->iowait_boost = 0;
1727 	}
1728 	cpu->last_update = time;
1729 	delta_ns = time - cpu->sample.time;
1730 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1731 		return;
1732 
1733 set_pstate:
1734 	if (intel_pstate_sample(cpu, time))
1735 		intel_pstate_adjust_pstate(cpu);
1736 }
1737 
1738 static struct pstate_funcs core_funcs = {
1739 	.get_max = core_get_max_pstate,
1740 	.get_max_physical = core_get_max_pstate_physical,
1741 	.get_min = core_get_min_pstate,
1742 	.get_turbo = core_get_turbo_pstate,
1743 	.get_scaling = core_get_scaling,
1744 	.get_val = core_get_val,
1745 };
1746 
1747 static const struct pstate_funcs silvermont_funcs = {
1748 	.get_max = atom_get_max_pstate,
1749 	.get_max_physical = atom_get_max_pstate,
1750 	.get_min = atom_get_min_pstate,
1751 	.get_turbo = atom_get_turbo_pstate,
1752 	.get_val = atom_get_val,
1753 	.get_scaling = silvermont_get_scaling,
1754 	.get_vid = atom_get_vid,
1755 };
1756 
1757 static const struct pstate_funcs airmont_funcs = {
1758 	.get_max = atom_get_max_pstate,
1759 	.get_max_physical = atom_get_max_pstate,
1760 	.get_min = atom_get_min_pstate,
1761 	.get_turbo = atom_get_turbo_pstate,
1762 	.get_val = atom_get_val,
1763 	.get_scaling = airmont_get_scaling,
1764 	.get_vid = atom_get_vid,
1765 };
1766 
1767 static const struct pstate_funcs knl_funcs = {
1768 	.get_max = core_get_max_pstate,
1769 	.get_max_physical = core_get_max_pstate_physical,
1770 	.get_min = core_get_min_pstate,
1771 	.get_turbo = knl_get_turbo_pstate,
1772 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1773 	.get_scaling = core_get_scaling,
1774 	.get_val = core_get_val,
1775 };
1776 
1777 #define ICPU(model, policy) \
1778 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1779 			(unsigned long)&policy }
1780 
1781 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1782 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1783 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1784 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1785 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1786 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1787 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1788 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1789 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1790 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1791 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1792 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1793 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1794 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1795 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1796 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1797 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1798 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1799 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1800 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1801 	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1802 	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1803 	{}
1804 };
1805 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1806 
1807 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1808 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1809 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1810 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1811 	{}
1812 };
1813 
1814 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1815 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1816 	{}
1817 };
1818 
1819 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1820 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1821 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1822 	{}
1823 };
1824 
1825 static int intel_pstate_init_cpu(unsigned int cpunum)
1826 {
1827 	struct cpudata *cpu;
1828 
1829 	cpu = all_cpu_data[cpunum];
1830 
1831 	if (!cpu) {
1832 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1833 		if (!cpu)
1834 			return -ENOMEM;
1835 
1836 		all_cpu_data[cpunum] = cpu;
1837 
1838 		cpu->epp_default = -EINVAL;
1839 		cpu->epp_powersave = -EINVAL;
1840 		cpu->epp_saved = -EINVAL;
1841 	}
1842 
1843 	cpu = all_cpu_data[cpunum];
1844 
1845 	cpu->cpu = cpunum;
1846 
1847 	if (hwp_active) {
1848 		const struct x86_cpu_id *id;
1849 
1850 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1851 		if (id)
1852 			intel_pstate_disable_ee(cpunum);
1853 
1854 		intel_pstate_hwp_enable(cpu);
1855 
1856 		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1857 		if (id && intel_pstate_acpi_pm_profile_server())
1858 			hwp_boost = true;
1859 	}
1860 
1861 	intel_pstate_get_cpu_pstates(cpu);
1862 
1863 	pr_debug("controlling: cpu %d\n", cpunum);
1864 
1865 	return 0;
1866 }
1867 
1868 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1869 {
1870 	struct cpudata *cpu = all_cpu_data[cpu_num];
1871 
1872 	if (hwp_active && !hwp_boost)
1873 		return;
1874 
1875 	if (cpu->update_util_set)
1876 		return;
1877 
1878 	/* Prevent intel_pstate_update_util() from using stale data. */
1879 	cpu->sample.time = 0;
1880 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1881 				     (hwp_active ?
