xref: /linux/drivers/cpufreq/intel_pstate.c (revision be10afcd2274d263fed8f74c6fc59ef71265e7d5)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30 
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 
35 #define SAMPLE_COUNT		3
36 
37 #define BYT_RATIOS		0x66a
38 #define BYT_VIDS		0x66b
39 #define BYT_TURBO_RATIOS	0x66c
40 
41 
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45 
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50 
51 static inline int32_t div_fp(int32_t x, int32_t y)
52 {
53 	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
54 }
55 
56 struct sample {
57 	int32_t core_pct_busy;
58 	u64 aperf;
59 	u64 mperf;
60 	unsigned long long tsc;
61 	int freq;
62 };
63 
64 struct pstate_data {
65 	int	current_pstate;
66 	int	min_pstate;
67 	int	max_pstate;
68 	int	turbo_pstate;
69 };
70 
71 struct vid_data {
72 	int32_t min;
73 	int32_t max;
74 	int32_t ratio;
75 };
76 
77 struct _pid {
78 	int setpoint;
79 	int32_t integral;
80 	int32_t p_gain;
81 	int32_t i_gain;
82 	int32_t d_gain;
83 	int deadband;
84 	int32_t last_err;
85 };
86 
87 struct cpudata {
88 	int cpu;
89 
90 	char name[64];
91 
92 	struct timer_list timer;
93 
94 	struct pstate_data pstate;
95 	struct vid_data vid;
96 	struct _pid pid;
97 
98 	u64	prev_aperf;
99 	u64	prev_mperf;
100 	unsigned long long prev_tsc;
101 	int	sample_ptr;
102 	struct sample samples[SAMPLE_COUNT];
103 };
104 
105 static struct cpudata **all_cpu_data;
106 struct pstate_adjust_policy {
107 	int sample_rate_ms;
108 	int deadband;
109 	int setpoint;
110 	int p_gain_pct;
111 	int d_gain_pct;
112 	int i_gain_pct;
113 };
114 
115 struct pstate_funcs {
116 	int (*get_max)(void);
117 	int (*get_min)(void);
118 	int (*get_turbo)(void);
119 	void (*set)(struct cpudata*, int pstate);
120 	void (*get_vid)(struct cpudata *);
121 };
122 
123 struct cpu_defaults {
124 	struct pstate_adjust_policy pid_policy;
125 	struct pstate_funcs funcs;
126 };
127 
128 static struct pstate_adjust_policy pid_params;
129 static struct pstate_funcs pstate_funcs;
130 
131 struct perf_limits {
132 	int no_turbo;
133 	int max_perf_pct;
134 	int min_perf_pct;
135 	int32_t max_perf;
136 	int32_t min_perf;
137 	int max_policy_pct;
138 	int max_sysfs_pct;
139 };
140 
141 static struct perf_limits limits = {
142 	.no_turbo = 0,
143 	.max_perf_pct = 100,
144 	.max_perf = int_tofp(1),
145 	.min_perf_pct = 0,
146 	.min_perf = 0,
147 	.max_policy_pct = 100,
148 	.max_sysfs_pct = 100,
149 };
150 
151 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
152 			int deadband, int integral) {
153 	pid->setpoint = setpoint;
154 	pid->deadband  = deadband;
155 	pid->integral  = int_tofp(integral);
156 	pid->last_err  = setpoint - busy;
157 }
158 
159 static inline void pid_p_gain_set(struct _pid *pid, int percent)
160 {
161 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
162 }
163 
164 static inline void pid_i_gain_set(struct _pid *pid, int percent)
165 {
166 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
167 }
168 
169 static inline void pid_d_gain_set(struct _pid *pid, int percent)
170 {
171 
172 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
173 }
174 
175 static signed int pid_calc(struct _pid *pid, int32_t busy)
176 {
177 	signed int result;
178 	int32_t pterm, dterm, fp_error;
179 	int32_t integral_limit;
180 
181 	fp_error = int_tofp(pid->setpoint) - busy;
182 
183 	if (abs(fp_error) <= int_tofp(pid->deadband))
184 		return 0;
185 
186 	pterm = mul_fp(pid->p_gain, fp_error);
187 
188 	pid->integral += fp_error;
189 
190 	/* limit the integral term */
191 	integral_limit = int_tofp(30);
