xref: /linux/drivers/cpufreq/intel_pstate.c (revision c4c14c3bd177ea769fee938674f73a8ec0cdd47a)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32 
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 
39 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40 
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62 
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 	return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67 
68 static inline int ceiling_fp(int32_t x)
69 {
70 	int mask, ret;
71 
72 	ret = fp_toint(x);
73 	mask = (1 << FRAC_BITS) - 1;
74 	if (x & mask)
75 		ret += 1;
76 	return ret;
77 }
78 
79 static inline int32_t percent_fp(int percent)
80 {
81 	return div_fp(percent, 100);
82 }
83 
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 	return (x * y) >> EXT_FRAC_BITS;
87 }
88 
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 	return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93 
94 static inline int32_t percent_ext_fp(int percent)
95 {
96 	return div_ext_fp(percent, 100);
97 }
98 
99 /**
100  * struct sample -	Store performance sample
101  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102  *			performance during last sample period
103  * @busy_scaled:	Scaled busy value which is used to calculate next
104  *			P state. This can be different than core_avg_perf
105  *			to account for cpu idle period
106  * @aperf:		Difference of actual performance frequency clock count
107  *			read from APERF MSR between last and current sample
108  * @mperf:		Difference of maximum performance frequency clock count
109  *			read from MPERF MSR between last and current sample
110  * @tsc:		Difference of time stamp counter between last and
111  *			current sample
112  * @time:		Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118 	int32_t core_avg_perf;
119 	int32_t busy_scaled;
120 	u64 aperf;
121 	u64 mperf;
122 	u64 tsc;
123 	u64 time;
124 };
125 
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:	Current requested P state
129  * @min_pstate:		Min P state possible for this platform
130  * @max_pstate:		Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *			This can be higher than the max_pstate which can
133  *			be limited by platform thermal design power limits
134  * @scaling:		Scaling factor to  convert frequency to cpufreq
135  *			frequency units
136  * @turbo_pstate:	Max Turbo P state possible for this platform
137  * @max_freq:		@max_pstate frequency in cpufreq units
138  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143 	int	current_pstate;
144 	int	min_pstate;
145 	int	max_pstate;
146 	int	max_pstate_physical;
147 	int	scaling;
148 	int	turbo_pstate;
149 	unsigned int max_freq;
150 	unsigned int turbo_freq;
151 };
152 
153 /**
154  * struct vid_data -	Stores voltage information data
155  * @min:		VID data for this platform corresponding to
156  *			the lowest P state
157  * @max:		VID data corresponding to the highest P State.
158  * @turbo:		VID data for turbo P state
159  * @ratio:		Ratio of (vid max - vid min) /
160  *			(max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167 	int min;
168 	int max;
169 	int turbo;
170 	int32_t ratio;
171 };
172 
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:		Whether or not to use turbo P-states.
176  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
177  *			based on the MSR_IA32_MISC_ENABLE value and whether or
178  *			not the maximum reported turbo P-state is different from
179  *			the maximum reported non-turbo one.
180  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
181  *			P-state capacity.
182  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
183  *			P-state capacity.
184  */
185 struct global_params {
186 	bool no_turbo;
187 	bool turbo_disabled;
188 	int max_perf_pct;
189 	int min_perf_pct;
190 };
191 
192 /**
193  * struct cpudata -	Per CPU instance data storage
194  * @cpu:		CPU number for this instance data
195  * @policy:		CPUFreq policy value
196  * @update_util:	CPUFreq utility callback information
197  * @update_util_set:	CPUFreq utility callback is set
198  * @iowait_boost:	iowait-related boost fraction
199  * @last_update:	Time of the last update.
200  * @pstate:		Stores P state limits for this CPU
201  * @vid:		Stores VID limits for this CPU
202  * @last_sample_time:	Last Sample time
203  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
204  *			This shift is a multiplier to mperf delta to
205  *			calculate CPU busy.
206  * @prev_aperf:		Last APERF value read from APERF MSR
207  * @prev_mperf:		Last MPERF value read from MPERF MSR
208  * @prev_tsc:		Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *			current sample
211  * @sample:		Storage for storing last Sample data
212  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
215  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:	Last saved HWP energy performance preference
217  *			(EPP) or energy performance bias (EPB),
218  *			when policy switched to performance
219  * @epp_policy:		Last saved policy used to set EPP/EPB
220  * @epp_default:	Power on default HWP energy performance
221  *			preference/bias
222  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
223  *			operation
224  * @hwp_req_cached:	Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226  * @last_io_update:	Last time when IO wake flag was set
227  * @sched_flags:	Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:	Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233 	int cpu;
234 
235 	unsigned int policy;
236 	struct update_util_data update_util;
237 	bool   update_util_set;
238 
239 	struct pstate_data pstate;
240 	struct vid_data vid;
241 
242 	u64	last_update;
243 	u64	last_sample_time;
244 	u64	aperf_mperf_shift;
245 	u64	prev_aperf;
246 	u64	prev_mperf;
247 	u64	prev_tsc;
248 	u64	prev_cummulative_iowait;
249 	struct sample sample;
250 	int32_t	min_perf_ratio;
251 	int32_t	max_perf_ratio;
252 #ifdef CONFIG_ACPI
253 	struct acpi_processor_performance acpi_perf_data;
254 	bool valid_pss_table;
255 #endif
256 	unsigned int iowait_boost;
257 	s16 epp_powersave;
258 	s16 epp_policy;
259 	s16 epp_default;
260 	s16 epp_saved;
261 	u64 hwp_req_cached;
262 	u64 hwp_cap_cached;
263 	u64 last_io_update;
264 	unsigned int sched_flags;
265 	u32 hwp_boost_min;
266 };
267 
268 static struct cpudata **all_cpu_data;
269 
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:		Callback to get maximum non turbo effective P state
273  * @get_max_physical:	Callback to get maximum non turbo physical P state
274  * @get_min:		Callback to get minimum P state
275  * @get_turbo:		Callback to get turbo P state
276  * @get_scaling:	Callback to get frequency scaling factor
277  * @get_val:		Callback to convert P state to actual MSR write value
278  * @get_vid:		Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284 	int (*get_max)(void);
285 	int (*get_max_physical)(void);
286 	int (*get_min)(void);
287 	int (*get_turbo)(void);
288 	int (*get_scaling)(void);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return false;
321 }
322 
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 	if (intel_pstate_acpi_pm_profile_server())
326 		return true;
327 
328 	return acpi_ppc;
329 }
330 
331 #ifdef CONFIG_ACPI_CPPC_LIB
332 
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 	sched_set_itmt_support();
337 }
338 
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340 
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343 	struct cppc_perf_caps cppc_perf;
344 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 	int ret;
346 
347 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 	if (ret)
349 		return;
350 
351 	/*
352 	 * The priorities can be set regardless of whether or not
353 	 * sched_set_itmt_support(true) has been called and it is valid to
354 	 * update them at any time after it has been called.
355 	 */
356 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357 
358 	if (max_highest_perf <= min_highest_perf) {
359 		if (cppc_perf.highest_perf > max_highest_perf)
360 			max_highest_perf = cppc_perf.highest_perf;
361 
362 		if (cppc_perf.highest_perf < min_highest_perf)
363 			min_highest_perf = cppc_perf.highest_perf;
364 
365 		if (max_highest_perf > min_highest_perf) {
366 			/*
367 			 * This code can be run during CPU online under the
368 			 * CPU hotplug locks, so sched_set_itmt_support()
369 			 * cannot be called from here.  Queue up a work item
370 			 * to invoke it.
371 			 */
372 			schedule_work(&sched_itmt_work);
373 		}
374 	}
375 }
376 
377 static int intel_pstate_get_cppc_guranteed(int cpu)
378 {
379 	struct cppc_perf_caps cppc_perf;
380 	int ret;
381 
382 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 	if (ret)
384 		return ret;
385 
386 	return cppc_perf.guaranteed_perf;
387 }
388 
389 #else
390 static void intel_pstate_set_itmt_prio(int cpu)
391 {
392 }
393 
394 static int intel_pstate_get_cppc_guranteed(int cpu)
395 {
396 	return -ENOTSUPP;
397 }
398 #endif
399 
400 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
401 {
402 	struct cpudata *cpu;
403 	int ret;
404 	int i;
405 
406 	if (hwp_active) {
407 		intel_pstate_set_itmt_prio(policy->cpu);
408 		return;
409 	}
410 
411 	if (!intel_pstate_get_ppc_enable_status())
412 		return;
413 
414 	cpu = all_cpu_data[policy->cpu];
415 
416 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
417 						  policy->cpu);
418 	if (ret)
419 		return;
420 
421 	/*
422 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
423 	 * guarantee that the states returned by it map to the states in our
424 	 * list directly.
425 	 */
426 	if (cpu->acpi_perf_data.control_register.space_id !=
427 						ACPI_ADR_SPACE_FIXED_HARDWARE)
428 		goto err;
429 
430 	/*
431 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
432 	 * usual without taking _PSS into account
433 	 */
434 	if (cpu->acpi_perf_data.state_count < 2)
435 		goto err;
436 
437 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
438 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
439 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
440 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
441 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
442 			 (u32) cpu->acpi_perf_data.states[i].power,
443 			 (u32) cpu->acpi_perf_data.states[i].control);
444 	}
445 
446 	/*
447 	 * The _PSS table doesn't contain whole turbo frequency range.