1882 				      intel_pstate_update_util_hwp :
1883 				      intel_pstate_update_util));
1884 	cpu->update_util_set = true;
1885 }
1886 
1887 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1888 {
1889 	struct cpudata *cpu_data = all_cpu_data[cpu];
1890 
1891 	if (!cpu_data->update_util_set)
1892 		return;
1893 
1894 	cpufreq_remove_update_util_hook(cpu);
1895 	cpu_data->update_util_set = false;
1896 	synchronize_sched();
1897 }
1898 
1899 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1900 {
1901 	return global.turbo_disabled || global.no_turbo ?
1902 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1903 }
1904 
1905 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1906 					    struct cpudata *cpu)
1907 {
1908 	int max_freq = intel_pstate_get_max_freq(cpu);
1909 	int32_t max_policy_perf, min_policy_perf;
1910 	int max_state, turbo_max;
1911 
1912 	/*
1913 	 * HWP needs some special consideration, because on BDX the
1914 	 * HWP_REQUEST uses abstract value to represent performance
1915 	 * rather than pure ratios.
1916 	 */
1917 	if (hwp_active) {
1918 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1919 	} else {
1920 		max_state = intel_pstate_get_base_pstate(cpu);
1921 		turbo_max = cpu->pstate.turbo_pstate;
1922 	}
1923 
1924 	max_policy_perf = max_state * policy->max / max_freq;
1925 	if (policy->max == policy->min) {
1926 		min_policy_perf = max_policy_perf;
1927 	} else {
1928 		min_policy_perf = max_state * policy->min / max_freq;
1929 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1930 					  0, max_policy_perf);
1931 	}
1932 
1933 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1934 		 policy->cpu, max_state,
1935 		 min_policy_perf, max_policy_perf);
1936 
1937 	/* Normalize user input to [min_perf, max_perf] */
1938 	if (per_cpu_limits) {
1939 		cpu->min_perf_ratio = min_policy_perf;
1940 		cpu->max_perf_ratio = max_policy_perf;
1941 	} else {
1942 		int32_t global_min, global_max;
1943 
1944 		/* Global limits are in percent of the maximum turbo P-state. */
1945 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1946 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1947 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1948 
1949 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1950 			 global_min, global_max);
1951 
1952 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1953 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1954 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
1955 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1956 
1957 		/* Make sure min_perf <= max_perf */
1958 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1959 					  cpu->max_perf_ratio);
1960 
1961 	}
1962 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1963 		 cpu->max_perf_ratio,
1964 		 cpu->min_perf_ratio);
1965 }
1966 
1967 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1968 {
1969 	struct cpudata *cpu;
1970 
1971 	if (!policy->cpuinfo.max_freq)
1972 		return -ENODEV;
1973 
1974 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1975 		 policy->cpuinfo.max_freq, policy->max);
1976 
1977 	cpu = all_cpu_data[policy->cpu];
1978 	cpu->policy = policy->policy;
1979 
1980 	mutex_lock(&intel_pstate_limits_lock);
1981 
1982 	intel_pstate_update_perf_limits(policy, cpu);
1983 
1984 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1985 		/*
1986 		 * NOHZ_FULL CPUs need this as the governor callback may not
1987 		 * be invoked on them.
1988 		 */
1989 		intel_pstate_clear_update_util_hook(policy->cpu);
1990 		intel_pstate_max_within_limits(cpu);
1991 	} else {
1992 		intel_pstate_set_update_util_hook(policy->cpu);
1993 	}
1994 
1995 	if (hwp_active) {
1996 		/*
1997 		 * When hwp_boost was active before and dynamically it
1998 		 * was turned off, in that case we need to clear the
1999 		 * update util hook.
