xref: /linux/drivers/cpufreq/intel_pstate.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31 
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36 
37 #define ATOM_RATIOS		0x66a
38 #define ATOM_VIDS		0x66b
39 #define ATOM_TURBO_RATIOS	0x66c
40 #define ATOM_TURBO_VIDS		0x66d
41 
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45 
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50 
51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53 	return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55 
56 static inline int ceiling_fp(int32_t x)
57 {
58 	int mask, ret;
59 
60 	ret = fp_toint(x);
61 	mask = (1 << FRAC_BITS) - 1;
62 	if (x & mask)
63 		ret += 1;
64 	return ret;
65 }
66 
67 struct sample {
68 	int32_t core_pct_busy;
69 	int32_t busy_scaled;
70 	u64 aperf;
71 	u64 mperf;
72 	u64 tsc;
73 	int freq;
74 	ktime_t time;
75 };
76 
77 struct pstate_data {
78 	int	current_pstate;
79 	int	min_pstate;
80 	int	max_pstate;
81 	int	max_pstate_physical;
82 	int	scaling;
83 	int	turbo_pstate;
84 };
85 
86 struct vid_data {
87 	int min;
88 	int max;
89 	int turbo;
90 	int32_t ratio;
91 };
92 
93 struct _pid {
94 	int setpoint;
95 	int32_t integral;
96 	int32_t p_gain;
97 	int32_t i_gain;
98 	int32_t d_gain;
99 	int deadband;
100 	int32_t last_err;
101 };
102 
103 struct cpudata {
104 	int cpu;
105 
106 	struct timer_list timer;
107 
108 	struct pstate_data pstate;
109 	struct vid_data vid;
110 	struct _pid pid;
111 
112 	ktime_t last_sample_time;
113 	u64	prev_aperf;
114 	u64	prev_mperf;
115 	u64	prev_tsc;
116 	u64	prev_cummulative_iowait;
117 	struct sample sample;
118 };
119 
120 static struct cpudata **all_cpu_data;
121 struct pstate_adjust_policy {
122 	int sample_rate_ms;
123 	int deadband;
124 	int setpoint;
125 	int p_gain_pct;
126 	int d_gain_pct;
127 	int i_gain_pct;
128 };
129 
130 struct pstate_funcs {
131 	int (*get_max)(void);
132 	int (*get_max_physical)(void);
133 	int (*get_min)(void);
134 	int (*get_turbo)(void);
135 	int (*get_scaling)(void);
136 	void (*set)(struct cpudata*, int pstate);
137 	void (*get_vid)(struct cpudata *);
138 	int32_t (*get_target_pstate)(struct cpudata *);
139 };
140 
141 struct cpu_defaults {
142 	struct pstate_adjust_policy pid_policy;
143 	struct pstate_funcs funcs;
144 };
145 
146 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
147 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
148 
149 static struct pstate_adjust_policy pid_params;
150 static struct pstate_funcs pstate_funcs;
151 static int hwp_active;
152 
153 struct perf_limits {
154 	int no_turbo;
155 	int turbo_disabled;
156 	int max_perf_pct;
157 	int min_perf_pct;
158 	int32_t max_perf;
159 	int32_t min_perf;
160 	int max_policy_pct;
161 	int max_sysfs_pct;
162 	int min_policy_pct;
163 	int min_sysfs_pct;
164 };
165 
166 static struct perf_limits performance_limits = {
167 	.no_turbo = 0,
168 	.turbo_disabled = 0,
169 	.max_perf_pct = 100,
170 	.max_perf = int_tofp(1),
171 	.min_perf_pct = 100,
172 	.min_perf = int_tofp(1),
173 	.max_policy_pct = 100,
174 	.max_sysfs_pct = 100,
175 	.min_policy_pct = 0,
176 	.min_sysfs_pct = 0,
177 };
178 
179 static struct perf_limits powersave_limits = {
180 	.no_turbo = 0,
181 	.turbo_disabled = 0,
182 	.max_perf_pct = 100,
183 	.max_perf = int_tofp(1),
184 	.min_perf_pct = 0,
185 	.min_perf = 0,
186 	.max_policy_pct = 100,
187 	.max_sysfs_pct = 100,
188 	.min_policy_pct = 0,
189 	.min_sysfs_pct = 0,
190 };
191 
192 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
193 static struct perf_limits *limits = &performance_limits;
194 #else
195 static struct perf_limits *limits = &powersave_limits;
196 #endif
197 
198 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
199 			     int deadband, int integral) {
200 	pid->setpoint = setpoint;
201 	pid->deadband  = deadband;
202 	pid->integral  = int_tofp(integral);
203 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
204 }
205 
206 static inline void pid_p_gain_set(struct _pid *pid, int percent)
207 {
208 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
209 }
210 
211 static inline void pid_i_gain_set(struct _pid *pid, int percent)
212 {
213 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
214 }
215 
216 static inline void pid_d_gain_set(struct _pid *pid, int percent)
217 {
218 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
219 }
220 
221 static signed int pid_calc(struct _pid *pid, int32_t busy)
222 {
223 	signed int result;
224 	int32_t pterm, dterm, fp_error;
225 	int32_t integral_limit;
226 
227 	fp_error = int_tofp(pid->setpoint) - busy;
228 
229 	if (abs(fp_error) <= int_tofp(pid->deadband))
230 		return 0;
231 
232 	pterm = mul_fp(pid->p_gain, fp_error);
233 
234 	pid->integral += fp_error;
235 
236 	/*
237 	 * We limit the integral here so that it will never
238 	 * get higher than 30.  This prevents it from becoming
239 	 * too large an input over long periods of time and allows
240 	 * it to get factored out sooner.