448 	 * This just contains +1 MHZ above the max non turbo frequency,
449 	 * with control value corresponding to max turbo ratio. But
450 	 * when cpufreq set policy is called, it will call with this
451 	 * max frequency, which will cause a reduced performance as
452 	 * this driver uses real max turbo frequency as the max
453 	 * frequency. So correct this frequency in _PSS table to
454 	 * correct max turbo frequency based on the turbo state.
455 	 * Also need to convert to MHz as _PSS freq is in MHz.
456 	 */
457 	if (!global.turbo_disabled)
458 		cpu->acpi_perf_data.states[0].core_frequency =
459 					policy->cpuinfo.max_freq / 1000;
460 	cpu->valid_pss_table = true;
461 	pr_debug("_PPC limits will be enforced\n");
462 
463 	return;
464 
465  err:
466 	cpu->valid_pss_table = false;
467 	acpi_processor_unregister_performance(policy->cpu);
468 }
469 
470 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
471 {
472 	struct cpudata *cpu;
473 
474 	cpu = all_cpu_data[policy->cpu];
475 	if (!cpu->valid_pss_table)
476 		return;
477 
478 	acpi_processor_unregister_performance(policy->cpu);
479 }
480 #else
481 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
482 {
483 }
484 
485 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
486 {
487 }
488 
489 static inline bool intel_pstate_acpi_pm_profile_server(void)
490 {
491 	return false;
492 }
493 #endif
494 
495 static inline void update_turbo_state(void)
496 {
497 	u64 misc_en;
498 	struct cpudata *cpu;
499 
500 	cpu = all_cpu_data[0];
501 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
502 	global.turbo_disabled =
503 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
504 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
505 }
506 
507 static int min_perf_pct_min(void)
508 {
509 	struct cpudata *cpu = all_cpu_data[0];
510 	int turbo_pstate = cpu->pstate.turbo_pstate;
511 
512 	return turbo_pstate ?
513 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
514 }
515 
516 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
517 {
518 	u64 epb;
519 	int ret;
520 
521 	if (!static_cpu_has(X86_FEATURE_EPB))
522 		return -ENXIO;
523 
524 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
525 	if (ret)
526 		return (s16)ret;
527 
528 	return (s16)(epb & 0x0f);
529 }
530 
531 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
532 {
533 	s16 epp;
534 
535 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
536 		/*
537 		 * When hwp_req_data is 0, means that caller didn't read
538 		 * MSR_HWP_REQUEST, so need to read and get EPP.
539 		 */
540 		if (!hwp_req_data) {
541 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
542 					    &hwp_req_data);
543 			if (epp)
544 				return epp;
545 		}
546 		epp = (hwp_req_data >> 24) & 0xff;
547 	} else {
548 		/* When there is no EPP present, HWP uses EPB settings */
549 		epp = intel_pstate_get_epb(cpu_data);
550 	}
551 
552 	return epp;
553 }
554 
555 static int intel_pstate_set_epb(int cpu, s16 pref)
556 {
557 	u64 epb;
558 	int ret;
559 
560 	if (!static_cpu_has(X86_FEATURE_EPB))
561 		return -ENXIO;
562 
563 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
564 	if (ret)
565 		return ret;
566 
567 	epb = (epb & ~0x0f) | pref;
568 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
569 
570 	return 0;
571 }
572 
573 /*
574  * EPP/EPB display strings corresponding to EPP index in the
575  * energy_perf_strings[]
576  *	index		String
577  *-------------------------------------
578  *	0		default
579  *	1		performance
580  *	2		balance_performance
581  *	3		balance_power
582  *	4		power
583  */
584 static const char * const energy_perf_strings[] = {
585 	"default",
586 	"performance",
587 	"balance_performance",
588 	"balance_power",
589 	"power",
590 	NULL
591 };
592 static const unsigned int epp_values[] = {
593 	HWP_EPP_PERFORMANCE,
594 	HWP_EPP_BALANCE_PERFORMANCE,
595 	HWP_EPP_BALANCE_POWERSAVE,
596 	HWP_EPP_POWERSAVE
597 };
598 
599 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
600 {
601 	s16 epp;
602 	int index = -EINVAL;
603 
604 	epp = intel_pstate_get_epp(cpu_data, 0);
605 	if (epp < 0)
606 		return epp;
607 
608 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
609 		if (epp == HWP_EPP_PERFORMANCE)
610 			return 1;
611 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
612 			return 2;
613 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
614 			return 3;
615 		else
616 			return 4;
617 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
618 		/*
619 		 * Range:
620 		 *	0x00-0x03	:	Performance
621 		 *	0x04-0x07	:	Balance performance
622 		 *	0x08-0x0B	:	Balance power
623 		 *	0x0C-0x0F	:	Power
624 		 * The EPB is a 4 bit value, but our ranges restrict the
625 		 * value which can be set. Here only using top two bits
626 		 * effectively.
627 		 */
628 		index = (epp >> 2) + 1;
629 	}
630 
631 	return index;
632 }
633 
634 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
635 					      int pref_index)
636 {
637 	int epp = -EINVAL;
638 	int ret;
639 
640 	if (!pref_index)
641 		epp = cpu_data->epp_default;
642 
643 	mutex_lock(&intel_pstate_limits_lock);
644 
645 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
646 		u64 value;
647 
648 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
649 		if (ret)
650 			goto return_pref;
651 
652 		value &= ~GENMASK_ULL(31, 24);
653 
654 		if (epp == -EINVAL)
655 			epp = epp_values[pref_index - 1];
656 
657 		value |= (u64)epp << 24;
658 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
659 	} else {
660 		if (epp == -EINVAL)
661 			epp = (pref_index - 1) << 2;
662 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
663 	}
664 return_pref:
665 	mutex_unlock(&intel_pstate_limits_lock);
666 
667 	return ret;
668 }
669 
670 static ssize_t show_energy_performance_available_preferences(
671 				struct cpufreq_policy *policy, char *buf)
672 {
673 	int i = 0;
674 	int ret = 0;
675 
676 	while (energy_perf_strings[i] != NULL)
677 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
678 
679 	ret += sprintf(&buf[ret], "\n");
680 
681 	return ret;
682 }
683 
684 cpufreq_freq_attr_ro(energy_performance_available_preferences);
685 
686 static ssize_t store_energy_performance_preference(
687 		struct cpufreq_policy *policy, const char *buf, size_t count)
688 {
689 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
690 	char str_preference[21];
691 	int ret;
692 
693 	ret = sscanf(buf, "%20s", str_preference);
694 	if (ret != 1)
695 		return -EINVAL;
696 
697 	ret = match_string(energy_perf_strings, -1, str_preference);
698 	if (ret < 0)
699 		return ret;
700 
701 	intel_pstate_set_energy_pref_index(cpu_data, ret);
702 	return count;
703 }
704 
705 static ssize_t show_energy_performance_preference(
706 				struct cpufreq_policy *policy, char *buf)
707 {
708 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
709 	int preference;
710 
711 	preference = intel_pstate_get_energy_pref_index(cpu_data);
712 	if (preference < 0)
713 		return preference;
714 
715 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
716 }
717 
718 cpufreq_freq_attr_rw(energy_performance_preference);
719 
720 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
721 {
722 	struct cpudata *cpu;
723 	u64 cap;
724 	int ratio;
725 
726 	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
727 	if (ratio <= 0) {
728 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
729 		ratio = HWP_GUARANTEED_PERF(cap);
730 	}
731 
732 	cpu = all_cpu_data[policy->cpu];
733 
734 	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
735 }
736 
737 cpufreq_freq_attr_ro(base_frequency);
738 
739 static struct freq_attr *hwp_cpufreq_attrs[] = {
740 	&energy_performance_preference,
741 	&energy_performance_available_preferences,
742 	&base_frequency,
743 	NULL,
744 };
745 
746 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
747 				     int *current_max)
748 {
749 	u64 cap;
750 
751 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
752 	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
753 	if (global.no_turbo)
754 		*current_max = HWP_GUARANTEED_PERF(cap);
755 	else
756 		*current_max = HWP_HIGHEST_PERF(cap);
757 
758 	*phy_max = HWP_HIGHEST_PERF(cap);
759 }
760 
761 static void intel_pstate_hwp_set(unsigned int cpu)
762 {
763 	struct cpudata *cpu_data = all_cpu_data[cpu];
764 	int max, min;
765 	u64 value;
766 	s16 epp;
767 
768 	max = cpu_data->max_perf_ratio;
769 	min = cpu_data->min_perf_ratio;
770 
771 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
772 		min = max;