192 	if (pid->integral > integral_limit)
193 		pid->integral = integral_limit;
194 	if (pid->integral < -integral_limit)
195 		pid->integral = -integral_limit;
196 
197 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
198 	pid->last_err = fp_error;
199 
200 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
201 
202 	return (signed int)fp_toint(result);
203 }
204 
205 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
206 {
207 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
208 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
209 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
210 
211 	pid_reset(&cpu->pid,
212 		pid_params.setpoint,
213 		100,
214 		pid_params.deadband,
215 		0);
216 }
217 
218 static inline void intel_pstate_reset_all_pid(void)
219 {
220 	unsigned int cpu;
221 	for_each_online_cpu(cpu) {
222 		if (all_cpu_data[cpu])
223 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
224 	}
225 }
226 
227 /************************** debugfs begin ************************/
228 static int pid_param_set(void *data, u64 val)
229 {
230 	*(u32 *)data = val;
231 	intel_pstate_reset_all_pid();
232 	return 0;
233 }
234 static int pid_param_get(void *data, u64 *val)
235 {
236 	*val = *(u32 *)data;
237 	return 0;
238 }
239 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
240 			pid_param_set, "%llu\n");
241 
242 struct pid_param {
243 	char *name;
244 	void *value;
245 };
246 
247 static struct pid_param pid_files[] = {
248 	{"sample_rate_ms", &pid_params.sample_rate_ms},
249 	{"d_gain_pct", &pid_params.d_gain_pct},
250 	{"i_gain_pct", &pid_params.i_gain_pct},
251 	{"deadband", &pid_params.deadband},
252 	{"setpoint", &pid_params.setpoint},
253 	{"p_gain_pct", &pid_params.p_gain_pct},
254 	{NULL, NULL}
255 };
256 
257 static struct dentry *debugfs_parent;
258 static void intel_pstate_debug_expose_params(void)
259 {
260 	int i = 0;
261 
262 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
263 	if (IS_ERR_OR_NULL(debugfs_parent))
264 		return;
265 	while (pid_files[i].name) {
266 		debugfs_create_file(pid_files[i].name, 0660,
267 				debugfs_parent, pid_files[i].value,
268 				&fops_pid_param);
269 		i++;
270 	}
271 }
272 
273 /************************** debugfs end ************************/
274 
275 /************************** sysfs begin ************************/
276 #define show_one(file_name, object)					\
277 	static ssize_t show_##file_name					\
278 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
279 	{								\
280 		return sprintf(buf, "%u\n", limits.object);		\
281 	}
282 
283 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
284 				const char *buf, size_t count)
285 {
286 	unsigned int input;
287 	int ret;
288 	ret = sscanf(buf, "%u", &input);
289 	if (ret != 1)
290 		return -EINVAL;
291 	limits.no_turbo = clamp_t(int, input, 0 , 1);
292 
293 	return count;
294 }
295 
296 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
297 				const char *buf, size_t count)
298 {
299 	unsigned int input;
300 	int ret;
301 	ret = sscanf(buf, "%u", &input);
302 	if (ret != 1)
303 		return -EINVAL;
304 
305 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
306 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
307 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
308 	return count;
309 }
310 
311 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
312 				const char *buf, size_t count)
313 {
314 	unsigned int input;
315 	int ret;
316 	ret = sscanf(buf, "%u", &input);
317 	if (ret != 1)
318 		return -EINVAL;
319 	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