241 	 *
242 	 * The value of 30 was chosen through experimentation.
243 	 */
244 	integral_limit = int_tofp(30);
245 	if (pid->integral > integral_limit)
246 		pid->integral = integral_limit;
247 	if (pid->integral < -integral_limit)
248 		pid->integral = -integral_limit;
249 
250 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
251 	pid->last_err = fp_error;
252 
253 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
254 	result = result + (1 << (FRAC_BITS-1));
255 	return (signed int)fp_toint(result);
256 }
257 
258 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
259 {
260 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
261 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
262 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
263 
264 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
265 }
266 
267 static inline void intel_pstate_reset_all_pid(void)
268 {
269 	unsigned int cpu;
270 
271 	for_each_online_cpu(cpu) {
272 		if (all_cpu_data[cpu])
273 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
274 	}
275 }
276 
277 static inline void update_turbo_state(void)
278 {
279 	u64 misc_en;
280 	struct cpudata *cpu;
281 
282 	cpu = all_cpu_data[0];
283 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
284 	limits->turbo_disabled =
285 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
286 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
287 }
288 
289 static void intel_pstate_hwp_set(void)
290 {
291 	int min, hw_min, max, hw_max, cpu, range, adj_range;
292 	u64 value, cap;
293 
294 	rdmsrl(MSR_HWP_CAPABILITIES, cap);
295 	hw_min = HWP_LOWEST_PERF(cap);
296 	hw_max = HWP_HIGHEST_PERF(cap);
297 	range = hw_max - hw_min;
298 
299 	get_online_cpus();
300 
301 	for_each_online_cpu(cpu) {
302 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
303 		adj_range = limits->min_perf_pct * range / 100;
304 		min = hw_min + adj_range;
305 		value &= ~HWP_MIN_PERF(~0L);
306 		value |= HWP_MIN_PERF(min);
307 
308 		adj_range = limits->max_perf_pct * range / 100;
309 		max = hw_min + adj_range;
310 		if (limits->no_turbo) {
311 			hw_max = HWP_GUARANTEED_PERF(cap);
312 			if (hw_max < max)
313 				max = hw_max;
314 		}
315 
316 		value &= ~HWP_MAX_PERF(~0L);
317 		value |= HWP_MAX_PERF(max);
318 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
319 	}
320 
321 	put_online_cpus();
322 }
323 
324 /************************** debugfs begin ************************/
325 static int pid_param_set(void *data, u64 val)
326 {
327 	*(u32 *)data = val;
328 	intel_pstate_reset_all_pid();
329 	return 0;
330 }
331 
332 static int pid_param_get(void *data, u64 *val)
333 {
334 	*val = *(u32 *)data;
335 	return 0;
336 }
337 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
338 
339 struct pid_param {
340 	char *name;
341 	void *value;
342 };
343 
344 static struct pid_param pid_files[] = {
345 	{"sample_rate_ms", &pid_params.sample_rate_ms},
346 	{"d_gain_pct", &pid_params.d_gain_pct},
347 	{"i_gain_pct", &pid_params.i_gain_pct},
348 	{"deadband", &pid_params.deadband},
349 	{"setpoint", &pid_params.setpoint},
350 	{"p_gain_pct", &pid_params.p_gain_pct},
351 	{NULL, NULL}
352 };
353 
354 static void __init intel_pstate_debug_expose_params(void)
355 {
356 	struct dentry *debugfs_parent;
357 	int i = 0;
358 
359 	if (hwp_active)
360 		return;
361 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
362 	if (IS_ERR_OR_NULL(debugfs_parent))
363 		return;
364 	while (pid_files[i].name) {
365 		debugfs_create_file(pid_files[i].name, 0660,
366 				    debugfs_parent, pid_files[i].value,
367 				    &fops_pid_param);
368 		i++;
369 	}
370 }
371 
372 /************************** debugfs end ************************/
373 
374 /************************** sysfs begin ************************/
375 #define show_one(file_name, object)					\
376 	static ssize_t show_##file_name					\
377 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
378 	{								\
379 		return sprintf(buf, "%u\n", limits->object);		\
380 	}
381 
382 static ssize_t show_turbo_pct(struct kobject *kobj,
383 				struct attribute *attr, char *buf)
384 {
385 	struct cpudata *cpu;
386 	int total, no_turbo, turbo_pct;
387 	uint32_t turbo_fp;
388 
389 	cpu = all_cpu_data[0];
390 
391 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
392 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
393 	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
394 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
395 	return sprintf(buf, "%u\n", turbo_pct);
396 }
397 
398 static ssize_t show_num_pstates(struct kobject *kobj,
399 				struct attribute *attr, char *buf)
400 {
401 	struct cpudata *cpu;
402 	int total;
403 
404 	cpu = all_cpu_data[0];
405 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
406 	return sprintf(buf, "%u\n", total);
407 }
408 
409 static ssize_t show_no_turbo(struct kobject *kobj,
410 			     struct attribute *attr, char *buf)
411 {
412 	ssize_t ret;
413 
414 	update_turbo_state();
415 	if (limits->turbo_disabled)
416 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
417 	else
418 		ret = sprintf(buf, "%u\n", limits->no_turbo);
419 
420 	return ret;
421 }
422 