2000 		 */
2001 		if (!hwp_boost)
2002 			intel_pstate_clear_update_util_hook(policy->cpu);
2003 		intel_pstate_hwp_set(policy->cpu);
2004 	}
2005 
2006 	mutex_unlock(&intel_pstate_limits_lock);
2007 
2008 	return 0;
2009 }
2010 
2011 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2012 					 struct cpudata *cpu)
2013 {
2014 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2015 	    policy->max < policy->cpuinfo.max_freq &&
2016 	    policy->max > cpu->pstate.max_freq) {
2017 		pr_debug("policy->max > max non turbo frequency\n");
2018 		policy->max = policy->cpuinfo.max_freq;
2019 	}
2020 }
2021 
2022 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2023 {
2024 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2025 
2026 	update_turbo_state();
2027 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2028 				     intel_pstate_get_max_freq(cpu));
2029 
2030 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2031 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2032 		return -EINVAL;
2033 
2034 	intel_pstate_adjust_policy_max(policy, cpu);
2035 
2036 	return 0;
2037 }
2038 
2039 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2040 {
2041 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2042 }
2043 
2044 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2045 {
2046 	pr_debug("CPU %d exiting\n", policy->cpu);
2047 
2048 	intel_pstate_clear_update_util_hook(policy->cpu);
2049 	if (hwp_active)
2050 		intel_pstate_hwp_save_state(policy);
2051 	else
2052 		intel_cpufreq_stop_cpu(policy);
2053 }
2054 
2055 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2056 {
2057 	intel_pstate_exit_perf_limits(policy);
2058 
2059 	policy->fast_switch_possible = false;
2060 
2061 	return 0;
2062 }
2063 
2064 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2065 {
2066 	struct cpudata *cpu;
2067 	int rc;
2068 
2069 	rc = intel_pstate_init_cpu(policy->cpu);
2070 	if (rc)
2071 		return rc;
2072 
2073 	cpu = all_cpu_data[policy->cpu];
2074 
2075 	cpu->max_perf_ratio = 0xFF;
2076 	cpu->min_perf_ratio = 0;
2077 
2078 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2079 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2080 
2081 	/* cpuinfo and default policy values */
2082 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2083 	update_turbo_state();
2084 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2085 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2086 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2087 
2088 	intel_pstate_init_acpi_perf_limits(policy);
2089 
2090 	policy->fast_switch_possible = true;
2091 
2092 	return 0;
2093 }
2094 
2095 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2096 {
2097 	int ret = __intel_pstate_cpu_init(policy);
2098 
2099 	if (ret)
2100 		return ret;
2101 
2102 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2103 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2104 	else
2105 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2106 
2107 	return 0;
2108 }
2109 
2110 static struct cpufreq_driver intel_pstate = {
2111 	.flags		= CPUFREQ_CONST_LOOPS,
2112 	.verify		= intel_pstate_verify_policy,
2113 	.setpolicy	= intel_pstate_set_policy,
2114 	.suspend	= intel_pstate_hwp_save_state,
2115 	.resume		= intel_pstate_resume,
2116 	.init		= intel_pstate_cpu_init,
2117 	.exit		= intel_pstate_cpu_exit,
2118 	.stop_cpu	= intel_pstate_stop_cpu,
2119 	.name		= "intel_pstate",
2120 };
2121 
2122 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2123 {
2124 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2125 
2126 	update_turbo_state();
2127 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2128 				     intel_pstate_get_max_freq(cpu));
2129 
2130 	intel_pstate_adjust_policy_max(policy, cpu);
2131 
2132 	intel_pstate_update_perf_limits(policy, cpu);
2133 
2134 	return 0;
2135 }
2136 
2137 /* Use of trace in passive mode:
2138  *
2139  * In passive mode the trace core_busy field (also known as the
2140  * performance field, and lablelled as such on the graphs; also known as
2141  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2142  * driver call was via the normal or fast switch path. Various graphs
2143  * output from the intel_pstate_tracer.py utility that include core_busy
2144  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2145  * so we use 10 to indicate the the normal path through the driver, and
2146  * 90 to indicate the fast switch path through the driver.
2147  * The scaled_busy field is not used, and is set to 0.