320 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
321 
322 	return count;
323 }
324 
325 show_one(no_turbo, no_turbo);
326 show_one(max_perf_pct, max_perf_pct);
327 show_one(min_perf_pct, min_perf_pct);
328 
329 define_one_global_rw(no_turbo);
330 define_one_global_rw(max_perf_pct);
331 define_one_global_rw(min_perf_pct);
332 
333 static struct attribute *intel_pstate_attributes[] = {
334 	&no_turbo.attr,
335 	&max_perf_pct.attr,
336 	&min_perf_pct.attr,
337 	NULL
338 };
339 
340 static struct attribute_group intel_pstate_attr_group = {
341 	.attrs = intel_pstate_attributes,
342 };
343 static struct kobject *intel_pstate_kobject;
344 
345 static void intel_pstate_sysfs_expose_params(void)
346 {
347 	int rc;
348 
349 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
350 						&cpu_subsys.dev_root->kobj);
351 	BUG_ON(!intel_pstate_kobject);
352 	rc = sysfs_create_group(intel_pstate_kobject,
353 				&intel_pstate_attr_group);
354 	BUG_ON(rc);
355 }
356 
357 /************************** sysfs end ************************/
358 static int byt_get_min_pstate(void)
359 {
360 	u64 value;
361 	rdmsrl(BYT_RATIOS, value);
362 	return (value >> 8) & 0xFF;
363 }
364 
365 static int byt_get_max_pstate(void)
366 {
367 	u64 value;
368 	rdmsrl(BYT_RATIOS, value);
369 	return (value >> 16) & 0xFF;
370 }
371 
372 static int byt_get_turbo_pstate(void)
373 {
374 	u64 value;
375 	rdmsrl(BYT_TURBO_RATIOS, value);
376 	return value & 0x3F;
377 }
378 
379 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
380 {
381 	u64 val;
382 	int32_t vid_fp;
383 	u32 vid;
384 
385 	val = pstate << 8;
386 	if (limits.no_turbo)
387 		val |= (u64)1 << 32;
388 
389 	vid_fp = cpudata->vid.min + mul_fp(
390 		int_tofp(pstate - cpudata->pstate.min_pstate),
391 		cpudata->vid.ratio);
392 
393 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
394 	vid = fp_toint(vid_fp);
395 
396 	val |= vid;
397 
398 	wrmsrl(MSR_IA32_PERF_CTL, val);
399 }
400 
401 static void byt_get_vid(struct cpudata *cpudata)
402 {
403 	u64 value;
404 
405 	rdmsrl(BYT_VIDS, value);
406 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
407 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
408 	cpudata->vid.ratio = div_fp(
409 		cpudata->vid.max - cpudata->vid.min,
410 		int_tofp(cpudata->pstate.max_pstate -
411 			cpudata->pstate.min_pstate));
412 }
413 
414 
415 static int core_get_min_pstate(void)
416 {
417 	u64 value;
418 	rdmsrl(MSR_PLATFORM_INFO, value);
419 	return (value >> 40) & 0xFF;
420 }
421 
422 static int core_get_max_pstate(void)
423 {
424 	u64 value;
425 	rdmsrl(MSR_PLATFORM_INFO, value);
426 	return (value >> 8) & 0xFF;
427 }
428 
429 static int core_get_turbo_pstate(void)
430 {
431 	u64 value;
432 	int nont, ret;
433 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
434 	nont = core_get_max_pstate();
435 	ret = ((value) & 255);
436 	if (ret <= nont)
437 		ret = nont;
438 	return ret;
439 }
440 
441 static void core_set_pstate(struct cpudata *cpudata, int pstate)
442 {
443 	u64 val;
444 
445 	val = pstate << 8;
446 	if (limits.no_turbo)
447 		val |= (u64)1 << 32;
448 
449 	wrmsrl(MSR_IA32_PERF_CTL, val);
450 }
451 
452 static struct cpu_defaults core_params = {
453 	.pid_policy = {
454 		.sample_rate_ms = 10,
455 		.deadband = 0,
456 		.setpoint = 97,
457 		.p_gain_pct = 20,
458 		.d_gain_pct = 0,
459 		.i_gain_pct = 0,
460 	},
461 	.funcs = {
462 		.get_max = core_get_max_pstate,
463 		.get_min = core_get_min_pstate,
464 		.get_turbo = core_get_turbo_pstate,
465 		.set = core_set_pstate,
466 	},
467 };
468 
469 static struct cpu_defaults byt_params = {
470 	.pid_policy = {