423 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
424 			      const char *buf, size_t count)
425 {
426 	unsigned int input;
427 	int ret;
428 
429 	ret = sscanf(buf, "%u", &input);
430 	if (ret != 1)
431 		return -EINVAL;
432 
433 	update_turbo_state();
434 	if (limits->turbo_disabled) {
435 		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
436 		return -EPERM;
437 	}
438 
439 	limits->no_turbo = clamp_t(int, input, 0, 1);
440 
441 	if (hwp_active)
442 		intel_pstate_hwp_set();
443 
444 	return count;
445 }
446 
447 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
448 				  const char *buf, size_t count)
449 {
450 	unsigned int input;
451 	int ret;
452 
453 	ret = sscanf(buf, "%u", &input);
454 	if (ret != 1)
455 		return -EINVAL;
456 
457 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
458 	limits->max_perf_pct = min(limits->max_policy_pct,
459 				   limits->max_sysfs_pct);
460 	limits->max_perf_pct = max(limits->min_policy_pct,
461 				   limits->max_perf_pct);
462 	limits->max_perf_pct = max(limits->min_perf_pct,
463 				   limits->max_perf_pct);
464 	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
465 				  int_tofp(100));
466 
467 	if (hwp_active)
468 		intel_pstate_hwp_set();
469 	return count;
470 }
471 
472 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
473 				  const char *buf, size_t count)
474 {
475 	unsigned int input;
476 	int ret;
477 
478 	ret = sscanf(buf, "%u", &input);
479 	if (ret != 1)
480 		return -EINVAL;
481 
482 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
483 	limits->min_perf_pct = max(limits->min_policy_pct,
484 				   limits->min_sysfs_pct);
485 	limits->min_perf_pct = min(limits->max_policy_pct,
486 				   limits->min_perf_pct);
487 	limits->min_perf_pct = min(limits->max_perf_pct,
488 				   limits->min_perf_pct);
489 	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
490 				  int_tofp(100));
491 
492 	if (hwp_active)
493 		intel_pstate_hwp_set();
494 	return count;
495 }
496 
497 show_one(max_perf_pct, max_perf_pct);
498 show_one(min_perf_pct, min_perf_pct);
499 
500 define_one_global_rw(no_turbo);
501 define_one_global_rw(max_perf_pct);
502 define_one_global_rw(min_perf_pct);
503 define_one_global_ro(turbo_pct);
504 define_one_global_ro(num_pstates);
505 
506 static struct attribute *intel_pstate_attributes[] = {
507 	&no_turbo.attr,
508 	&max_perf_pct.attr,
509 	&min_perf_pct.attr,
510 	&turbo_pct.attr,
511 	&num_pstates.attr,
512 	NULL
513 };
514 
515 static struct attribute_group intel_pstate_attr_group = {
516 	.attrs = intel_pstate_attributes,
517 };
518 
519 static void __init intel_pstate_sysfs_expose_params(void)
520 {
521 	struct kobject *intel_pstate_kobject;
522 	int rc;
523 
524 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
525 						&cpu_subsys.dev_root->kobj);
526 	BUG_ON(!intel_pstate_kobject);
527 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
528 	BUG_ON(rc);
529 }
530 /************************** sysfs end ************************/
531 
532 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
533 {
534 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
535 }
536 
537 static int atom_get_min_pstate(void)
538 {
539 	u64 value;
540 
541 	rdmsrl(ATOM_RATIOS, value);
542 	return (value >> 8) & 0x7F;
543 }
544 
545 static int atom_get_max_pstate(void)
546 {
547 	u64 value;
548 
549 	rdmsrl(ATOM_RATIOS, value);
550 	return (value >> 16) & 0x7F;
551 }
552 
553 static int atom_get_turbo_pstate(void)
554 {
555 	u64 value;
556 
557 	rdmsrl(ATOM_TURBO_RATIOS, value);
558 	return value & 0x7F;
559 }
560 
561 static void atom_set_pstate(struct cpudata *cpudata, int pstate)
562 {
563 	u64 val;
564 	int32_t vid_fp;
565 	u32 vid;
566 
567 	val = (u64)pstate << 8;
568 	if (limits->no_turbo && !limits->turbo_disabled)
569 		val |= (u64)1 << 32;
570 
571 	vid_fp = cpudata->vid.min + mul_fp(
572 		int_tofp(pstate - cpudata->pstate.min_pstate),
573 		cpudata->vid.ratio);
574 
575 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
576 	vid = ceiling_fp(vid_fp);
577 
578 	if (pstate > cpudata->pstate.max_pstate)
579 		vid = cpudata->vid.turbo;
580 
581 	val |= vid;
582 
583 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
584 }
585 
586 static int silvermont_get_scaling(void)
587 {
588 	u64 value;
589 	int i;
590 	/* Defined in Table 35-6 from SDM (Sept 2015) */
591 	static int silvermont_freq_table[] = {
592 		83300, 100000, 133300, 116700, 80000};
593 
594 	rdmsrl(MSR_FSB_FREQ, value);
595 	i = value & 0x7;
596 	WARN_ON(i > 4);
597 
598 	return silvermont_freq_table[i];
599 }
600 
601 static int airmont_get_scaling(void)
602 {
603 	u64 value;
604 	int i;
605 	/* Defined in Table 35-10 from SDM (Sept 2015) */
606 	static int airmont_freq_table[] = {
607 		83300, 100000, 133300, 116700, 80000,
608 		93300, 90000, 88900, 87500};
609 
610 	rdmsrl(MSR_FSB_FREQ, value);
611 	i = value & 0xF;
612 	WARN_ON(i > 8);
613 
614 	return airmont_freq_table[i];
615 }
616 
617 static void atom_get_vid(struct cpudata *cpudata)
618 {
619 	u64 value;
620 
621 	rdmsrl(ATOM_VIDS, value);
622 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
623 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