773 
774 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
775 
776 	value &= ~HWP_MIN_PERF(~0L);
777 	value |= HWP_MIN_PERF(min);
778 
779 	value &= ~HWP_MAX_PERF(~0L);
780 	value |= HWP_MAX_PERF(max);
781 
782 	if (cpu_data->epp_policy == cpu_data->policy)
783 		goto skip_epp;
784 
785 	cpu_data->epp_policy = cpu_data->policy;
786 
787 	if (cpu_data->epp_saved >= 0) {
788 		epp = cpu_data->epp_saved;
789 		cpu_data->epp_saved = -EINVAL;
790 		goto update_epp;
791 	}
792 
793 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
794 		epp = intel_pstate_get_epp(cpu_data, value);
795 		cpu_data->epp_powersave = epp;
796 		/* If EPP read was failed, then don't try to write */
797 		if (epp < 0)
798 			goto skip_epp;
799 
800 		epp = 0;
801 	} else {
802 		/* skip setting EPP, when saved value is invalid */
803 		if (cpu_data->epp_powersave < 0)
804 			goto skip_epp;
805 
806 		/*
807 		 * No need to restore EPP when it is not zero. This
808 		 * means:
809 		 *  - Policy is not changed
810 		 *  - user has manually changed
811 		 *  - Error reading EPB
812 		 */
813 		epp = intel_pstate_get_epp(cpu_data, value);
814 		if (epp)
815 			goto skip_epp;
816 
817 		epp = cpu_data->epp_powersave;
818 	}
819 update_epp:
820 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
821 		value &= ~GENMASK_ULL(31, 24);
822 		value |= (u64)epp << 24;
823 	} else {
824 		intel_pstate_set_epb(cpu, epp);
825 	}
826 skip_epp:
827 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
828 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
829 }
830 
831 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
832 {
833 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
834 
835 	if (!hwp_active)
836 		return 0;
837 
838 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
839 
840 	return 0;
841 }
842 
843 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
844 
845 static int intel_pstate_resume(struct cpufreq_policy *policy)
846 {
847 	if (!hwp_active)
848 		return 0;
849 
850 	mutex_lock(&intel_pstate_limits_lock);
851 
852 	if (policy->cpu == 0)
853 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
854 
855 	all_cpu_data[policy->cpu]->epp_policy = 0;
856 	intel_pstate_hwp_set(policy->cpu);
857 
858 	mutex_unlock(&intel_pstate_limits_lock);
859 
860 	return 0;
861 }
862 
863 static void intel_pstate_update_policies(void)
864 {
865 	int cpu;
866 
867 	for_each_possible_cpu(cpu)
868 		cpufreq_update_policy(cpu);
869 }
870 
871 /************************** sysfs begin ************************/
872 #define show_one(file_name, object)					\
873 	static ssize_t show_##file_name					\
874 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
875 	{								\
876 		return sprintf(buf, "%u\n", global.object);		\
877 	}
878 
879 static ssize_t intel_pstate_show_status(char *buf);
880 static int intel_pstate_update_status(const char *buf, size_t size);
881 
882 static ssize_t show_status(struct kobject *kobj,
883 			   struct attribute *attr, char *buf)
884 {
885 	ssize_t ret;
886 
887 	mutex_lock(&intel_pstate_driver_lock);
888 	ret = intel_pstate_show_status(buf);
889 	mutex_unlock(&intel_pstate_driver_lock);
890 
891 	return ret;
892 }
893 
894 static ssize_t store_status(struct kobject *a, struct attribute *b,
895 			    const char *buf, size_t count)
896 {
897 	char *p = memchr(buf, '\n', count);
898 	int ret;
899 
900 	mutex_lock(&intel_pstate_driver_lock);
901 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
902 	mutex_unlock(&intel_pstate_driver_lock);
903 
904 	return ret < 0 ? ret : count;
905 }
906 
907 static ssize_t show_turbo_pct(struct kobject *kobj,
908 				struct attribute *attr, char *buf)
909 {
910 	struct cpudata *cpu;
911 	int total, no_turbo, turbo_pct;
912 	uint32_t turbo_fp;
913 
914 	mutex_lock(&intel_pstate_driver_lock);
915 
916 	if (!intel_pstate_driver) {
917 		mutex_unlock(&intel_pstate_driver_lock);
918 		return -EAGAIN;
919 	}
920 
921 	cpu = all_cpu_data[0];
922 
923 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
924 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
925 	turbo_fp = div_fp(no_turbo, total);
926 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
927 
928 	mutex_unlock(&intel_pstate_driver_lock);
929 
930 	return sprintf(buf, "%u\n", turbo_pct);
931 }
932 
933 static ssize_t show_num_pstates(struct kobject *kobj,
934 				struct attribute *attr, char *buf)
935 {
936 	struct cpudata *cpu;
937 	int total;
938 
939 	mutex_lock(&intel_pstate_driver_lock);
940 
941 	if (!intel_pstate_driver) {
942 		mutex_unlock(&intel_pstate_driver_lock);
943 		return -EAGAIN;
944 	}
945 
946 	cpu = all_cpu_data[0];
947 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
948 
949 	mutex_unlock(&intel_pstate_driver_lock);
950 
951 	return sprintf(buf, "%u\n", total);
952 }
953 
954 static ssize_t show_no_turbo(struct kobject *kobj,
955 			     struct attribute *attr, char *buf)
956 {
957 	ssize_t ret;
958 
959 	mutex_lock(&intel_pstate_driver_lock);
960 
961 	if (!intel_pstate_driver) {
962 		mutex_unlock(&intel_pstate_driver_lock);
963 		return -EAGAIN;
964 	}
965 
966 	update_turbo_state();
967 	if (global.turbo_disabled)
968 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
969 	else
970 		ret = sprintf(buf, "%u\n", global.no_turbo);
971 
972 	mutex_unlock(&intel_pstate_driver_lock);
973 
974 	return ret;
975 }
976 
977 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
978 			      const char *buf, size_t count)
979 {
980 	unsigned int input;
981 	int ret;
982 
983 	ret = sscanf(buf, "%u", &input);
984 	if (ret != 1)
985 		return -EINVAL;
986 
987 	mutex_lock(&intel_pstate_driver_lock);
988 
989 	if (!intel_pstate_driver) {
990 		mutex_unlock(&intel_pstate_driver_lock);
991 		return -EAGAIN;
992 	}
993 
994 	mutex_lock(&intel_pstate_limits_lock);
995 
996 	update_turbo_state();
997 	if (global.turbo_disabled) {
998 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
999 		mutex_unlock(&intel_pstate_limits_lock);
1000 		mutex_unlock(&intel_pstate_driver_lock);
1001 		return -EPERM;
1002 	}
1003 
1004 	global.no_turbo = clamp_t(int, input, 0, 1);
1005 
1006 	if (global.no_turbo) {
1007 		struct cpudata *cpu = all_cpu_data[0];
1008 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1009 
1010 		/* Squash the global minimum into the permitted range. */
1011 		if (global.min_perf_pct > pct)
1012 			global.min_perf_pct = pct;
1013 	}
1014 
1015 	mutex_unlock(&intel_pstate_limits_lock);
1016 
1017 	intel_pstate_update_policies();
1018 
1019 	mutex_unlock(&intel_pstate_driver_lock);
1020 
1021 	return count;
1022 }
1023 
1024 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1025 				  const char *buf, size_t count)
1026 {
1027 	unsigned int input;
1028 	int ret;
1029 
1030 	ret = sscanf(buf, "%u", &input);
1031 	if (ret != 1)
1032 		return -EINVAL;
1033 
1034 	mutex_lock(&intel_pstate_driver_lock);
1035 
1036 	if (!intel_pstate_driver) {
1037 		mutex_unlock(&intel_pstate_driver_lock);
1038 		return -EAGAIN;
1039 	}
1040 
1041 	mutex_lock(&intel_pstate_limits_lock);
1042 
1043 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1044 
1045 	mutex_unlock(&intel_pstate_limits_lock);
1046 
1047 	intel_pstate_update_policies();
1048 
1049 	mutex_unlock(&intel_pstate_driver_lock);
1050 
1051 	return count;
1052 }
1053 
1054 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1055 				  const char *buf, size_t count)
1056 {
1057 	unsigned int input;
1058 	int ret;
1059 
1060 	ret = sscanf(buf, "%u", &input);
1061 	if (ret != 1)
1062 		return -EINVAL;
1063 
1064 	mutex_lock(&intel_pstate_driver_lock);
1065 
1066 	if (!intel_pstate_driver) {
1067 		mutex_unlock(&intel_pstate_driver_lock);
1068 		return -EAGAIN;
1069 	}
1070 
1071 	mutex_lock(&intel_pstate_limits_lock);
1072 
1073 	global.min_perf_pct = clamp_t(int, input,
1074 				      min_perf_pct_min(), global.max_perf_pct);
1075 
1076 	mutex_unlock(&intel_pstate_limits_lock);
1077 
1078 	intel_pstate_update_policies();
1079 
1080 	mutex_unlock(&intel_pstate_driver_lock);
1081 
1082 	return count;
1083 }
1084 
1085 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1086 				struct attribute *attr, char *buf)
1087 {
1088 	return sprintf(buf, "%u\n", hwp_boost);
1089 }
1090 
1091 static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1092 				       const char *buf, size_t count)
1093 {
1094 	unsigned int input;
1095 	int ret;
1096 
1097 	ret = kstrtouint(buf, 10, &input);
1098 	if (ret)
1099 		return ret;
1100 
1101 	mutex_lock(&intel_pstate_driver_lock);