471 		.sample_rate_ms = 10,
472 		.deadband = 0,
473 		.setpoint = 97,
474 		.p_gain_pct = 14,
475 		.d_gain_pct = 0,
476 		.i_gain_pct = 4,
477 	},
478 	.funcs = {
479 		.get_max = byt_get_max_pstate,
480 		.get_min = byt_get_min_pstate,
481 		.get_turbo = byt_get_turbo_pstate,
482 		.set = byt_set_pstate,
483 		.get_vid = byt_get_vid,
484 	},
485 };
486 
487 
488 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
489 {
490 	int max_perf = cpu->pstate.turbo_pstate;
491 	int max_perf_adj;
492 	int min_perf;
493 	if (limits.no_turbo)
494 		max_perf = cpu->pstate.max_pstate;
495 
496 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
497 	*max = clamp_t(int, max_perf_adj,
498 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
499 
500 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
501 	*min = clamp_t(int, min_perf,
502 			cpu->pstate.min_pstate, max_perf);
503 }
504 
505 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
506 {
507 	int max_perf, min_perf;
508 
509 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
510 
511 	pstate = clamp_t(int, pstate, min_perf, max_perf);
512 
513 	if (pstate == cpu->pstate.current_pstate)
514 		return;
515 
516 	trace_cpu_frequency(pstate * 100000, cpu->cpu);
517 
518 	cpu->pstate.current_pstate = pstate;
519 
520 	pstate_funcs.set(cpu, pstate);
521 }
522 
523 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
524 {
525 	int target;
526 	target = cpu->pstate.current_pstate + steps;
527 
528 	intel_pstate_set_pstate(cpu, target);
529 }
530 
531 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
532 {
533 	int target;
534 	target = cpu->pstate.current_pstate - steps;
535 	intel_pstate_set_pstate(cpu, target);
536 }
537 
538 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
539 {
540 	sprintf(cpu->name, "Intel 2nd generation core");
541 
542 	cpu->pstate.min_pstate = pstate_funcs.get_min();
543 	cpu->pstate.max_pstate = pstate_funcs.get_max();
544 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
545 
546 	if (pstate_funcs.get_vid)
547 		pstate_funcs.get_vid(cpu);
548 
549 	/*
550 	 * goto max pstate so we don't slow up boot if we are built-in if we are
551 	 * a module we will take care of it during normal operation
552 	 */
553 	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
554 }
555 
556 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
557 					struct sample *sample)
558 {
559 	u64 core_pct;
560 	u64 c0_pct;
561 
562 	core_pct = div64_u64(sample->aperf * 100, sample->mperf);
563 
564 	c0_pct = div64_u64(sample->mperf * 100, sample->tsc);
565 	sample->freq = fp_toint(
566 		mul_fp(int_tofp(cpu->pstate.max_pstate),
567 			int_tofp(core_pct * 1000)));
568 
569 	sample->core_pct_busy = mul_fp(int_tofp(core_pct),
570 				div_fp(int_tofp(c0_pct + 1), int_tofp(100)));
571 }
572 
573 static inline void intel_pstate_sample(struct cpudata *cpu)
574 {
575 	u64 aperf, mperf;
576 	unsigned long long tsc;
577 
578 	rdmsrl(MSR_IA32_APERF, aperf);
579 	rdmsrl(MSR_IA32_MPERF, mperf);
580 	tsc = native_read_tsc();
581 
582 	cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
583 	cpu->samples[cpu->sample_ptr].aperf = aperf;
584 	cpu->samples[cpu->sample_ptr].mperf = mperf;
585 	cpu->samples[cpu->sample_ptr].tsc = tsc;
586 	cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
587 	cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
588 	cpu->samples[cpu->sample_ptr].tsc -= cpu->prev_tsc;
589 
590 	intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
591 
592 	cpu->prev_aperf = aperf;
593 	cpu->prev_mperf = mperf;
594 	cpu->prev_tsc = tsc;
595 }
596 