624 	cpudata->vid.ratio = div_fp(
625 		cpudata->vid.max - cpudata->vid.min,
626 		int_tofp(cpudata->pstate.max_pstate -
627 			cpudata->pstate.min_pstate));
628 
629 	rdmsrl(ATOM_TURBO_VIDS, value);
630 	cpudata->vid.turbo = value & 0x7f;
631 }
632 
633 static int core_get_min_pstate(void)
634 {
635 	u64 value;
636 
637 	rdmsrl(MSR_PLATFORM_INFO, value);
638 	return (value >> 40) & 0xFF;
639 }
640 
641 static int core_get_max_pstate_physical(void)
642 {
643 	u64 value;
644 
645 	rdmsrl(MSR_PLATFORM_INFO, value);
646 	return (value >> 8) & 0xFF;
647 }
648 
649 static int core_get_max_pstate(void)
650 {
651 	u64 tar;
652 	u64 plat_info;
653 	int max_pstate;
654 	int err;
655 
656 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
657 	max_pstate = (plat_info >> 8) & 0xFF;
658 
659 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
660 	if (!err) {
661 		/* Do some sanity checking for safety */
662 		if (plat_info & 0x600000000) {
663 			u64 tdp_ctrl;
664 			u64 tdp_ratio;
665 			int tdp_msr;
666 
667 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
668 			if (err)
669 				goto skip_tar;
670 
671 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
672 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
673 			if (err)
674 				goto skip_tar;
675 
676 			if (tdp_ratio - 1 == tar) {
677 				max_pstate = tar;
678 				pr_debug("max_pstate=TAC %x\n", max_pstate);
679 			} else {
680 				goto skip_tar;
681 			}
682 		}
683 	}
684 
685 skip_tar:
686 	return max_pstate;
687 }
688 
689 static int core_get_turbo_pstate(void)
690 {
691 	u64 value;
692 	int nont, ret;
693 
694 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
695 	nont = core_get_max_pstate();
696 	ret = (value) & 255;
697 	if (ret <= nont)
698 		ret = nont;
699 	return ret;
700 }
701 
702 static inline int core_get_scaling(void)
703 {
704 	return 100000;
705 }
706 
707 static void core_set_pstate(struct cpudata *cpudata, int pstate)
708 {
709 	u64 val;
710 
711 	val = (u64)pstate << 8;
712 	if (limits->no_turbo && !limits->turbo_disabled)
713 		val |= (u64)1 << 32;
714 
715 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
716 }
717 
718 static int knl_get_turbo_pstate(void)
719 {
720 	u64 value;
721 	int nont, ret;
722 
723 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
724 	nont = core_get_max_pstate();
725 	ret = (((value) >> 8) & 0xFF);
726 	if (ret <= nont)
727 		ret = nont;
728 	return ret;
729 }
730 
731 static struct cpu_defaults core_params = {
732 	.pid_policy = {
733 		.sample_rate_ms = 10,
734 		.deadband = 0,
735 		.setpoint = 97,
736 		.p_gain_pct = 20,
737 		.d_gain_pct = 0,
738 		.i_gain_pct = 0,
739 	},
740 	.funcs = {
741 		.get_max = core_get_max_pstate,
742 		.get_max_physical = core_get_max_pstate_physical,
743 		.get_min = core_get_min_pstate,
744 		.get_turbo = core_get_turbo_pstate,
745 		.get_scaling = core_get_scaling,
746 		.set = core_set_pstate,
747 		.get_target_pstate = get_target_pstate_use_performance,
748 	},
749 };
750 
751 static struct cpu_defaults silvermont_params = {
752 	.pid_policy = {
753 		.sample_rate_ms = 10,
754 		.deadband = 0,
755 		.setpoint = 60,
756 		.p_gain_pct = 14,
757 		.d_gain_pct = 0,
758 		.i_gain_pct = 4,
759 	},
760 	.funcs = {
761 		.get_max = atom_get_max_pstate,
762 		.get_max_physical = atom_get_max_pstate,
763 		.get_min = atom_get_min_pstate,
764 		.get_turbo = atom_get_turbo_pstate,
765 		.set = atom_set_pstate,
766 		.get_scaling = silvermont_get_scaling,
767 		.get_vid = atom_get_vid,
768 		.get_target_pstate = get_target_pstate_use_cpu_load,
769 	},
770 };
771 
772 static struct cpu_defaults airmont_params = {
773 	.pid_policy = {
774 		.sample_rate_ms = 10,
775 		.deadband = 0,
776 		.setpoint = 60,
777 		.p_gain_pct = 14,
778 		.d_gain_pct = 0,
779 		.i_gain_pct = 4,
780 	},
781 	.funcs = {
782 		.get_max = atom_get_max_pstate,
783 		.get_max_physical = atom_get_max_pstate,
784 		.get_min = atom_get_min_pstate,
785 		.get_turbo = atom_get_turbo_pstate,
786 		.set = atom_set_pstate,
787 		.get_scaling = airmont_get_scaling,
788 		.get_vid = atom_get_vid,
789 		.get_target_pstate = get_target_pstate_use_cpu_load,
790 	},
791 };
792 
793 static struct cpu_defaults knl_params = {
794 	.pid_policy = {
795 		.sample_rate_ms = 10,
796 		.deadband = 0,
797 		.setpoint = 97,
798 		.p_gain_pct = 20,
799 		.d_gain_pct = 0,
800 		.i_gain_pct = 0,
801 	},
802 	.funcs = {
803 		.get_max = core_get_max_pstate,
804 		.get_max_physical = core_get_max_pstate_physical,
805 		.get_min = core_get_min_pstate,
806 		.get_turbo = knl_get_turbo_pstate,
807 		.get_scaling = core_get_scaling,
808 		.set = core_set_pstate,
809 		.get_target_pstate = get_target_pstate_use_performance,
810 	},
811 };
812 
813 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
814 {
815 	int max_perf = cpu->pstate.turbo_pstate;
816 	int max_perf_adj;
817 	int min_perf;
818 
819 	if (limits->no_turbo || limits->turbo_disabled)
820 		max_perf = cpu->pstate.max_pstate;
821 
822 	/*
823 	 * performance can be limited by user through sysfs, by cpufreq
824 	 * policy, or by cpu specific default values determined through
825 	 * experimentation.