2148  */
2149 
2150 #define	INTEL_PSTATE_TRACE_TARGET 10
2151 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2152 
2153 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2154 {
2155 	struct sample *sample;
2156 
2157 	if (!trace_pstate_sample_enabled())
2158 		return;
2159 
2160 	if (!intel_pstate_sample(cpu, ktime_get()))
2161 		return;
2162 
2163 	sample = &cpu->sample;
2164 	trace_pstate_sample(trace_type,
2165 		0,
2166 		old_pstate,
2167 		cpu->pstate.current_pstate,
2168 		sample->mperf,
2169 		sample->aperf,
2170 		sample->tsc,
2171 		get_avg_frequency(cpu),
2172 		fp_toint(cpu->iowait_boost * 100));
2173 }
2174 
2175 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2176 				unsigned int target_freq,
2177 				unsigned int relation)
2178 {
2179 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2180 	struct cpufreq_freqs freqs;
2181 	int target_pstate, old_pstate;
2182 
2183 	update_turbo_state();
2184 
2185 	freqs.old = policy->cur;
2186 	freqs.new = target_freq;
2187 
2188 	cpufreq_freq_transition_begin(policy, &freqs);
2189 	switch (relation) {
2190 	case CPUFREQ_RELATION_L:
2191 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2192 		break;
2193 	case CPUFREQ_RELATION_H:
2194 		target_pstate = freqs.new / cpu->pstate.scaling;
2195 		break;
2196 	default:
2197 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2198 		break;
2199 	}
2200 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2201 	old_pstate = cpu->pstate.current_pstate;
2202 	if (target_pstate != cpu->pstate.current_pstate) {
2203 		cpu->pstate.current_pstate = target_pstate;
2204 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2205 			      pstate_funcs.get_val(cpu, target_pstate));
2206 	}
2207 	freqs.new = target_pstate * cpu->pstate.scaling;
2208 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2209 	cpufreq_freq_transition_end(policy, &freqs, false);
2210 
2211 	return 0;
2212 }
2213 
2214 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2215 					      unsigned int target_freq)
2216 {
2217 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2218 	int target_pstate, old_pstate;
2219 
2220 	update_turbo_state();
2221 
2222 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2223 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2224 	old_pstate = cpu->pstate.current_pstate;
2225 	intel_pstate_update_pstate(cpu, target_pstate);
2226 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2227 	return target_pstate * cpu->pstate.scaling;
2228 }
2229 
2230 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2231 {
2232 	int ret = __intel_pstate_cpu_init(policy);
2233 
2234 	if (ret)
2235 		return ret;
2236 
2237 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2238 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2239 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2240 	policy->cur = policy->cpuinfo.min_freq;
2241 
2242 	return 0;
2243 }
2244 
2245 static struct cpufreq_driver intel_cpufreq = {
2246 	.flags		= CPUFREQ_CONST_LOOPS,
2247 	.verify		= intel_cpufreq_verify_policy,
2248 	.target		= intel_cpufreq_target,
2249 	.fast_switch	= intel_cpufreq_fast_switch,
2250 	.init		= intel_cpufreq_cpu_init,
2251 	.exit		= intel_pstate_cpu_exit,
2252 	.stop_cpu	= intel_cpufreq_stop_cpu,
2253 	.name		= "intel_cpufreq",
2254 };
2255 
2256 static struct cpufreq_driver *default_driver = &intel_pstate;
2257 
2258 static void intel_pstate_driver_cleanup(void)
2259 {
2260 	unsigned int cpu;
2261 
2262 	get_online_cpus();
2263 	for_each_online_cpu(cpu) {
2264 		if (all_cpu_data[cpu]) {
2265 			if (intel_pstate_driver == &intel_pstate)
2266 				intel_pstate_clear_update_util_hook(cpu);
2267 
2268 			kfree(all_cpu_data[cpu]);
2269 			all_cpu_data[cpu] = NULL;
2270 		}
2271 	}
2272 	put_online_cpus();
2273 	intel_pstate_driver = NULL;
2274 }
2275 
2276 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2277 {
2278 	int ret;
2279 
2280 	memset(&global, 0, sizeof(global));
2281 	global.max_perf_pct = 100;
2282 
2283 	intel_pstate_driver = driver;
2284 	ret = cpufreq_register_driver(intel_pstate_driver);
2285 	if (ret) {
2286 		intel_pstate_driver_cleanup();
2287 		return ret;
2288 	}
2289 
2290 	global.min_perf_pct = min_perf_pct_min();
2291 
2292 	return 0;
2293 }
2294 
2295 static int intel_pstate_unregister_driver(void)
2296 {
2297 	if (hwp_active)
2298 		return -EBUSY;
2299 
2300 	cpufreq_unregister_driver(intel_pstate_driver);
2301 	intel_pstate_driver_cleanup();
2302 
2303 	return 0;
2304 }
2305 
2306 static ssize_t intel_pstate_show_status(char *buf)
2307 {
2308 	if (!intel_pstate_driver)
2309 		return sprintf(buf, "off\n");
2310 
2311 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2312 					"active" : "passive");
2313 }
2314 
2315 static int intel_pstate_update_status(const char *buf, size_t size)
2316 {
2317 	int ret;
2318 
2319 	if (size == 3 && !strncmp(buf, "off", size))
2320 		return intel_pstate_driver ?
