1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/sysfs.h> 23 #include <linux/types.h> 24 #include <linux/fs.h> 25 #include <linux/acpi.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pm_qos.h> 28 #include <linux/bitfield.h> 29 #include <trace/events/power.h> 30 31 #include <asm/cpu.h> 32 #include <asm/div64.h> 33 #include <asm/msr.h> 34 #include <asm/cpu_device_id.h> 35 #include <asm/cpufeature.h> 36 #include <asm/intel-family.h> 37 #include "../drivers/thermal/intel/thermal_interrupt.h" 38 39 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 40 41 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 42 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 43 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 44 45 #ifdef CONFIG_ACPI 46 #include <acpi/processor.h> 47 #include <acpi/cppc_acpi.h> 48 #endif 49 50 #define FRAC_BITS 8 51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 52 #define fp_toint(X) ((X) >> FRAC_BITS) 53 54 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 55 56 #define EXT_BITS 6 57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 60 61 static inline int32_t mul_fp(int32_t x, int32_t y) 62 { 63 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 64 } 65 66 static inline int32_t div_fp(s64 x, s64 y) 67 { 68 return div64_s64((int64_t)x << FRAC_BITS, y); 69 } 70 71 static inline int ceiling_fp(int32_t x) 72 { 73 int mask, ret; 74 75 ret = fp_toint(x); 76 mask = (1 << FRAC_BITS) - 1; 77 if (x & mask) 78 ret += 1; 79 return ret; 80 } 81 82 static inline u64 mul_ext_fp(u64 x, u64 y) 83 { 84 return (x * y) >> EXT_FRAC_BITS; 85 } 86 87 static inline u64 div_ext_fp(u64 x, u64 y) 88 { 89 return div64_u64(x << EXT_FRAC_BITS, y); 90 } 91 92 /** 93 * struct sample - Store performance sample 94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 95 * performance during last sample period 96 * @busy_scaled: Scaled busy value which is used to calculate next 97 * P state. This can be different than core_avg_perf 98 * to account for cpu idle period 99 * @aperf: Difference of actual performance frequency clock count 100 * read from APERF MSR between last and current sample 101 * @mperf: Difference of maximum performance frequency clock count 102 * read from MPERF MSR between last and current sample 103 * @tsc: Difference of time stamp counter between last and 104 * current sample 105 * @time: Current time from scheduler 106 * 107 * This structure is used in the cpudata structure to store performance sample 108 * data for choosing next P State. 109 */ 110 struct sample { 111 int32_t core_avg_perf; 112 int32_t busy_scaled; 113 u64 aperf; 114 u64 mperf; 115 u64 tsc; 116 u64 time; 117 }; 118 119 /** 120 * struct pstate_data - Store P state data 121 * @current_pstate: Current requested P state 122 * @min_pstate: Min P state possible for this platform 123 * @max_pstate: Max P state possible for this platform 124 * @max_pstate_physical:This is physical Max P state for a processor 125 * This can be higher than the max_pstate which can 126 * be limited by platform thermal design power limits 127 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor 128 * @scaling: Scaling factor between performance and frequency 129 * @turbo_pstate: Max Turbo P state possible for this platform 130 * @min_freq: @min_pstate frequency in cpufreq units 131 * @max_freq: @max_pstate frequency in cpufreq units 132 * @turbo_freq: @turbo_pstate frequency in cpufreq units 133 * 134 * Stores the per cpu model P state limits and current P state. 135 */ 136 struct pstate_data { 137 int current_pstate; 138 int min_pstate; 139 int max_pstate; 140 int max_pstate_physical; 141 int perf_ctl_scaling; 142 int scaling; 143 int turbo_pstate; 144 unsigned int min_freq; 145 unsigned int max_freq; 146 unsigned int turbo_freq; 147 }; 148 149 /** 150 * struct vid_data - Stores voltage information data 151 * @min: VID data for this platform corresponding to 152 * the lowest P state 153 * @max: VID data corresponding to the highest P State. 