826 	 */
827 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
828 	*max = clamp_t(int, max_perf_adj,
829 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
830 
831 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
832 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
833 }
834 
835 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
836 {
837 	int max_perf, min_perf;
838 
839 	if (force) {
840 		update_turbo_state();
841 
842 		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
843 
844 		pstate = clamp_t(int, pstate, min_perf, max_perf);
845 
846 		if (pstate == cpu->pstate.current_pstate)
847 			return;
848 	}
849 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
850 
851 	cpu->pstate.current_pstate = pstate;
852 
853 	pstate_funcs.set(cpu, pstate);
854 }
855 
856 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
857 {
858 	cpu->pstate.min_pstate = pstate_funcs.get_min();
859 	cpu->pstate.max_pstate = pstate_funcs.get_max();
860 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
861 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
862 	cpu->pstate.scaling = pstate_funcs.get_scaling();
863 
864 	if (pstate_funcs.get_vid)
865 		pstate_funcs.get_vid(cpu);
866 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
867 }
868 
869 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
870 {
871 	struct sample *sample = &cpu->sample;
872 	int64_t core_pct;
873 
874 	core_pct = int_tofp(sample->aperf) * int_tofp(100);
875 	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
876 
877 	sample->freq = fp_toint(
878 		mul_fp(int_tofp(
879 			cpu->pstate.max_pstate_physical *
880 			cpu->pstate.scaling / 100),
881 			core_pct));
882 
883 	sample->core_pct_busy = (int32_t)core_pct;
884 }
885 
886 static inline void intel_pstate_sample(struct cpudata *cpu)
887 {
888 	u64 aperf, mperf;
889 	unsigned long flags;
890 	u64 tsc;
891 
892 	local_irq_save(flags);
893 	rdmsrl(MSR_IA32_APERF, aperf);
894 	rdmsrl(MSR_IA32_MPERF, mperf);
895 	tsc = rdtsc();
896 	if ((cpu->prev_mperf == mperf) || (cpu->prev_tsc == tsc)) {
897 		local_irq_restore(flags);
898 		return;
899 	}
900 	local_irq_restore(flags);
901 
902 	cpu->last_sample_time = cpu->sample.time;
903 	cpu->sample.time = ktime_get();
904 	cpu->sample.aperf = aperf;
905 	cpu->sample.mperf = mperf;
906 	cpu->sample.tsc =  tsc;
907 	cpu->sample.aperf -= cpu->prev_aperf;
908 	cpu->sample.mperf -= cpu->prev_mperf;
909 	cpu->sample.tsc -= cpu->prev_tsc;
910 
911 	intel_pstate_calc_busy(cpu);
912 
913 	cpu->prev_aperf = aperf;
914 	cpu->prev_mperf = mperf;
915 	cpu->prev_tsc = tsc;
916 }
917 
918 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
919 {
920 	int delay;
921 
922 	delay = msecs_to_jiffies(50);
923 	mod_timer_pinned(&cpu->timer, jiffies + delay);
924 }
925 
926 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
927 {
928 	int delay;
929 
930 	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
931 	mod_timer_pinned(&cpu->timer, jiffies + delay);
932 }
933 
934 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
935 {
936 	struct sample *sample = &cpu->sample;
937 	u64 cummulative_iowait, delta_iowait_us;
938 	u64 delta_iowait_mperf;
939 	u64 mperf, now;
940 	int32_t cpu_load;
941 
942 	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
943 
944 	/*
945 	 * Convert iowait time into number of IO cycles spent at max_freq.
946 	 * IO is considered as busy only for the cpu_load algorithm. For
947 	 * performance this is not needed since we always try to reach the
948 	 * maximum P-State, so we are already boosting the IOs.
949 	 */
950 	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
951 	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
952 		cpu->pstate.max_pstate, MSEC_PER_SEC);
953 
954 	mperf = cpu->sample.mperf + delta_iowait_mperf;
955 	cpu->prev_cummulative_iowait = cummulative_iowait;
956 
957 
958 	/*
959 	 * The load can be estimated as the ratio of the mperf counter
960 	 * running at a constant frequency during active periods
961 	 * (C0) and the time stamp counter running at the same frequency
962 	 * also during C-states.
963 	 */
964 	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
965 	cpu->sample.busy_scaled = cpu_load;
966 
967 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
968 }
969 
970 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
971 {
972 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
973 	s64 duration_us;
974 	u32 sample_time;
975 
976 	/*
977 	 * core_busy is the ratio of actual performance to max
978 	 * max_pstate is the max non turbo pstate available
979 	 * current_pstate was the pstate that was requested during
980 	 * 	the last sample period.