2321 			intel_pstate_unregister_driver() : -EINVAL;
2322 
2323 	if (size == 6 && !strncmp(buf, "active", size)) {
2324 		if (intel_pstate_driver) {
2325 			if (intel_pstate_driver == &intel_pstate)
2326 				return 0;
2327 
2328 			ret = intel_pstate_unregister_driver();
2329 			if (ret)
2330 				return ret;
2331 		}
2332 
2333 		return intel_pstate_register_driver(&intel_pstate);
2334 	}
2335 
2336 	if (size == 7 && !strncmp(buf, "passive", size)) {
2337 		if (intel_pstate_driver) {
2338 			if (intel_pstate_driver == &intel_cpufreq)
2339 				return 0;
2340 
2341 			ret = intel_pstate_unregister_driver();
2342 			if (ret)
2343 				return ret;
2344 		}
2345 
2346 		return intel_pstate_register_driver(&intel_cpufreq);
2347 	}
2348 
2349 	return -EINVAL;
2350 }
2351 
2352 static int no_load __initdata;
2353 static int no_hwp __initdata;
2354 static int hwp_only __initdata;
2355 static unsigned int force_load __initdata;
2356 
2357 static int __init intel_pstate_msrs_not_valid(void)
2358 {
2359 	if (!pstate_funcs.get_max() ||
2360 	    !pstate_funcs.get_min() ||
2361 	    !pstate_funcs.get_turbo())
2362 		return -ENODEV;
2363 
2364 	return 0;
2365 }
2366 
2367 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2368 {
2369 	pstate_funcs.get_max   = funcs->get_max;
2370 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2371 	pstate_funcs.get_min   = funcs->get_min;
2372 	pstate_funcs.get_turbo = funcs->get_turbo;
2373 	pstate_funcs.get_scaling = funcs->get_scaling;
2374 	pstate_funcs.get_val   = funcs->get_val;
2375 	pstate_funcs.get_vid   = funcs->get_vid;
2376 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2377 }
2378 
2379 #ifdef CONFIG_ACPI
2380 
2381 static bool __init intel_pstate_no_acpi_pss(void)
2382 {
2383 	int i;
2384 
2385 	for_each_possible_cpu(i) {
2386 		acpi_status status;
2387 		union acpi_object *pss;
2388 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2389 		struct acpi_processor *pr = per_cpu(processors, i);
2390 
2391 		if (!pr)
2392 			continue;
2393 
2394 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2395 		if (ACPI_FAILURE(status))
2396 			continue;
2397 
2398 		pss = buffer.pointer;
2399 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2400 			kfree(pss);
2401 			return false;
2402 		}
2403 
2404 		kfree(pss);
2405 	}
2406 
2407 	return true;
2408 }
2409 
2410 static bool __init intel_pstate_no_acpi_pcch(void)
2411 {
2412 	acpi_status status;
2413 	acpi_handle handle;
2414 
2415 	status = acpi_get_handle(NULL, "\\_SB", &handle);
2416 	if (ACPI_FAILURE(status))
2417 		return true;
2418 
2419 	return !acpi_has_method(handle, "PCCH");
2420 }
2421 
2422 static bool __init intel_pstate_has_acpi_ppc(void)
2423 {
2424 	int i;
2425 
2426 	for_each_possible_cpu(i) {
2427 		struct acpi_processor *pr = per_cpu(processors, i);
2428 
2429 		if (!pr)
2430 			continue;
2431 		if (acpi_has_method(pr->handle, "_PPC"))
2432 			return true;
2433 	}
2434 	return false;
2435 }
2436 
2437 enum {
2438 	PSS,
2439 	PPC,
2440 };
2441 
2442 /* Hardware vendor-specific info that has its own power management modes */
2443 static struct acpi_platform_list plat_info[] __initdata = {
2444 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2445 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2446 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2447 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2448 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2449 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2450 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2451 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2452 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2453 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2454 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2455 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2456 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2457 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2458 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2459 	{ } /* End */
2460 };
2461 
2462 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2463 {
2464 	const struct x86_cpu_id *id;
2465 	u64 misc_pwr;
2466 	int idx;
2467 
2468 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2469 	if (id) {
2470 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2471 		if ( misc_pwr & (1 << 8))
2472 			return true;
2473 	}
2474 
2475 	idx = acpi_match_platform_list(plat_info);
2476 	if (idx < 0)
2477 		return false;
2478 
2479 	switch (plat_info[idx].data) {
2480 	case PSS:
2481 		if (!intel_pstate_no_acpi_pss())
2482 			return false;
2483 
2484 		return intel_pstate_no_acpi_pcch();
2485 	case PPC:
2486 		return intel_pstate_has_acpi_ppc() && !force_load;
2487 	}
2488 
2489 	return false;
2490 }
2491 
2492 static void intel_pstate_request_control_from_smm(void)
2493 {
2494 	/*
2495 	 * It may be unsafe to request P-states control from SMM if _PPC support
2496 	 * has not been enabled.