597 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
598 {
599 	int sample_time, delay;
600 
601 	sample_time = pid_params.sample_rate_ms;
602 	delay = msecs_to_jiffies(sample_time);
603 	mod_timer_pinned(&cpu->timer, jiffies + delay);
604 }
605 
606 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
607 {
608 	int32_t core_busy, max_pstate, current_pstate;
609 
610 	core_busy = cpu->samples[cpu->sample_ptr].core_pct_busy;
611 	max_pstate = int_tofp(cpu->pstate.max_pstate);
612 	current_pstate = int_tofp(cpu->pstate.current_pstate);
613 	return mul_fp(core_busy, div_fp(max_pstate, current_pstate));
614 }
615 
616 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
617 {
618 	int32_t busy_scaled;
619 	struct _pid *pid;
620 	signed int ctl = 0;
621 	int steps;
622 
623 	pid = &cpu->pid;
624 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
625 
626 	ctl = pid_calc(pid, busy_scaled);
627 
628 	steps = abs(ctl);
629 
630 	if (ctl < 0)
631 		intel_pstate_pstate_increase(cpu, steps);
632 	else
633 		intel_pstate_pstate_decrease(cpu, steps);
634 }
635 
636 static void intel_pstate_timer_func(unsigned long __data)
637 {
638 	struct cpudata *cpu = (struct cpudata *) __data;
639 	struct sample *sample;
640 
641 	intel_pstate_sample(cpu);
642 
643 	sample = &cpu->samples[cpu->sample_ptr];
644 
645 	intel_pstate_adjust_busy_pstate(cpu);
646 
647 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
648 			fp_toint(intel_pstate_get_scaled_busy(cpu)),
649 			cpu->pstate.current_pstate,
650 			sample->mperf,
651 			sample->aperf,
652 			sample->freq);
653 
654 	intel_pstate_set_sample_time(cpu);
655 }
656 
657 #define ICPU(model, policy) \
658 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
659 			(unsigned long)&policy }
660 
661 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
662 	ICPU(0x2a, core_params),
663 	ICPU(0x2d, core_params),
664 	ICPU(0x37, byt_params),
665 	ICPU(0x3a, core_params),
666 	ICPU(0x3c, core_params),
667 	ICPU(0x3e, core_params),
668 	ICPU(0x3f, core_params),
669 	ICPU(0x45, core_params),
670 	ICPU(0x46, core_params),
671 	{}
672 };
673 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
674 
675 static int intel_pstate_init_cpu(unsigned int cpunum)
676 {
677 
678 	const struct x86_cpu_id *id;
679 	struct cpudata *cpu;
680 
681 	id = x86_match_cpu(intel_pstate_cpu_ids);
682 	if (!id)
683 		return -ENODEV;
684 
685 	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
686 	if (!all_cpu_data[cpunum])
687 		return -ENOMEM;
688 
689 	cpu = all_cpu_data[cpunum];
690 
691 	intel_pstate_get_cpu_pstates(cpu);
692 	if (!cpu->pstate.current_pstate) {
693 		all_cpu_data[cpunum] = NULL;
694 		kfree(cpu);
695 		return -ENODATA;
696 	}
697 
698 	cpu->cpu = cpunum;
699 
700 	init_timer_deferrable(&cpu->timer);
701 	cpu->timer.function = intel_pstate_timer_func;
702 	cpu->timer.data =
703 		(unsigned long)cpu;
704 	cpu->timer.expires = jiffies + HZ/100;
705 	intel_pstate_busy_pid_reset(cpu);
706 	intel_pstate_sample(cpu);
707 	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
708 
709 	add_timer_on(&cpu->timer, cpunum);
710 
711 	pr_info("Intel pstate controlling: cpu %d\n", cpunum);
712 
713 	return 0;
714 }
715 
716 static unsigned int intel_pstate_get(unsigned int cpu_num)
717 {
718 	struct sample *sample;
719 	struct cpudata *cpu;
720 
721 	cpu = all_cpu_data[cpu_num];
722 	if (!cpu)
723 		return 0;
724 	sample = &cpu->samples[cpu->sample_ptr];
725 	return sample->freq;
726 }
727 
728 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
729 {
730 	struct cpudata *cpu;
731 
732 	cpu = all_cpu_data[policy->cpu];
733 