1102 	hwp_boost = !!input;
1103 	intel_pstate_update_policies();
1104 	mutex_unlock(&intel_pstate_driver_lock);
1105 
1106 	return count;
1107 }
1108 
1109 show_one(max_perf_pct, max_perf_pct);
1110 show_one(min_perf_pct, min_perf_pct);
1111 
1112 define_one_global_rw(status);
1113 define_one_global_rw(no_turbo);
1114 define_one_global_rw(max_perf_pct);
1115 define_one_global_rw(min_perf_pct);
1116 define_one_global_ro(turbo_pct);
1117 define_one_global_ro(num_pstates);
1118 define_one_global_rw(hwp_dynamic_boost);
1119 
1120 static struct attribute *intel_pstate_attributes[] = {
1121 	&status.attr,
1122 	&no_turbo.attr,
1123 	&turbo_pct.attr,
1124 	&num_pstates.attr,
1125 	NULL
1126 };
1127 
1128 static const struct attribute_group intel_pstate_attr_group = {
1129 	.attrs = intel_pstate_attributes,
1130 };
1131 
1132 static void __init intel_pstate_sysfs_expose_params(void)
1133 {
1134 	struct kobject *intel_pstate_kobject;
1135 	int rc;
1136 
1137 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1138 						&cpu_subsys.dev_root->kobj);
1139 	if (WARN_ON(!intel_pstate_kobject))
1140 		return;
1141 
1142 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1143 	if (WARN_ON(rc))
1144 		return;
1145 
1146 	/*
1147 	 * If per cpu limits are enforced there are no global limits, so
1148 	 * return without creating max/min_perf_pct attributes
1149 	 */
1150 	if (per_cpu_limits)
1151 		return;
1152 
1153 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1154 	WARN_ON(rc);
1155 
1156 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1157 	WARN_ON(rc);
1158 
1159 	if (hwp_active) {
1160 		rc = sysfs_create_file(intel_pstate_kobject,
1161 				       &hwp_dynamic_boost.attr);
1162 		WARN_ON(rc);
1163 	}
1164 }
1165 /************************** sysfs end ************************/
1166 
1167 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1168 {
1169 	/* First disable HWP notification interrupt as we don't process them */
1170 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1171 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1172 
1173 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1174 	cpudata->epp_policy = 0;
1175 	if (cpudata->epp_default == -EINVAL)
1176 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1177 }
1178 
1179 #define MSR_IA32_POWER_CTL_BIT_EE	19
1180 
1181 /* Disable energy efficiency optimization */
1182 static void intel_pstate_disable_ee(int cpu)
1183 {
1184 	u64 power_ctl;
1185 	int ret;
1186 
1187 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1188 	if (ret)
1189 		return;
1190 
1191 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1192 		pr_info("Disabling energy efficiency optimization\n");
1193 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1194 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1195 	}
1196 }
1197 
1198 static int atom_get_min_pstate(void)
1199 {
1200 	u64 value;
1201 
1202 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1203 	return (value >> 8) & 0x7F;
1204 }
1205 
1206 static int atom_get_max_pstate(void)
1207 {
1208 	u64 value;
1209 
1210 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1211 	return (value >> 16) & 0x7F;
1212 }
1213 
1214 static int atom_get_turbo_pstate(void)
1215 {
1216 	u64 value;
1217 
1218 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1219 	return value & 0x7F;
1220 }
1221 
1222 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1223 {
1224 	u64 val;
1225 	int32_t vid_fp;
1226 	u32 vid;
1227 
1228 	val = (u64)pstate << 8;
1229 	if (global.no_turbo && !global.turbo_disabled)
1230 		val |= (u64)1 << 32;
1231 
1232 	vid_fp = cpudata->vid.min + mul_fp(
1233 		int_tofp(pstate - cpudata->pstate.min_pstate),
1234 		cpudata->vid.ratio);
1235 
1236 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1237 	vid = ceiling_fp(vid_fp);
1238 
1239 	if (pstate > cpudata->pstate.max_pstate)
1240 		vid = cpudata->vid.turbo;
1241 
1242 	return val | vid;
1243 }
1244 
1245 static int silvermont_get_scaling(void)
1246 {
1247 	u64 value;
1248 	int i;
1249 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1250 	static int silvermont_freq_table[] = {
1251 		83300, 100000, 133300, 116700, 80000};
1252 
1253 	rdmsrl(MSR_FSB_FREQ, value);
1254 	i = value & 0x7;
1255 	WARN_ON(i > 4);
1256 
1257 	return silvermont_freq_table[i];
1258 }
1259 
1260 static int airmont_get_scaling(void)
1261 {
1262 	u64 value;
1263 	int i;
1264 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1265 	static int airmont_freq_table[] = {
1266 		83300, 100000, 133300, 116700, 80000,
1267 		93300, 90000, 88900, 87500};
1268 
1269 	rdmsrl(MSR_FSB_FREQ, value);
1270 	i = value & 0xF;
1271 	WARN_ON(i > 8);
1272 
1273 	return airmont_freq_table[i];
1274 }
1275 
1276 static void atom_get_vid(struct cpudata *cpudata)
1277 {
1278 	u64 value;
1279 
1280 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1281 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1282 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1283 	cpudata->vid.ratio = div_fp(
1284 		cpudata->vid.max - cpudata->vid.min,
1285 		int_tofp(cpudata->pstate.max_pstate -
1286 			cpudata->pstate.min_pstate));
1287 
1288 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1289 	cpudata->vid.turbo = value & 0x7f;
1290 }
1291 
1292 static int core_get_min_pstate(void)
1293 {
1294 	u64 value;
1295 
1296 	rdmsrl(MSR_PLATFORM_INFO, value);
1297 	return (value >> 40) & 0xFF;
1298 }
1299 
1300 static int core_get_max_pstate_physical(void)
1301 {
1302 	u64 value;
1303 
1304 	rdmsrl(MSR_PLATFORM_INFO, value);
1305 	return (value >> 8) & 0xFF;
1306 }
1307 
1308 static int core_get_tdp_ratio(u64 plat_info)
1309 {
1310 	/* Check how many TDP levels present */
1311 	if (plat_info & 0x600000000) {
1312 		u64 tdp_ctrl;
1313 		u64 tdp_ratio;
1314 		int tdp_msr;
1315 		int err;
1316 
1317 		/* Get the TDP level (0, 1, 2) to get ratios */
1318 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1319 		if (err)
1320 			return err;
1321 
1322 		/* TDP MSR are continuous starting at 0x648 */
1323 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1324 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1325 		if (err)
1326 			return err;
1327 
1328 		/* For level 1 and 2, bits[23:16] contain the ratio */
1329 		if (tdp_ctrl & 0x03)
1330 			tdp_ratio >>= 16;
1331 
1332 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1333 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1334 
1335 		return (int)tdp_ratio;
1336 	}
1337 
1338 	return -ENXIO;
1339 }
1340 
1341 static int core_get_max_pstate(void)
1342 {
1343 	u64 tar;
1344 	u64 plat_info;
1345 	int max_pstate;
1346 	int tdp_ratio;
1347 	int err;
1348 
1349 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1350 	max_pstate = (plat_info >> 8) & 0xFF;
1351 
1352 	tdp_ratio = core_get_tdp_ratio(plat_info);
1353 	if (tdp_ratio <= 0)
1354 		return max_pstate;
1355 
1356 	if (hwp_active) {
1357 		/* Turbo activation ratio is not used on HWP platforms */
1358 		return tdp_ratio;
1359 	}
1360 
1361 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1362 	if (!err) {
1363 		int tar_levels;
1364 
1365 		/* Do some sanity checking for safety */
1366 		tar_levels = tar & 0xff;
1367 		if (tdp_ratio - 1 == tar_levels) {
1368 			max_pstate = tar_levels;
1369 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1370 		}
1371 	}
1372 
1373 	return max_pstate;
1374 }
1375 
1376 static int core_get_turbo_pstate(void)
1377 {
1378 	u64 value;
1379 	int nont, ret;
1380 
1381 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1382 	nont = core_get_max_pstate();
1383 	ret = (value) & 255;
1384 	if (ret <= nont)
1385 		ret = nont;
1386 	return ret;
1387 }
1388 
1389 static inline int core_get_scaling(void)
1390 {
1391 	return 100000;
1392 }
1393 
1394 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1395 {
1396 	u64 val;
1397 
1398 	val = (u64)pstate << 8;
1399 	if (global.no_turbo && !global.turbo_disabled)
1400 		val |= (u64)1 << 32;
1401 
1402 	return val;
1403 }
1404 
1405 static int knl_get_aperf_mperf_shift(void)
1406 {
1407 	return 10;
1408 }
1409 
1410 static int knl_get_turbo_pstate(void)
1411 {
1412 	u64 value;
1413 	int nont, ret;
1414 
1415 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1416 	nont = core_get_max_pstate();
1417 	ret = (((value) >> 8) & 0xFF);
1418 	if (ret <= nont)
1419 		ret = nont;
1420 	return ret;
1421 }
1422 
1423 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1424 {
1425 	return global.no_turbo || global.turbo_disabled ?