2497 	 */
2498 	if (acpi_ppc)
2499 		acpi_processor_pstate_control();
2500 }
2501 #else /* CONFIG_ACPI not enabled */
2502 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2503 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2504 static inline void intel_pstate_request_control_from_smm(void) {}
2505 #endif /* CONFIG_ACPI */
2506 
2507 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2508 
2509 #define ICPU_HWP(model, hwp_mode) \
2510 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2511 
2512 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2513 	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2514 	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2515 	ICPU_HWP(X86_MODEL_ANY, 0),
2516 	{}
2517 };
2518 
2519 static int __init intel_pstate_init(void)
2520 {
2521 	const struct x86_cpu_id *id;
2522 	int rc;
2523 
2524 	if (no_load)
2525 		return -ENODEV;
2526 
2527 	id = x86_match_cpu(hwp_support_ids);
2528 	if (id) {
2529 		copy_cpu_funcs(&core_funcs);
2530 		if (!no_hwp) {
2531 			hwp_active++;
2532 			hwp_mode_bdw = id->driver_data;
2533 			intel_pstate.attr = hwp_cpufreq_attrs;
2534 			goto hwp_cpu_matched;
2535 		}
2536 	} else {
2537 		id = x86_match_cpu(intel_pstate_cpu_ids);
2538 		if (!id)
2539 			return -ENODEV;
2540 
2541 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2542 	}
2543 
2544 	if (intel_pstate_msrs_not_valid())
2545 		return -ENODEV;
2546 
2547 hwp_cpu_matched:
2548 	/*
2549 	 * The Intel pstate driver will be ignored if the platform
2550 	 * firmware has its own power management modes.
2551 	 */
2552 	if (intel_pstate_platform_pwr_mgmt_exists())
2553 		return -ENODEV;
2554 
2555 	if (!hwp_active && hwp_only)
2556 		return -ENOTSUPP;
2557 
2558 	pr_info("Intel P-state driver initializing\n");
2559 
2560 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2561 	if (!all_cpu_data)
2562 		return -ENOMEM;
2563 
2564 	intel_pstate_request_control_from_smm();
2565 
2566 	intel_pstate_sysfs_expose_params();
2567 
2568 	mutex_lock(&intel_pstate_driver_lock);
2569 	rc = intel_pstate_register_driver(default_driver);
2570 	mutex_unlock(&intel_pstate_driver_lock);
2571 	if (rc)
2572 		return rc;
2573 
2574 	if (hwp_active)
2575 		pr_info("HWP enabled\n");
2576 
2577 	return 0;
2578 }
2579 device_initcall(intel_pstate_init);
2580 
2581 static int __init intel_pstate_setup(char *str)
2582 {
2583 	if (!str)
2584 		return -EINVAL;
2585 
2586 	if (!strcmp(str, "disable")) {
2587 		no_load = 1;
2588 	} else if (!strcmp(str, "passive")) {
2589 		pr_info("Passive mode enabled\n");
2590 		default_driver = &intel_cpufreq;
2591 		no_hwp = 1;
2592 	}
2593 	if (!strcmp(str, "no_hwp")) {
2594 		pr_info("HWP disabled\n");
2595 		no_hwp = 1;
2596 	}
2597 	if (!strcmp(str, "force"))
2598 		force_load = 1;
2599 	if (!strcmp(str, "hwp_only"))
2600 		hwp_only = 1;
2601 	if (!strcmp(str, "per_cpu_perf_limits"))
2602 		per_cpu_limits = true;
2603 
2604 #ifdef CONFIG_ACPI
2605 	if (!strcmp(str, "support_acpi_ppc"))
2606 		acpi_ppc = true;
2607 #endif
2608 
2609 	return 0;
2610 }
2611 early_param("intel_pstate", intel_pstate_setup);
2612 
2613 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2614 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2615 MODULE_LICENSE("GPL");
2616