154 * @turbo: VID data for turbo P state 155 * @ratio: Ratio of (vid max - vid min) / 156 * (max P state - Min P State) 157 * 158 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 159 * This data is used in Atom platforms, where in addition to target P state, 160 * the voltage data needs to be specified to select next P State. 161 */ 162 struct vid_data { 163 int min; 164 int max; 165 int turbo; 166 int32_t ratio; 167 }; 168 169 /** 170 * struct global_params - Global parameters, mostly tunable via sysfs. 171 * @no_turbo: Whether or not to use turbo P-states. 172 * @turbo_disabled: Whether or not turbo P-states are available at all, 173 * based on the MSR_IA32_MISC_ENABLE value and whether or 174 * not the maximum reported turbo P-state is different from 175 * the maximum reported non-turbo one. 176 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq. 177 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 178 * P-state capacity. 179 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 180 * P-state capacity. 181 */ 182 struct global_params { 183 bool no_turbo; 184 bool turbo_disabled; 185 bool turbo_disabled_mf; 186 int max_perf_pct; 187 int min_perf_pct; 188 }; 189 190 /** 191 * struct cpudata - Per CPU instance data storage 192 * @cpu: CPU number for this instance data 193 * @policy: CPUFreq policy value 194 * @update_util: CPUFreq utility callback information 195 * @update_util_set: CPUFreq utility callback is set 196 * @iowait_boost: iowait-related boost fraction 197 * @last_update: Time of the last update. 198 * @pstate: Stores P state limits for this CPU 199 * @vid: Stores VID limits for this CPU 200 * @last_sample_time: Last Sample time 201 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 202 * @prev_aperf: Last APERF value read from APERF MSR 203 * @prev_mperf: Last MPERF value read from MPERF MSR 204 * @prev_tsc: Last timestamp counter (TSC) value 205 * @sample: Storage for storing last Sample data 206 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 207 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 208 * @acpi_perf_data: Stores ACPI perf information read from _PSS 209 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 210 * @epp_powersave: Last saved HWP energy performance preference 211 * (EPP) or energy performance bias (EPB), 212 * when policy switched to performance 213 * @epp_policy: Last saved policy used to set EPP/EPB 214 * @epp_default: Power on default HWP energy performance 215 * preference/bias 216 * @epp_cached Cached HWP energy-performance preference value 217 * @hwp_req_cached: Cached value of the last HWP Request MSR 218 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 219 * @last_io_update: Last time when IO wake flag was set 220 * @sched_flags: Store scheduler flags for possible cross CPU update 221 * @hwp_boost_min: Last HWP boosted min performance 222 * @suspended: Whether or not the driver has been suspended. 223 * @hwp_notify_work: workqueue for HWP notifications. 224 * 225 * This structure stores per CPU instance data for all CPUs. 226 */ 227 struct cpudata { 228 int cpu; 229 230 unsigned int policy; 231 struct update_util_data update_util; 232 bool update_util_set; 233 234 struct pstate_data pstate; 235 struct vid_data vid; 236 237 u64 last_update; 238 u64 last_sample_time; 239 u64 aperf_mperf_shift; 240 u64 prev_aperf; 241 u64 prev_mperf; 242 u64 prev_tsc; 243 struct sample sample; 244 int32_t min_perf_ratio; 245 int32_t max_perf_ratio; 246 #ifdef CONFIG_ACPI 247 struct acpi_processor_performance acpi_perf_data; 248 bool valid_pss_table; 249 #endif 250 unsigned int iowait_boost; 251 s16 epp_powersave; 252 s16 epp_policy; 253 s16 epp_default; 254 s16 epp_cached; 255 u64 hwp_req_cached; 256 u64 hwp_cap_cached; 257 u64 last_io_update; 258 unsigned int sched_flags; 259 u32 hwp_boost_min; 260 bool suspended; 261 struct delayed_work hwp_notify_work; 262 }; 263 264 static struct cpudata **all_cpu_data; 265 266 /** 267 * struct pstate_funcs - Per CPU model specific callbacks 268 * @get_max: Callback to get maximum non turbo effective P state 269 * @get_max_physical: Callback to get maximum non turbo physical P state 270 * @get_min: Callback to get minimum P state 271 * @get_turbo: Callback to get turbo P state 272 * @get_scaling: Callback to get frequency scaling factor 273 * @get_cpu_scaling: Get frequency scaling factor for a given cpu 274 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 275 * @get_val: Callback to convert P state to actual MSR write value 276 * @get_vid: Callback to get VID data for Atom platforms 277 * 278 * Core and Atom CPU models have different way to get P State limits. This 279 * structure is used to store those callbacks. 