1426 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1427 }
1428 
1429 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1430 {
1431 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1432 	cpu->pstate.current_pstate = pstate;
1433 	/*
1434 	 * Generally, there is no guarantee that this code will always run on
1435 	 * the CPU being updated, so force the register update to run on the
1436 	 * right CPU.
1437 	 */
1438 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1439 		      pstate_funcs.get_val(cpu, pstate));
1440 }
1441 
1442 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1443 {
1444 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1445 }
1446 
1447 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1448 {
1449 	int pstate;
1450 
1451 	update_turbo_state();
1452 	pstate = intel_pstate_get_base_pstate(cpu);
1453 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1454 	intel_pstate_set_pstate(cpu, pstate);
1455 }
1456 
1457 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1458 {
1459 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1460 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1461 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1462 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1463 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1464 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1465 
1466 	if (hwp_active && !hwp_mode_bdw) {
1467 		unsigned int phy_max, current_max;
1468 
1469 		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1470 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1471 	} else {
1472 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1473 	}
1474 
1475 	if (pstate_funcs.get_aperf_mperf_shift)
1476 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1477 
1478 	if (pstate_funcs.get_vid)
1479 		pstate_funcs.get_vid(cpu);
1480 
1481 	intel_pstate_set_min_pstate(cpu);
1482 }
1483 
1484 /*
1485  * Long hold time will keep high perf limits for long time,
1486  * which negatively impacts perf/watt for some workloads,
1487  * like specpower. 3ms is based on experiements on some
1488  * workoads.
1489  */
1490 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1491 
1492 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1493 {
1494 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1495 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1496 	u32 min_limit = (hwp_req & 0xff);
1497 	u32 boost_level1;
1498 
1499 	/*
1500 	 * Cases to consider (User changes via sysfs or boot time):
1501 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1502 	 *	No boost, return.
1503 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1504 	 *     Should result in one level boost only for P0.
1505 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1506 	 *     Should result in two level boost:
1507 	 *         (min + p1)/2 and P1.
1508 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1509 	 *     Should result in three level boost:
1510 	 *        (min + p1)/2, P1 and P0.
1511 	 */
1512 
1513 	/* If max and min are equal or already at max, nothing to boost */
1514 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1515 		return;
1516 
1517 	if (!cpu->hwp_boost_min)
1518 		cpu->hwp_boost_min = min_limit;
1519 
1520 	/* level at half way mark between min and guranteed */
1521 	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1522 
1523 	if (cpu->hwp_boost_min < boost_level1)
1524 		cpu->hwp_boost_min = boost_level1;
1525 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1526 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1527 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1528 		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1529 		cpu->hwp_boost_min = max_limit;
1530 	else
1531 		return;
1532 
1533 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1534 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1535 	cpu->last_update = cpu->sample.time;
1536 }
1537 
1538 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1539 {
1540 	if (cpu->hwp_boost_min) {
1541 		bool expired;
1542 
1543 		/* Check if we are idle for hold time to boost down */
1544 		expired = time_after64(cpu->sample.time, cpu->last_update +
1545 				       hwp_boost_hold_time_ns);
1546 		if (expired) {
1547 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1548 			cpu->hwp_boost_min = 0;
1549 		}
1550 	}
1551 	cpu->last_update = cpu->sample.time;
1552 }
1553 
1554 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1555 						      u64 time)
1556 {
1557 	cpu->sample.time = time;
1558 
1559 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1560 		bool do_io = false;
1561 
1562 		cpu->sched_flags = 0;
1563 		/*
1564 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1565 		 * is set all the time, we can't just conclude that there is
1566 		 * some IO bound activity is scheduled on this CPU with just
1567 		 * one occurrence. If we receive at least two in two
1568 		 * consecutive ticks, then we treat as boost candidate.
1569 		 */
1570 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1571 			do_io = true;
1572 
1573 		cpu->last_io_update = time;
1574 
1575 		if (do_io)
1576 			intel_pstate_hwp_boost_up(cpu);
1577 
1578 	} else {
1579 		intel_pstate_hwp_boost_down(cpu);
1580 	}
1581 }
1582 
1583 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1584 						u64 time, unsigned int flags)
1585 {
1586 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1587 
1588 	cpu->sched_flags |= flags;
1589 
1590 	if (smp_processor_id() == cpu->cpu)
1591 		intel_pstate_update_util_hwp_local(cpu, time);
1592 }
1593 
1594 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1595 {
1596 	struct sample *sample = &cpu->sample;
1597 
1598 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1599 }
1600 
1601 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1602 {
1603 	u64 aperf, mperf;
1604 	unsigned long flags;
1605 	u64 tsc;
1606 
1607 	local_irq_save(flags);
1608 	rdmsrl(MSR_IA32_APERF, aperf);
1609 	rdmsrl(MSR_IA32_MPERF, mperf);
1610 	tsc = rdtsc();
1611 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1612 		local_irq_restore(flags);
1613 		return false;
1614 	}
1615 	local_irq_restore(flags);
1616 
1617 	cpu->last_sample_time = cpu->sample.time;
1618 	cpu->sample.time = time;
1619 	cpu->sample.aperf = aperf;
1620 	cpu->sample.mperf = mperf;
1621 	cpu->sample.tsc =  tsc;
1622 	cpu->sample.aperf -= cpu->prev_aperf;
1623 	cpu->sample.mperf -= cpu->prev_mperf;
1624 	cpu->sample.tsc -= cpu->prev_tsc;
1625 
1626 	cpu->prev_aperf = aperf;
1627 	cpu->prev_mperf = mperf;
1628 	cpu->prev_tsc = tsc;
1629 	/*
1630 	 * First time this function is invoked in a given cycle, all of the
1631 	 * previous sample data fields are equal to zero or stale and they must
1632 	 * be populated with meaningful numbers for things to work, so assume
1633 	 * that sample.time will always be reset before setting the utilization
1634 	 * update hook and make the caller skip the sample then.
1635 	 */
1636 	if (cpu->last_sample_time) {
1637 		intel_pstate_calc_avg_perf(cpu);
1638 		return true;
1639 	}
1640 	return false;
1641 }
1642 
1643 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1644 {
1645 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1646 }
1647 
1648 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1649 {
1650 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1651 			  cpu->sample.core_avg_perf);
1652 }
1653 
1654 static inline int32_t get_target_pstate(struct cpudata *cpu)
1655 {
1656 	struct sample *sample = &cpu->sample;
1657 	int32_t busy_frac, boost;
1658 	int target, avg_pstate;
1659 
1660 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1661 			   sample->tsc);
1662 
1663 	boost = cpu->iowait_boost;
1664 	cpu->iowait_boost >>= 1;
1665 
1666 	if (busy_frac < boost)
1667 		busy_frac = boost;
1668 
1669 	sample->busy_scaled = busy_frac * 100;
1670 
1671 	target = global.no_turbo || global.turbo_disabled ?
1672 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1673 	target += target >> 2;
1674 	target = mul_fp(target, busy_frac);
1675 	if (target < cpu->pstate.min_pstate)
1676 		target = cpu->pstate.min_pstate;
1677 
1678 	/*
1679 	 * If the average P-state during the previous cycle was higher than the
1680 	 * current target, add 50% of the difference to the target to reduce
1681 	 * possible performance oscillations and offset possible performance
1682 	 * loss related to moving the workload from one CPU to another within
1683 	 * a package/module.
1684 	 */
1685 	avg_pstate = get_avg_pstate(cpu);
1686 	if (avg_pstate > target)
1687 		target += (avg_pstate - target) >> 1;
1688 
1689 	return target;
1690 }
1691 
1692 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1693 {
1694 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1695 	int min_pstate;
1696 
1697 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1698 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1699 	return clamp_t(int, pstate, min_pstate, max_pstate);
1700 }
1701 
1702 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1703 {
1704 	if (pstate == cpu->pstate.current_pstate)
1705 		return;
1706 
1707 	cpu->pstate.current_pstate = pstate;
1708 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1709 }
1710 
1711 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1712 {
1713 	int from = cpu->pstate.current_pstate;
1714 	struct sample *sample;
1715 	int target_pstate;
1716 
1717 	update_turbo_state();
1718 
1719 	target_pstate = get_target_pstate(cpu);
1720 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1721 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1722 	intel_pstate_update_pstate(cpu, target_pstate);
1723 
1724 	sample = &cpu->sample;
1725 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1726 		fp_toint(sample->busy_scaled),
1727 		from,
1728 		cpu->pstate.current_pstate,
1729 		sample->mperf,
1730 		sample->aperf,
1731 		sample->tsc,
1732 		get_avg_frequency(cpu),
1733 		fp_toint(cpu->iowait_boost * 100));
1734 }
1735 
1736 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1737 				     unsigned int flags)
1738 {
1739 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1740 	u64 delta_ns;
1741 
1742 	/* Don't allow remote callbacks */
1743 	if (smp_processor_id() != cpu->cpu)
1744 		return;
1745 
1746 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1747 		cpu->iowait_boost = int_tofp(1);
1748 		cpu->last_update = time;
1749 		/*
1750 		 * The last time the busy was 100% so P-state was max anyway
1751 		 * so avoid overhead of computation.