734 	if (!policy->cpuinfo.max_freq)
735 		return -ENODEV;
736 
737 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
738 		limits.min_perf_pct = 100;
739 		limits.min_perf = int_tofp(1);
740 		limits.max_perf_pct = 100;
741 		limits.max_perf = int_tofp(1);
742 		limits.no_turbo = 0;
743 		return 0;
744 	}
745 	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
746 	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
747 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
748 
749 	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
750 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
751 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
752 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
753 
754 	return 0;
755 }
756 
757 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
758 {
759 	cpufreq_verify_within_cpu_limits(policy);
760 
761 	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
762 		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
763 		return -EINVAL;
764 
765 	return 0;
766 }
767 
768 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
769 {
770 	int cpu = policy->cpu;
771 
772 	del_timer(&all_cpu_data[cpu]->timer);
773 	kfree(all_cpu_data[cpu]);
774 	all_cpu_data[cpu] = NULL;
775 	return 0;
776 }
777 
778 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
779 {
780 	struct cpudata *cpu;
781 	int rc;
782 
783 	rc = intel_pstate_init_cpu(policy->cpu);
784 	if (rc)
785 		return rc;
786 
787 	cpu = all_cpu_data[policy->cpu];
788 
789 	if (!limits.no_turbo &&
790 		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
791 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
792 	else
793 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
794 
795 	policy->min = cpu->pstate.min_pstate * 100000;
796 	policy->max = cpu->pstate.turbo_pstate * 100000;
797 
798 	/* cpuinfo and default policy values */
799 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
800 	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
801 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
802 	cpumask_set_cpu(policy->cpu, policy->cpus);
803 
804 	return 0;
805 }
806 
807 static struct cpufreq_driver intel_pstate_driver = {
808 	.flags		= CPUFREQ_CONST_LOOPS,
809 	.verify		= intel_pstate_verify_policy,
810 	.setpolicy	= intel_pstate_set_policy,
811 	.get		= intel_pstate_get,
812 	.init		= intel_pstate_cpu_init,
813 	.exit		= intel_pstate_cpu_exit,
814 	.name		= "intel_pstate",
815 };
816 
817 static int __initdata no_load;
818 
819 static int intel_pstate_msrs_not_valid(void)
820 {
821 	/* Check that all the msr's we are using are valid. */
822 	u64 aperf, mperf, tmp;
823 
824 	rdmsrl(MSR_IA32_APERF, aperf);
825 	rdmsrl(MSR_IA32_MPERF, mperf);
826 
827 	if (!pstate_funcs.get_max() ||
828 		!pstate_funcs.get_min() ||
829 		!pstate_funcs.get_turbo())
830 		return -ENODEV;
831 
832 	rdmsrl(MSR_IA32_APERF, tmp);
833 	if (!(tmp - aperf))
834 		return -ENODEV;
835 
836 	rdmsrl(MSR_IA32_MPERF, tmp);
837 	if (!(tmp - mperf))
838 		return -ENODEV;
839 
840 	return 0;
841 }
842 
843 static void copy_pid_params(struct pstate_adjust_policy *policy)
844 {
845 	pid_params.sample_rate_ms = policy->sample_rate_ms;
846 	pid_params.p_gain_pct = policy->p_gain_pct;
847 	pid_params.i_gain_pct = policy->i_gain_pct;
848 	pid_params.d_gain_pct = policy->d_gain_pct;
849 	pid_params.deadband = policy->deadband;
850 	pid_params.setpoint = policy->setpoint;
851 }
852 
853 static void copy_cpu_funcs(struct pstate_funcs *funcs)
854 {
855 	pstate_funcs.get_max   = funcs->get_max;
856 	pstate_funcs.get_min   = funcs->get_min;