280 */ 281 struct pstate_funcs { 282 int (*get_max)(int cpu); 283 int (*get_max_physical)(int cpu); 284 int (*get_min)(int cpu); 285 int (*get_turbo)(int cpu); 286 int (*get_scaling)(void); 287 int (*get_cpu_scaling)(int cpu); 288 int (*get_aperf_mperf_shift)(void); 289 u64 (*get_val)(struct cpudata*, int pstate); 290 void (*get_vid)(struct cpudata *); 291 }; 292 293 static struct pstate_funcs pstate_funcs __read_mostly; 294 295 static int hwp_active __read_mostly; 296 static int hwp_mode_bdw __read_mostly; 297 static bool per_cpu_limits __read_mostly; 298 static bool hwp_boost __read_mostly; 299 static bool hwp_forced __read_mostly; 300 301 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 302 303 #define HYBRID_SCALING_FACTOR 78741 304 #define HYBRID_SCALING_FACTOR_MTL 80000 305 306 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR; 307 308 static inline int core_get_scaling(void) 309 { 310 return 100000; 311 } 312 313 #ifdef CONFIG_ACPI 314 static bool acpi_ppc; 315 #endif 316 317 static struct global_params global; 318 319 static DEFINE_MUTEX(intel_pstate_driver_lock); 320 static DEFINE_MUTEX(intel_pstate_limits_lock); 321 322 #ifdef CONFIG_ACPI 323 324 static bool intel_pstate_acpi_pm_profile_server(void) 325 { 326 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 327 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 328 return true; 329 330 return false; 331 } 332 333 static bool intel_pstate_get_ppc_enable_status(void) 334 { 335 if (intel_pstate_acpi_pm_profile_server()) 336 return true; 337 338 return acpi_ppc; 339 } 340 341 #ifdef CONFIG_ACPI_CPPC_LIB 342 343 /* The work item is needed to avoid CPU hotplug locking issues */ 344 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 345 { 346 sched_set_itmt_support(); 347 } 348 349 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 350 351 #define CPPC_MAX_PERF U8_MAX 352 353 static void intel_pstate_set_itmt_prio(int cpu) 354 { 355 struct cppc_perf_caps cppc_perf; 356 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 357 int ret; 358 359 ret = cppc_get_perf_caps(cpu, &cppc_perf); 360 if (ret) 361 return; 362 363 /* 364 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff. 365 * In this case we can't use CPPC.highest_perf to enable ITMT. 366 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide. 367 */ 368 if (cppc_perf.highest_perf == CPPC_MAX_PERF) 369 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached)); 370 371 /* 372 * The priorities can be set regardless of whether or not 373 * sched_set_itmt_support(true) has been called and it is valid to 374 * update them at any time after it has been called. 375 */ 376 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 377 378 if (max_highest_perf <= min_highest_perf) { 379 if (cppc_perf.highest_perf > max_highest_perf) 380 max_highest_perf = cppc_perf.highest_perf; 381 382 if (cppc_perf.highest_perf < min_highest_perf) 383 min_highest_perf = cppc_perf.highest_perf; 384 385 if (max_highest_perf > min_highest_perf) { 386 /* 387 * This code can be run during CPU online under the 388 * CPU hotplug locks, so sched_set_itmt_support() 389 * cannot be called from here. Queue up a work item 390 * to invoke it. 391 */ 392 schedule_work(&sched_itmt_work); 393 } 394 } 395 } 396 397 static int intel_pstate_get_cppc_guaranteed(int cpu) 398 { 399 struct cppc_perf_caps cppc_perf; 400 int ret; 401 402 ret = cppc_get_perf_caps(cpu, &cppc_perf); 403 if (ret) 404 return ret; 405 406 if (cppc_perf.guaranteed_perf) 407 return cppc_perf.guaranteed_perf; 408 409 return cppc_perf.nominal_perf; 410 } 411 412 static int intel_pstate_cppc_get_scaling(int cpu) 413 { 414 struct cppc_perf_caps cppc_perf; 415 int ret; 416 417 ret = cppc_get_perf_caps(cpu, &cppc_perf); 418 419 /* 420 * If the nominal frequency and the nominal performance are not 421 * zero and the ratio between them is not 100, return the hybrid 422 * scaling factor. 