1752 		 */
1753 		if (fp_toint(cpu->sample.busy_scaled) == 100)
1754 			return;
1755 
1756 		goto set_pstate;
1757 	} else if (cpu->iowait_boost) {
1758 		/* Clear iowait_boost if the CPU may have been idle. */
1759 		delta_ns = time - cpu->last_update;
1760 		if (delta_ns > TICK_NSEC)
1761 			cpu->iowait_boost = 0;
1762 	}
1763 	cpu->last_update = time;
1764 	delta_ns = time - cpu->sample.time;
1765 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1766 		return;
1767 
1768 set_pstate:
1769 	if (intel_pstate_sample(cpu, time))
1770 		intel_pstate_adjust_pstate(cpu);
1771 }
1772 
1773 static struct pstate_funcs core_funcs = {
1774 	.get_max = core_get_max_pstate,
1775 	.get_max_physical = core_get_max_pstate_physical,
1776 	.get_min = core_get_min_pstate,
1777 	.get_turbo = core_get_turbo_pstate,
1778 	.get_scaling = core_get_scaling,
1779 	.get_val = core_get_val,
1780 };
1781 
1782 static const struct pstate_funcs silvermont_funcs = {
1783 	.get_max = atom_get_max_pstate,
1784 	.get_max_physical = atom_get_max_pstate,
1785 	.get_min = atom_get_min_pstate,
1786 	.get_turbo = atom_get_turbo_pstate,
1787 	.get_val = atom_get_val,
1788 	.get_scaling = silvermont_get_scaling,
1789 	.get_vid = atom_get_vid,
1790 };
1791 
1792 static const struct pstate_funcs airmont_funcs = {
1793 	.get_max = atom_get_max_pstate,
1794 	.get_max_physical = atom_get_max_pstate,
1795 	.get_min = atom_get_min_pstate,
1796 	.get_turbo = atom_get_turbo_pstate,
1797 	.get_val = atom_get_val,
1798 	.get_scaling = airmont_get_scaling,
1799 	.get_vid = atom_get_vid,
1800 };
1801 
1802 static const struct pstate_funcs knl_funcs = {
1803 	.get_max = core_get_max_pstate,
1804 	.get_max_physical = core_get_max_pstate_physical,
1805 	.get_min = core_get_min_pstate,
1806 	.get_turbo = knl_get_turbo_pstate,
1807 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1808 	.get_scaling = core_get_scaling,
1809 	.get_val = core_get_val,
1810 };
1811 
1812 #define ICPU(model, policy) \
1813 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1814 			(unsigned long)&policy }
1815 
1816 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1817 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1818 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1819 	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1820 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1821 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1822 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1823 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1824 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1825 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1826 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1827 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1828 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1829 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1830 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1831 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1832 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1833 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1834 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1835 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1836 	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1837 	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1838 	{}
1839 };
1840 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1841 
1842 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1843 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1844 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1845 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1846 	{}
1847 };
1848 
1849 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1850 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1851 	{}
1852 };
1853 
1854 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1855 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1856 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1857 	{}
1858 };
1859 
1860 static int intel_pstate_init_cpu(unsigned int cpunum)
1861 {
1862 	struct cpudata *cpu;
1863 
1864 	cpu = all_cpu_data[cpunum];
1865 
1866 	if (!cpu) {
1867 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1868 		if (!cpu)
1869 			return -ENOMEM;
1870 
1871 		all_cpu_data[cpunum] = cpu;
1872 
1873 		cpu->epp_default = -EINVAL;
1874 		cpu->epp_powersave = -EINVAL;
1875 		cpu->epp_saved = -EINVAL;
1876 	}
1877 
1878 	cpu = all_cpu_data[cpunum];
1879 
1880 	cpu->cpu = cpunum;
1881 
1882 	if (hwp_active) {
1883 		const struct x86_cpu_id *id;
1884 
1885 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1886 		if (id)
1887 			intel_pstate_disable_ee(cpunum);
1888 
1889 		intel_pstate_hwp_enable(cpu);
1890 
1891 		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1892 		if (id && intel_pstate_acpi_pm_profile_server())
1893 			hwp_boost = true;
1894 	}
1895 
1896 	intel_pstate_get_cpu_pstates(cpu);
1897 
1898 	pr_debug("controlling: cpu %d\n", cpunum);
1899 
1900 	return 0;
1901 }
1902 
1903 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1904 {
1905 	struct cpudata *cpu = all_cpu_data[cpu_num];
1906 
1907 	if (hwp_active && !hwp_boost)
1908 		return;
1909 
1910 	if (cpu->update_util_set)
1911 		return;
1912 
1913 	/* Prevent intel_pstate_update_util() from using stale data. */
1914 	cpu->sample.time = 0;
1915 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1916 				     (hwp_active ?
1917 				      intel_pstate_update_util_hwp :
1918 				      intel_pstate_update_util));
1919 	cpu->update_util_set = true;
1920 }
1921 
1922 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1923 {
1924 	struct cpudata *cpu_data = all_cpu_data[cpu];
1925 
1926 	if (!cpu_data->update_util_set)
1927 		return;
1928 
1929 	cpufreq_remove_update_util_hook(cpu);
1930 	cpu_data->update_util_set = false;
1931 	synchronize_sched();
1932 }
1933 
1934 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1935 {
1936 	return global.turbo_disabled || global.no_turbo ?
1937 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1938 }
1939 
1940 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1941 					    struct cpudata *cpu)
1942 {
1943 	int max_freq = intel_pstate_get_max_freq(cpu);
1944 	int32_t max_policy_perf, min_policy_perf;
1945 	int max_state, turbo_max;
1946 
1947 	/*
1948 	 * HWP needs some special consideration, because on BDX the
1949 	 * HWP_REQUEST uses abstract value to represent performance
1950 	 * rather than pure ratios.
1951 	 */
1952 	if (hwp_active) {
1953 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1954 	} else {
1955 		max_state = intel_pstate_get_base_pstate(cpu);
1956 		turbo_max = cpu->pstate.turbo_pstate;
1957 	}
1958 
1959 	max_policy_perf = max_state * policy->max / max_freq;
1960 	if (policy->max == policy->min) {
1961 		min_policy_perf = max_policy_perf;
1962 	} else {
1963 		min_policy_perf = max_state * policy->min / max_freq;
1964 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1965 					  0, max_policy_perf);
1966 	}
1967 
1968 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1969 		 policy->cpu, max_state,
1970 		 min_policy_perf, max_policy_perf);
1971 
1972 	/* Normalize user input to [min_perf, max_perf] */
1973 	if (per_cpu_limits) {
1974 		cpu->min_perf_ratio = min_policy_perf;
1975 		cpu->max_perf_ratio = max_policy_perf;
1976 	} else {
1977 		int32_t global_min, global_max;
1978 
1979 		/* Global limits are in percent of the maximum turbo P-state. */
1980 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1981 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1982 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1983 
1984 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1985 			 global_min, global_max);
1986 
1987 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1988 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1989 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
1990 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1991 
1992 		/* Make sure min_perf <= max_perf */
1993 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1994 					  cpu->max_perf_ratio);
1995 
1996 	}
1997 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1998 		 cpu->max_perf_ratio,
1999 		 cpu->min_perf_ratio);
2000 }
2001 
2002 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2003 {
2004 	struct cpudata *cpu;
2005 
2006 	if (!policy->cpuinfo.max_freq)
2007 		return -ENODEV;
2008 
2009 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2010 		 policy->cpuinfo.max_freq, policy->max);
2011 
2012 	cpu = all_cpu_data[policy->cpu];
2013 	cpu->policy = policy->policy;
2014 
2015 	mutex_lock(&intel_pstate_limits_lock);
2016 
2017 	intel_pstate_update_perf_limits(policy, cpu);
2018 
2019 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2020 		/*
2021 		 * NOHZ_FULL CPUs need this as the governor callback may not
2022 		 * be invoked on them.
2023 		 */
2024 		intel_pstate_clear_update_util_hook(policy->cpu);
2025 		intel_pstate_max_within_limits(cpu);
2026 	} else {
2027 		intel_pstate_set_update_util_hook(policy->cpu);
2028 	}
2029 
2030 	if (hwp_active) {
2031 		/*
2032 		 * When hwp_boost was active before and dynamically it
2033 		 * was turned off, in that case we need to clear the
2034 		 * update util hook.