857 	pstate_funcs.get_turbo = funcs->get_turbo;
858 	pstate_funcs.set       = funcs->set;
859 	pstate_funcs.get_vid   = funcs->get_vid;
860 }
861 
862 #if IS_ENABLED(CONFIG_ACPI)
863 #include <acpi/processor.h>
864 
865 static bool intel_pstate_no_acpi_pss(void)
866 {
867 	int i;
868 
869 	for_each_possible_cpu(i) {
870 		acpi_status status;
871 		union acpi_object *pss;
872 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
873 		struct acpi_processor *pr = per_cpu(processors, i);
874 
875 		if (!pr)
876 			continue;
877 
878 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
879 		if (ACPI_FAILURE(status))
880 			continue;
881 
882 		pss = buffer.pointer;
883 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
884 			kfree(pss);
885 			return false;
886 		}
887 
888 		kfree(pss);
889 	}
890 
891 	return true;
892 }
893 
894 struct hw_vendor_info {
895 	u16  valid;
896 	char oem_id[ACPI_OEM_ID_SIZE];
897 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
898 };
899 
900 /* Hardware vendor-specific info that has its own power management modes */
901 static struct hw_vendor_info vendor_info[] = {
902 	{1, "HP    ", "ProLiant"},
903 	{0, "", ""},
904 };
905 
906 static bool intel_pstate_platform_pwr_mgmt_exists(void)
907 {
908 	struct acpi_table_header hdr;
909 	struct hw_vendor_info *v_info;
910 
911 	if (acpi_disabled
912 	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
913 		return false;
914 
915 	for (v_info = vendor_info; v_info->valid; v_info++) {
916 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
917 		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
918 		    && intel_pstate_no_acpi_pss())
919 			return true;
920 	}
921 
922 	return false;
923 }
924 #else /* CONFIG_ACPI not enabled */
925 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
926 #endif /* CONFIG_ACPI */
927 
928 static int __init intel_pstate_init(void)
929 {
930 	int cpu, rc = 0;
931 	const struct x86_cpu_id *id;
932 	struct cpu_defaults *cpu_info;
933 
934 	if (no_load)
935 		return -ENODEV;
936 
937 	id = x86_match_cpu(intel_pstate_cpu_ids);
938 	if (!id)
939 		return -ENODEV;
940 
941 	/*
942 	 * The Intel pstate driver will be ignored if the platform
943 	 * firmware has its own power management modes.
944 	 */
945 	if (intel_pstate_platform_pwr_mgmt_exists())
946 		return -ENODEV;
947 
948 	cpu_info = (struct cpu_defaults *)id->driver_data;
949 
950 	copy_pid_params(&cpu_info->pid_policy);
951 	copy_cpu_funcs(&cpu_info->funcs);
952 
953 	if (intel_pstate_msrs_not_valid())
954 		return -ENODEV;
955 
956 	pr_info("Intel P-state driver initializing.\n");
957 
958 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
959 	if (!all_cpu_data)
960 		return -ENOMEM;
961 
962 	rc = cpufreq_register_driver(&intel_pstate_driver);
963 	if (rc)
964 		goto out;
965 
966 	intel_pstate_debug_expose_params();
967 	intel_pstate_sysfs_expose_params();
968 
969 	return rc;
970 out:
971 	get_online_cpus();
972 	for_each_online_cpu(cpu) {
973 		if (all_cpu_data[cpu]) {
974 			del_timer_sync(&all_cpu_data[cpu]->timer);
975 			kfree(all_cpu_data[cpu]);
976 		}
977 	}
978 
979 	put_online_cpus();
980 	vfree(all_cpu_data);
981 	return -ENODEV;
982 }
983 device_initcall(intel_pstate_init);
984 
985 static int __init intel_pstate_setup(char *str)
986 {
987 	if (!str)
988 		return -EINVAL;
989 
990 	if (!strcmp(str, "disable"))
991 		no_load = 1;
992 	return 0;
993 }
994 early_param("intel_pstate", intel_pstate_setup);
995 
996 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
997 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
998 MODULE_LICENSE("GPL");
999