423 */ 424 if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq && 425 cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq) 426 return hybrid_scaling_factor; 427 428 return core_get_scaling(); 429 } 430 431 #else /* CONFIG_ACPI_CPPC_LIB */ 432 static inline void intel_pstate_set_itmt_prio(int cpu) 433 { 434 } 435 #endif /* CONFIG_ACPI_CPPC_LIB */ 436 437 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 438 { 439 struct cpudata *cpu; 440 int ret; 441 int i; 442 443 if (hwp_active) { 444 intel_pstate_set_itmt_prio(policy->cpu); 445 return; 446 } 447 448 if (!intel_pstate_get_ppc_enable_status()) 449 return; 450 451 cpu = all_cpu_data[policy->cpu]; 452 453 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 454 policy->cpu); 455 if (ret) 456 return; 457 458 /* 459 * Check if the control value in _PSS is for PERF_CTL MSR, which should 460 * guarantee that the states returned by it map to the states in our 461 * list directly. 462 */ 463 if (cpu->acpi_perf_data.control_register.space_id != 464 ACPI_ADR_SPACE_FIXED_HARDWARE) 465 goto err; 466 467 /* 468 * If there is only one entry _PSS, simply ignore _PSS and continue as 469 * usual without taking _PSS into account 470 */ 471 if (cpu->acpi_perf_data.state_count < 2) 472 goto err; 473 474 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 475 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 476 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 477 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 478 (u32) cpu->acpi_perf_data.states[i].core_frequency, 479 (u32) cpu->acpi_perf_data.states[i].power, 480 (u32) cpu->acpi_perf_data.states[i].control); 481 } 482 483 cpu->valid_pss_table = true; 484 pr_debug("_PPC limits will be enforced\n"); 485 486 return; 487 488 err: 489 cpu->valid_pss_table = false; 490 acpi_processor_unregister_performance(policy->cpu); 491 } 492 493 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 494 { 495 struct cpudata *cpu; 496 497 cpu = all_cpu_data[policy->cpu]; 498 if (!cpu->valid_pss_table) 499 return; 500 501 acpi_processor_unregister_performance(policy->cpu); 502 } 503 #else /* CONFIG_ACPI */ 504 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 505 { 506 } 507 508 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 509 { 510 } 511 512 static inline bool intel_pstate_acpi_pm_profile_server(void) 513 { 514 return false; 515 } 516 #endif /* CONFIG_ACPI */ 517 518 #ifndef CONFIG_ACPI_CPPC_LIB 519 static inline int intel_pstate_get_cppc_guaranteed(int cpu) 520 { 521 return -ENOTSUPP; 522 } 523 524 static int intel_pstate_cppc_get_scaling(int cpu) 525 { 526 return core_get_scaling(); 527 } 528 #endif /* CONFIG_ACPI_CPPC_LIB */ 529 530 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq, 531 unsigned int relation) 532 { 533 if (freq == cpu->pstate.turbo_freq) 534 return cpu->pstate.turbo_pstate; 535 536 if (freq == cpu->pstate.max_freq) 537 return cpu->pstate.max_pstate; 538 539 switch (relation) { 540 case CPUFREQ_RELATION_H: 541 return freq / cpu->pstate.scaling; 542 case CPUFREQ_RELATION_C: 543 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling); 544 } 545 546 return DIV_ROUND_UP(freq, cpu->pstate.scaling); 547 } 548 549 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq) 550 { 551 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L); 552 } 553 554 /** 555 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels. 556 * @cpu: Target CPU. 557 * 558 * On hybrid processors, HWP may expose more performance levels than there are 559 * P-states accessible through the PERF_CTL interface. If that happens, the 560 * scaling factor between HWP performance levels and CPU frequency will be less 561 * than the scaling factor between P-state values and CPU frequency. 