981 	 *
982 	 * We normalize core_busy, which was our actual percent
983 	 * performance to what we requested during the last sample
984 	 * period. The result will be a percentage of busy at a
985 	 * specified pstate.
986 	 */
987 	core_busy = cpu->sample.core_pct_busy;
988 	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
989 	current_pstate = int_tofp(cpu->pstate.current_pstate);
990 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
991 
992 	/*
993 	 * Since we have a deferred timer, it will not fire unless
994 	 * we are in C0.  So, determine if the actual elapsed time
995 	 * is significantly greater (3x) than our sample interval.  If it
996 	 * is, then we were idle for a long enough period of time
997 	 * to adjust our busyness.
998 	 */
999 	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
1000 	duration_us = ktime_us_delta(cpu->sample.time,
1001 				     cpu->last_sample_time);
1002 	if (duration_us > sample_time * 3) {
1003 		sample_ratio = div_fp(int_tofp(sample_time),
1004 				      int_tofp(duration_us));
1005 		core_busy = mul_fp(core_busy, sample_ratio);
1006 	}
1007 
1008 	cpu->sample.busy_scaled = core_busy;
1009 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1010 }
1011 
1012 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1013 {
1014 	int from, target_pstate;
1015 	struct sample *sample;
1016 
1017 	from = cpu->pstate.current_pstate;
1018 
1019 	target_pstate = pstate_funcs.get_target_pstate(cpu);
1020 
1021 	intel_pstate_set_pstate(cpu, target_pstate, true);
1022 
1023 	sample = &cpu->sample;
1024 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1025 		fp_toint(sample->busy_scaled),
1026 		from,
1027 		cpu->pstate.current_pstate,
1028 		sample->mperf,
1029 		sample->aperf,
1030 		sample->tsc,
1031 		sample->freq);
1032 }
1033 
1034 static void intel_hwp_timer_func(unsigned long __data)
1035 {
1036 	struct cpudata *cpu = (struct cpudata *) __data;
1037 
1038 	intel_pstate_sample(cpu);
1039 	intel_hwp_set_sample_time(cpu);
1040 }
1041 
1042 static void intel_pstate_timer_func(unsigned long __data)
1043 {
1044 	struct cpudata *cpu = (struct cpudata *) __data;
1045 
1046 	intel_pstate_sample(cpu);
1047 
1048 	intel_pstate_adjust_busy_pstate(cpu);
1049 
1050 	intel_pstate_set_sample_time(cpu);
1051 }
1052 
1053 #define ICPU(model, policy) \
1054 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1055 			(unsigned long)&policy }
1056 
1057 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1058 	ICPU(0x2a, core_params),
1059 	ICPU(0x2d, core_params),
1060 	ICPU(0x37, silvermont_params),
1061 	ICPU(0x3a, core_params),
1062 	ICPU(0x3c, core_params),
1063 	ICPU(0x3d, core_params),
1064 	ICPU(0x3e, core_params),
1065 	ICPU(0x3f, core_params),
1066 	ICPU(0x45, core_params),
1067 	ICPU(0x46, core_params),
1068 	ICPU(0x47, core_params),
1069 	ICPU(0x4c, airmont_params),
1070 	ICPU(0x4e, core_params),
1071 	ICPU(0x4f, core_params),
1072 	ICPU(0x5e, core_params),
1073 	ICPU(0x56, core_params),
1074 	ICPU(0x57, knl_params),
1075 	{}
1076 };
1077 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1078 
1079 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1080 	ICPU(0x56, core_params),
1081 	{}
1082 };
1083 
1084 static int intel_pstate_init_cpu(unsigned int cpunum)
1085 {
1086 	struct cpudata *cpu;
1087 
1088 	if (!all_cpu_data[cpunum])
1089 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1090 					       GFP_KERNEL);
1091 	if (!all_cpu_data[cpunum])
1092 		return -ENOMEM;
1093 
1094 	cpu = all_cpu_data[cpunum];
1095 
1096 	cpu->cpu = cpunum;
1097 
1098 	if (hwp_active)
1099 		intel_pstate_hwp_enable(cpu);
1100 
1101 	intel_pstate_get_cpu_pstates(cpu);
1102 
1103 	init_timer_deferrable(&cpu->timer);
1104 	cpu->timer.data = (unsigned long)cpu;
1105 	cpu->timer.expires = jiffies + HZ/100;
1106 
1107 	if (!hwp_active)
1108 		cpu->timer.function = intel_pstate_timer_func;
1109 	else
1110 		cpu->timer.function = intel_hwp_timer_func;
1111 
1112 	intel_pstate_busy_pid_reset(cpu);
1113 	intel_pstate_sample(cpu);
1114 
1115 	add_timer_on(&cpu->timer, cpunum);
1116 
1117 	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1118 
1119 	return 0;
1120 }
1121 
1122 static unsigned int intel_pstate_get(unsigned int cpu_num)
1123 {
1124 	struct sample *sample;
1125 	struct cpudata *cpu;
1126 
1127 	cpu = all_cpu_data[cpu_num];
1128 	if (!cpu)
1129 		return 0;
1130 	sample = &cpu->sample;
1131 	return sample->freq;
1132 }
1133 
1134 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1135 {
1136 	if (!policy->cpuinfo.max_freq)
1137 		return -ENODEV;
1138 
1139 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1140 	    policy->max >= policy->cpuinfo.max_freq) {
1141 		pr_debug("intel_pstate: set performance\n");
1142 		limits = &performance_limits;
1143 		if (hwp_active)
1144 			intel_pstate_hwp_set();
1145 		return 0;
1146 	}
1147 
1148 	pr_debug("intel_pstate: set powersave\n");