2035 		 */
2036 		if (!hwp_boost)
2037 			intel_pstate_clear_update_util_hook(policy->cpu);
2038 		intel_pstate_hwp_set(policy->cpu);
2039 	}
2040 
2041 	mutex_unlock(&intel_pstate_limits_lock);
2042 
2043 	return 0;
2044 }
2045 
2046 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2047 					 struct cpudata *cpu)
2048 {
2049 	if (!hwp_active &&
2050 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2051 	    policy->max < policy->cpuinfo.max_freq &&
2052 	    policy->max > cpu->pstate.max_freq) {
2053 		pr_debug("policy->max > max non turbo frequency\n");
2054 		policy->max = policy->cpuinfo.max_freq;
2055 	}
2056 }
2057 
2058 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2059 {
2060 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2061 
2062 	update_turbo_state();
2063 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2064 				     intel_pstate_get_max_freq(cpu));
2065 
2066 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2067 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2068 		return -EINVAL;
2069 
2070 	intel_pstate_adjust_policy_max(policy, cpu);
2071 
2072 	return 0;
2073 }
2074 
2075 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2076 {
2077 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2078 }
2079 
2080 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2081 {
2082 	pr_debug("CPU %d exiting\n", policy->cpu);
2083 
2084 	intel_pstate_clear_update_util_hook(policy->cpu);
2085 	if (hwp_active)
2086 		intel_pstate_hwp_save_state(policy);
2087 	else
2088 		intel_cpufreq_stop_cpu(policy);
2089 }
2090 
2091 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2092 {
2093 	intel_pstate_exit_perf_limits(policy);
2094 
2095 	policy->fast_switch_possible = false;
2096 
2097 	return 0;
2098 }
2099 
2100 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2101 {
2102 	struct cpudata *cpu;
2103 	int rc;
2104 
2105 	rc = intel_pstate_init_cpu(policy->cpu);
2106 	if (rc)
2107 		return rc;
2108 
2109 	cpu = all_cpu_data[policy->cpu];
2110 
2111 	cpu->max_perf_ratio = 0xFF;
2112 	cpu->min_perf_ratio = 0;
2113 
2114 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2115 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2116 
2117 	/* cpuinfo and default policy values */
2118 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2119 	update_turbo_state();
2120 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2121 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2122 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2123 
2124 	if (hwp_active) {
2125 		unsigned int max_freq;
2126 
2127 		max_freq = global.turbo_disabled ?
2128 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2129 		if (max_freq < policy->cpuinfo.max_freq)
2130 			policy->cpuinfo.max_freq = max_freq;
2131 	}
2132 
2133 	intel_pstate_init_acpi_perf_limits(policy);
2134 
2135 	policy->fast_switch_possible = true;
2136 
2137 	return 0;
2138 }
2139 
2140 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2141 {
2142 	int ret = __intel_pstate_cpu_init(policy);
2143 
2144 	if (ret)
2145 		return ret;
2146 
2147 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2148 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2149 	else
2150 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2151 
2152 	return 0;
2153 }
2154 
2155 static struct cpufreq_driver intel_pstate = {
2156 	.flags		= CPUFREQ_CONST_LOOPS,
2157 	.verify		= intel_pstate_verify_policy,
2158 	.setpolicy	= intel_pstate_set_policy,
2159 	.suspend	= intel_pstate_hwp_save_state,
2160 	.resume		= intel_pstate_resume,
2161 	.init		= intel_pstate_cpu_init,
2162 	.exit		= intel_pstate_cpu_exit,
2163 	.stop_cpu	= intel_pstate_stop_cpu,
2164 	.name		= "intel_pstate",
2165 };
2166 
2167 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2168 {
2169 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2170 
2171 	update_turbo_state();
2172 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2173 				     intel_pstate_get_max_freq(cpu));
2174 
2175 	intel_pstate_adjust_policy_max(policy, cpu);
2176 
2177 	intel_pstate_update_perf_limits(policy, cpu);
2178 
2179 	return 0;
2180 }
2181 
2182 /* Use of trace in passive mode:
2183  *
2184  * In passive mode the trace core_busy field (also known as the
2185  * performance field, and lablelled as such on the graphs; also known as
2186  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2187  * driver call was via the normal or fast switch path. Various graphs
2188  * output from the intel_pstate_tracer.py utility that include core_busy
2189  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2190  * so we use 10 to indicate the the normal path through the driver, and
2191  * 90 to indicate the fast switch path through the driver.
2192  * The scaled_busy field is not used, and is set to 0.
2193  */
2194 
2195 #define	INTEL_PSTATE_TRACE_TARGET 10
2196 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2197 
2198 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2199 {
2200 	struct sample *sample;
2201 
2202 	if (!trace_pstate_sample_enabled())
2203 		return;
2204 
2205 	if (!intel_pstate_sample(cpu, ktime_get()))
2206 		return;
2207 
2208 	sample = &cpu->sample;
2209 	trace_pstate_sample(trace_type,
2210 		0,
2211 		old_pstate,
2212 		cpu->pstate.current_pstate,
2213 		sample->mperf,
2214 		sample->aperf,
2215 		sample->tsc,
2216 		get_avg_frequency(cpu),
2217 		fp_toint(cpu->iowait_boost * 100));
2218 }
2219 
2220 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2221 				unsigned int target_freq,
2222 				unsigned int relation)
2223 {
2224 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2225 	struct cpufreq_freqs freqs;
2226 	int target_pstate, old_pstate;
2227 
2228 	update_turbo_state();
2229 
2230 	freqs.old = policy->cur;
2231 	freqs.new = target_freq;
2232 
2233 	cpufreq_freq_transition_begin(policy, &freqs);
2234 	switch (relation) {
2235 	case CPUFREQ_RELATION_L:
2236 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2237 		break;
2238 	case CPUFREQ_RELATION_H:
2239 		target_pstate = freqs.new / cpu->pstate.scaling;
2240 		break;
2241 	default:
2242 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2243 		break;
2244 	}
2245 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2246 	old_pstate = cpu->pstate.current_pstate;
2247 	if (target_pstate != cpu->pstate.current_pstate) {
2248 		cpu->pstate.current_pstate = target_pstate;
2249 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2250 			      pstate_funcs.get_val(cpu, target_pstate));
2251 	}
2252 	freqs.new = target_pstate * cpu->pstate.scaling;
2253 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2254 	cpufreq_freq_transition_end(policy, &freqs, false);
2255 
2256 	return 0;
2257 }
2258 
2259 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2260 					      unsigned int target_freq)
2261 {
2262 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2263 	int target_pstate, old_pstate;
2264 
2265 	update_turbo_state();
2266 
2267 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2268 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2269 	old_pstate = cpu->pstate.current_pstate;
2270 	intel_pstate_update_pstate(cpu, target_pstate);
2271 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2272 	return target_pstate * cpu->pstate.scaling;
2273 }
2274 
2275 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2276 {
2277 	int ret = __intel_pstate_cpu_init(policy);
2278 
2279 	if (ret)
2280 		return ret;
2281 
2282 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2283 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2284 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2285 	policy->cur = policy->cpuinfo.min_freq;
2286 
2287 	return 0;
2288 }
2289 
2290 static struct cpufreq_driver intel_cpufreq = {
2291 	.flags		= CPUFREQ_CONST_LOOPS,
2292 	.verify		= intel_cpufreq_verify_policy,
2293 	.target		= intel_cpufreq_target,
2294 	.fast_switch	= intel_cpufreq_fast_switch,
2295 	.init		= intel_cpufreq_cpu_init,
2296 	.exit		= intel_pstate_cpu_exit,
2297 	.stop_cpu	= intel_cpufreq_stop_cpu,
2298 	.name		= "intel_cpufreq",
2299 };
2300 
2301 static struct cpufreq_driver *default_driver = &intel_pstate;
2302 
2303 static void intel_pstate_driver_cleanup(void)
2304 {
2305 	unsigned int cpu;
2306 
2307 	get_online_cpus();
2308 	for_each_online_cpu(cpu) {
2309 		if (all_cpu_data[cpu]) {
2310 			if (intel_pstate_driver == &intel_pstate)
2311 				intel_pstate_clear_update_util_hook(cpu);
2312 
2313 			kfree(all_cpu_data[cpu]);
2314 			all_cpu_data[cpu] = NULL;
2315 		}
2316 	}
2317 	put_online_cpus();
2318 	intel_pstate_driver = NULL;
2319 }
2320 
2321 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2322 {
2323 	int ret;
2324 
2325 	memset(&global, 0, sizeof(global));
2326 	global.max_perf_pct = 100;
2327 
2328 	intel_pstate_driver = driver;
2329 	ret = cpufreq_register_driver(intel_pstate_driver);
2330 	if (ret) {
2331 		intel_pstate_driver_cleanup();
2332 		return ret;
2333 	}
2334 
2335 	global.min_perf_pct = min_perf_pct_min();
2336 
2337 	return 0;
2338 }
2339 
2340 static int intel_pstate_unregister_driver(void)
2341 {
2342 	if (hwp_active)
2343 		return -EBUSY;
2344 
2345 	cpufreq_unregister_driver(intel_pstate_driver);
2346 	intel_pstate_driver_cleanup();
2347 
2348 	return 0;
2349 }
2350 
2351 static ssize_t intel_pstate_show_status(char *buf)
2352 {
2353 	if (!intel_pstate_driver)
2354 		return sprintf(buf, "off\n");
2355 
2356 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2357 					"active" : "passive");
2358 }
2359 
2360 static int intel_pstate_update_status(const char *buf, size_t size)
2361 {
2362 	int ret;
2363 
2364 	if (size == 3 && !strncmp(buf, "off", size))
2365 		return intel_pstate_driver ?