1149 	limits = &powersave_limits;
1150 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1151 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1152 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1153 					      policy->cpuinfo.max_freq);
1154 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1155 
1156 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1157 	limits->min_perf_pct = max(limits->min_policy_pct,
1158 				   limits->min_sysfs_pct);
1159 	limits->min_perf_pct = min(limits->max_policy_pct,
1160 				   limits->min_perf_pct);
1161 	limits->max_perf_pct = min(limits->max_policy_pct,
1162 				   limits->max_sysfs_pct);
1163 	limits->max_perf_pct = max(limits->min_policy_pct,
1164 				   limits->max_perf_pct);
1165 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1166 
1167 	/* Make sure min_perf_pct <= max_perf_pct */
1168 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1169 
1170 	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1171 				  int_tofp(100));
1172 	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1173 				  int_tofp(100));
1174 
1175 	if (hwp_active)
1176 		intel_pstate_hwp_set();
1177 
1178 	return 0;
1179 }
1180 
1181 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1182 {
1183 	cpufreq_verify_within_cpu_limits(policy);
1184 
1185 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1186 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1187 		return -EINVAL;
1188 
1189 	return 0;
1190 }
1191 
1192 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1193 {
1194 	int cpu_num = policy->cpu;
1195 	struct cpudata *cpu = all_cpu_data[cpu_num];
1196 
1197 	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1198 
1199 	del_timer_sync(&all_cpu_data[cpu_num]->timer);
1200 	if (hwp_active)
1201 		return;
1202 
1203 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1204 }
1205 
1206 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1207 {
1208 	struct cpudata *cpu;
1209 	int rc;
1210 
1211 	rc = intel_pstate_init_cpu(policy->cpu);
1212 	if (rc)
1213 		return rc;
1214 
1215 	cpu = all_cpu_data[policy->cpu];
1216 
1217 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1218 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1219 	else
1220 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1221 
1222 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1223 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1224 
1225 	/* cpuinfo and default policy values */
1226 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1227 	policy->cpuinfo.max_freq =
1228 		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1229 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1230 	cpumask_set_cpu(policy->cpu, policy->cpus);
1231 
1232 	return 0;
1233 }
1234 
1235 static struct cpufreq_driver intel_pstate_driver = {
1236 	.flags		= CPUFREQ_CONST_LOOPS,
1237 	.verify		= intel_pstate_verify_policy,
1238 	.setpolicy	= intel_pstate_set_policy,
1239 	.get		= intel_pstate_get,
1240 	.init		= intel_pstate_cpu_init,
1241 	.stop_cpu	= intel_pstate_stop_cpu,
1242 	.name		= "intel_pstate",
1243 };
1244 
1245 static int __initdata no_load;
1246 static int __initdata no_hwp;
1247 static int __initdata hwp_only;
1248 static unsigned int force_load;
1249 
1250 static int intel_pstate_msrs_not_valid(void)
1251 {
1252 	if (!pstate_funcs.get_max() ||
1253 	    !pstate_funcs.get_min() ||
1254 	    !pstate_funcs.get_turbo())
1255 		return -ENODEV;
1256 
1257 	return 0;
1258 }
1259 
1260 static void copy_pid_params(struct pstate_adjust_policy *policy)
1261 {
1262 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1263 	pid_params.p_gain_pct = policy->p_gain_pct;
1264 	pid_params.i_gain_pct = policy->i_gain_pct;
1265 	pid_params.d_gain_pct = policy->d_gain_pct;
1266 	pid_params.deadband = policy->deadband;
1267 	pid_params.setpoint = policy->setpoint;
1268 }
1269 
1270 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1271 {
1272 	pstate_funcs.get_max   = funcs->get_max;
1273 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1274 	pstate_funcs.get_min   = funcs->get_min;
1275 	pstate_funcs.get_turbo = funcs->get_turbo;
1276 	pstate_funcs.get_scaling = funcs->get_scaling;
1277 	pstate_funcs.set       = funcs->set;
1278 	pstate_funcs.get_vid   = funcs->get_vid;
1279 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1280 
1281 }
1282 
1283 #if IS_ENABLED(CONFIG_ACPI)
1284 #include <acpi/processor.h>
1285 
1286 static bool intel_pstate_no_acpi_pss(void)
1287 {
1288 	int i;
1289 
1290 	for_each_possible_cpu(i) {
1291 		acpi_status status;
1292 		union acpi_object *pss;
1293 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1294 		struct acpi_processor *pr = per_cpu(processors, i);
1295 
1296 		if (!pr)
1297 			continue;
1298 
1299 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1300 		if (ACPI_FAILURE(status))
1301 			continue;
1302 
1303 		pss = buffer.pointer;