2366 			intel_pstate_unregister_driver() : -EINVAL;
2367 
2368 	if (size == 6 && !strncmp(buf, "active", size)) {
2369 		if (intel_pstate_driver) {
2370 			if (intel_pstate_driver == &intel_pstate)
2371 				return 0;
2372 
2373 			ret = intel_pstate_unregister_driver();
2374 			if (ret)
2375 				return ret;
2376 		}
2377 
2378 		return intel_pstate_register_driver(&intel_pstate);
2379 	}
2380 
2381 	if (size == 7 && !strncmp(buf, "passive", size)) {
2382 		if (intel_pstate_driver) {
2383 			if (intel_pstate_driver == &intel_cpufreq)
2384 				return 0;
2385 
2386 			ret = intel_pstate_unregister_driver();
2387 			if (ret)
2388 				return ret;
2389 		}
2390 
2391 		return intel_pstate_register_driver(&intel_cpufreq);
2392 	}
2393 
2394 	return -EINVAL;
2395 }
2396 
2397 static int no_load __initdata;
2398 static int no_hwp __initdata;
2399 static int hwp_only __initdata;
2400 static unsigned int force_load __initdata;
2401 
2402 static int __init intel_pstate_msrs_not_valid(void)
2403 {
2404 	if (!pstate_funcs.get_max() ||
2405 	    !pstate_funcs.get_min() ||
2406 	    !pstate_funcs.get_turbo())
2407 		return -ENODEV;
2408 
2409 	return 0;
2410 }
2411 
2412 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2413 {
2414 	pstate_funcs.get_max   = funcs->get_max;
2415 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2416 	pstate_funcs.get_min   = funcs->get_min;
2417 	pstate_funcs.get_turbo = funcs->get_turbo;
2418 	pstate_funcs.get_scaling = funcs->get_scaling;
2419 	pstate_funcs.get_val   = funcs->get_val;
2420 	pstate_funcs.get_vid   = funcs->get_vid;
2421 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2422 }
2423 
2424 #ifdef CONFIG_ACPI
2425 
2426 static bool __init intel_pstate_no_acpi_pss(void)
2427 {
2428 	int i;
2429 
2430 	for_each_possible_cpu(i) {
2431 		acpi_status status;
2432 		union acpi_object *pss;
2433 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2434 		struct acpi_processor *pr = per_cpu(processors, i);
2435 
2436 		if (!pr)
2437 			continue;
2438 
2439 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2440 		if (ACPI_FAILURE(status))
2441 			continue;
2442 
2443 		pss = buffer.pointer;
2444 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2445 			kfree(pss);
2446 			return false;
2447 		}
2448 
2449 		kfree(pss);
2450 	}
2451 
2452 	return true;
2453 }
2454 
2455 static bool __init intel_pstate_no_acpi_pcch(void)
2456 {
2457 	acpi_status status;
2458 	acpi_handle handle;
2459 
2460 	status = acpi_get_handle(NULL, "\\_SB", &handle);
2461 	if (ACPI_FAILURE(status))
2462 		return true;
2463 
2464 	return !acpi_has_method(handle, "PCCH");
2465 }
2466 
2467 static bool __init intel_pstate_has_acpi_ppc(void)
2468 {
2469 	int i;
2470 
2471 	for_each_possible_cpu(i) {
2472 		struct acpi_processor *pr = per_cpu(processors, i);
2473 
2474 		if (!pr)
2475 			continue;
2476 		if (acpi_has_method(pr->handle, "_PPC"))
2477 			return true;
2478 	}
2479 	return false;
2480 }
2481 
2482 enum {
2483 	PSS,
2484 	PPC,
2485 };
2486 
2487 /* Hardware vendor-specific info that has its own power management modes */
2488 static struct acpi_platform_list plat_info[] __initdata = {
2489 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2490 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2491 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2492 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2493 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2494 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2495 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2496 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2497 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2498 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2499 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2500 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2501 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2502 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2503 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2504 	{ } /* End */
2505 };
2506 
2507 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2508 {
2509 	const struct x86_cpu_id *id;
2510 	u64 misc_pwr;
2511 	int idx;
2512 
2513 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2514 	if (id) {
2515 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2516 		if ( misc_pwr & (1 << 8))
2517 			return true;
2518 	}
2519 
2520 	idx = acpi_match_platform_list(plat_info);
2521 	if (idx < 0)
2522 		return false;
2523 
2524 	switch (plat_info[idx].data) {
2525 	case PSS:
2526 		if (!intel_pstate_no_acpi_pss())
2527 			return false;
2528 
2529 		return intel_pstate_no_acpi_pcch();
2530 	case PPC:
2531 		return intel_pstate_has_acpi_ppc() && !force_load;
2532 	}
2533 
2534 	return false;
2535 }
2536 
2537 static void intel_pstate_request_control_from_smm(void)
2538 {
2539 	/*
2540 	 * It may be unsafe to request P-states control from SMM if _PPC support
2541 	 * has not been enabled.
2542 	 */
2543 	if (acpi_ppc)
2544 		acpi_processor_pstate_control();
2545 }
2546 #else /* CONFIG_ACPI not enabled */
2547 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2548 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2549 static inline void intel_pstate_request_control_from_smm(void) {}
2550 #endif /* CONFIG_ACPI */
2551 
2552 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2553 
2554 #define ICPU_HWP(model, hwp_mode) \
2555 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2556 
2557 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2558 	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2559 	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2560 	ICPU_HWP(X86_MODEL_ANY, 0),
2561 	{}
2562 };
2563 
2564 static int __init intel_pstate_init(void)
2565 {
2566 	const struct x86_cpu_id *id;
2567 	int rc;
2568 
2569 	if (no_load)
2570 		return -ENODEV;
2571 
2572 	id = x86_match_cpu(hwp_support_ids);
2573 	if (id) {
2574 		copy_cpu_funcs(&core_funcs);
2575 		if (!no_hwp) {
2576 			hwp_active++;
2577 			hwp_mode_bdw = id->driver_data;
2578 			intel_pstate.attr = hwp_cpufreq_attrs;
2579 			goto hwp_cpu_matched;
2580 		}
2581 	} else {
2582 		id = x86_match_cpu(intel_pstate_cpu_ids);
2583 		if (!id)
2584 			return -ENODEV;
2585 
2586 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2587 	}
2588 
2589 	if (intel_pstate_msrs_not_valid())
2590 		return -ENODEV;
2591 
2592 hwp_cpu_matched:
2593 	/*
2594 	 * The Intel pstate driver will be ignored if the platform
2595 	 * firmware has its own power management modes.
2596 	 */
2597 	if (intel_pstate_platform_pwr_mgmt_exists())
2598 		return -ENODEV;
2599 
2600 	if (!hwp_active && hwp_only)
2601 		return -ENOTSUPP;
2602 
2603 	pr_info("Intel P-state driver initializing\n");
2604 
2605 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2606 	if (!all_cpu_data)
2607 		return -ENOMEM;
2608 
2609 	intel_pstate_request_control_from_smm();
2610 
2611 	intel_pstate_sysfs_expose_params();
2612 
2613 	mutex_lock(&intel_pstate_driver_lock);
2614 	rc = intel_pstate_register_driver(default_driver);
2615 	mutex_unlock(&intel_pstate_driver_lock);
2616 	if (rc)
2617 		return rc;
2618 
2619 	if (hwp_active)
2620 		pr_info("HWP enabled\n");
2621 
2622 	return 0;
2623 }
2624 device_initcall(intel_pstate_init);
2625 
2626 static int __init intel_pstate_setup(char *str)
2627 {
2628 	if (!str)
2629 		return -EINVAL;
2630 
2631 	if (!strcmp(str, "disable")) {
2632 		no_load = 1;
2633 	} else if (!strcmp(str, "passive")) {
2634 		pr_info("Passive mode enabled\n");
2635 		default_driver = &intel_cpufreq;
2636 		no_hwp = 1;
2637 	}
2638 	if (!strcmp(str, "no_hwp")) {
2639 		pr_info("HWP disabled\n");
2640 		no_hwp = 1;
2641 	}
2642 	if (!strcmp(str, "force"))
2643 		force_load = 1;
2644 	if (!strcmp(str, "hwp_only"))
2645 		hwp_only = 1;
2646 	if (!strcmp(str, "per_cpu_perf_limits"))
2647 		per_cpu_limits = true;
2648 
2649 #ifdef CONFIG_ACPI
2650 	if (!strcmp(str, "support_acpi_ppc"))
2651 		acpi_ppc = true;
2652 #endif
2653 
2654 	return 0;
2655 }
2656 early_param("intel_pstate", intel_pstate_setup);
2657 
2658 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2659 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2660 MODULE_LICENSE("GPL");
2661