1304 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1305 			kfree(pss);
1306 			return false;
1307 		}
1308 
1309 		kfree(pss);
1310 	}
1311 
1312 	return true;
1313 }
1314 
1315 static bool intel_pstate_has_acpi_ppc(void)
1316 {
1317 	int i;
1318 
1319 	for_each_possible_cpu(i) {
1320 		struct acpi_processor *pr = per_cpu(processors, i);
1321 
1322 		if (!pr)
1323 			continue;
1324 		if (acpi_has_method(pr->handle, "_PPC"))
1325 			return true;
1326 	}
1327 	return false;
1328 }
1329 
1330 enum {
1331 	PSS,
1332 	PPC,
1333 };
1334 
1335 struct hw_vendor_info {
1336 	u16  valid;
1337 	char oem_id[ACPI_OEM_ID_SIZE];
1338 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1339 	int  oem_pwr_table;
1340 };
1341 
1342 /* Hardware vendor-specific info that has its own power management modes */
1343 static struct hw_vendor_info vendor_info[] = {
1344 	{1, "HP    ", "ProLiant", PSS},
1345 	{1, "ORACLE", "X4-2    ", PPC},
1346 	{1, "ORACLE", "X4-2L   ", PPC},
1347 	{1, "ORACLE", "X4-2B   ", PPC},
1348 	{1, "ORACLE", "X3-2    ", PPC},
1349 	{1, "ORACLE", "X3-2L   ", PPC},
1350 	{1, "ORACLE", "X3-2B   ", PPC},
1351 	{1, "ORACLE", "X4470M2 ", PPC},
1352 	{1, "ORACLE", "X4270M3 ", PPC},
1353 	{1, "ORACLE", "X4270M2 ", PPC},
1354 	{1, "ORACLE", "X4170M2 ", PPC},
1355 	{1, "ORACLE", "X4170 M3", PPC},
1356 	{1, "ORACLE", "X4275 M3", PPC},
1357 	{1, "ORACLE", "X6-2    ", PPC},
1358 	{1, "ORACLE", "Sudbury ", PPC},
1359 	{0, "", ""},
1360 };
1361 
1362 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1363 {
1364 	struct acpi_table_header hdr;
1365 	struct hw_vendor_info *v_info;
1366 	const struct x86_cpu_id *id;
1367 	u64 misc_pwr;
1368 
1369 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1370 	if (id) {
1371 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1372 		if ( misc_pwr & (1 << 8))
1373 			return true;
1374 	}
1375 
1376 	if (acpi_disabled ||
1377 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1378 		return false;
1379 
1380 	for (v_info = vendor_info; v_info->valid; v_info++) {
1381 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1382 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1383 						ACPI_OEM_TABLE_ID_SIZE))
1384 			switch (v_info->oem_pwr_table) {
1385 			case PSS:
1386 				return intel_pstate_no_acpi_pss();
1387 			case PPC:
1388 				return intel_pstate_has_acpi_ppc() &&
1389 					(!force_load);
1390 			}
1391 	}
1392 
1393 	return false;
1394 }
1395 #else /* CONFIG_ACPI not enabled */
1396 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1397 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1398 #endif /* CONFIG_ACPI */
1399 
1400 static int __init intel_pstate_init(void)
1401 {
1402 	int cpu, rc = 0;
1403 	const struct x86_cpu_id *id;
1404 	struct cpu_defaults *cpu_def;
1405 
1406 	if (no_load)
1407 		return -ENODEV;
1408 
1409 	id = x86_match_cpu(intel_pstate_cpu_ids);
1410 	if (!id)
1411 		return -ENODEV;
1412 
1413 	/*
1414 	 * The Intel pstate driver will be ignored if the platform
1415 	 * firmware has its own power management modes.
1416 	 */
1417 	if (intel_pstate_platform_pwr_mgmt_exists())
1418 		return -ENODEV;
1419 
1420 	cpu_def = (struct cpu_defaults *)id->driver_data;
1421 
1422 	copy_pid_params(&cpu_def->pid_policy);
1423 	copy_cpu_funcs(&cpu_def->funcs);
1424 
1425 	if (intel_pstate_msrs_not_valid())
1426 		return -ENODEV;
1427 
1428 	pr_info("Intel P-state driver initializing.\n");
1429 
1430 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1431 	if (!all_cpu_data)
1432 		return -ENOMEM;
1433 
1434 	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) {
1435 		pr_info("intel_pstate: HWP enabled\n");
1436 		hwp_active++;
1437 	}
1438 
1439 	if (!hwp_active && hwp_only)
1440 		goto out;
1441 
1442 	rc = cpufreq_register_driver(&intel_pstate_driver);
1443 	if (rc)
1444 		goto out;
1445 
1446 	intel_pstate_debug_expose_params();
1447 	intel_pstate_sysfs_expose_params();
1448 
1449 	return rc;
1450 out:
1451 	get_online_cpus();
1452 	for_each_online_cpu(cpu) {
1453 		if (all_cpu_data[cpu]) {
1454 			del_timer_sync(&all_cpu_data[cpu]->timer);
1455 			kfree(all_cpu_data[cpu]);
1456 		}
1457 	}
1458 
1459 	put_online_cpus();
1460 	vfree(all_cpu_data);
1461 	return -ENODEV;
1462 }
1463 device_initcall(intel_pstate_init);
1464 
1465 static int __init intel_pstate_setup(char *str)
1466 {
1467 	if (!str)
1468 		return -EINVAL;
1469 
1470 	if (!strcmp(str, "disable"))
1471 		no_load = 1;
1472 	if (!strcmp(str, "no_hwp")) {
1473 		pr_info("intel_pstate: HWP disabled\n");
1474 		no_hwp = 1;
1475 	}
1476 	if (!strcmp(str, "force"))
1477 		force_load = 1;
1478 	if (!strcmp(str, "hwp_only"))
1479 		hwp_only = 1;
1480 	return 0;
1481 }
1482 early_param("intel_pstate", intel_pstate_setup);
1483 
1484 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1485 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1486 MODULE_LICENSE("GPL");
1487