562 * 563 * In that case, adjust the CPU parameters used in computations accordingly. 564 */ 565 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu) 566 { 567 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical; 568 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 569 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu); 570 int scaling = cpu->pstate.scaling; 571 int freq; 572 573 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys); 574 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo); 575 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling); 576 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate); 577 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate); 578 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling); 579 580 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling, 581 perf_ctl_scaling); 582 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling, 583 perf_ctl_scaling); 584 585 freq = perf_ctl_max_phys * perf_ctl_scaling; 586 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq); 587 588 freq = cpu->pstate.min_pstate * perf_ctl_scaling; 589 cpu->pstate.min_freq = freq; 590 /* 591 * Cast the min P-state value retrieved via pstate_funcs.get_min() to 592 * the effective range of HWP performance levels. 593 */ 594 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq); 595 } 596 597 static inline void update_turbo_state(void) 598 { 599 u64 misc_en; 600 601 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 602 global.turbo_disabled = misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE; 603 } 604 605 static int min_perf_pct_min(void) 606 { 607 struct cpudata *cpu = all_cpu_data[0]; 608 int turbo_pstate = cpu->pstate.turbo_pstate; 609 610 return turbo_pstate ? 611 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 612 } 613 614 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 615 { 616 u64 epb; 617 int ret; 618 619 if (!boot_cpu_has(X86_FEATURE_EPB)) 620 return -ENXIO; 621 622 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 623 if (ret) 624 return (s16)ret; 625 626 return (s16)(epb & 0x0f); 627 } 628 629 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 630 { 631 s16 epp; 632 633 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 634 /* 635 * When hwp_req_data is 0, means that caller didn't read 636 * MSR_HWP_REQUEST, so need to read and get EPP. 637 */ 638 if (!hwp_req_data) { 639 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 640 &hwp_req_data); 641 if (epp) 642 return epp; 643 } 644 epp = (hwp_req_data >> 24) & 0xff; 645 } else { 646 /* When there is no EPP present, HWP uses EPB settings */ 647 epp = intel_pstate_get_epb(cpu_data); 648 } 649 650 return epp; 651 } 652 653 static int intel_pstate_set_epb(int cpu, s16 pref) 654 { 655 u64 epb; 656 int ret; 657 658 if (!boot_cpu_has(X86_FEATURE_EPB)) 659 return -ENXIO; 660 661 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 662 if (ret) 663 return ret; 664 665 epb = (epb & ~0x0f) | pref; 666 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 667 668 return 0; 669 } 670 671 /* 672 * EPP/EPB display strings corresponding to EPP index in the 673 * energy_perf_strings[] 674 * index String 675 *------------------------------------- 676 * 0 default 677 * 1 performance 678 * 2 balance_performance 679 * 3 balance_power 680 * 4 power 681 */ 682 683 enum energy_perf_value_index { 684 EPP_INDEX_DEFAULT = 0, 685 EPP_INDEX_PERFORMANCE, 686 EPP_INDEX_BALANCE_PERFORMANCE, 687 EPP_INDEX_BALANCE_POWERSAVE, 688 EPP_INDEX_POWERSAVE, 689 }; 690 691 static const char * const energy_perf_strings[] = { 692 [EPP_INDEX_DEFAULT] = "default", 693 [EPP_INDEX_PERFORMANCE] = "performance", 694 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", 695 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", 696 [EPP_INDEX_POWERSAVE] = "power", 697 NULL 698 }; 699 static unsigned int epp_values[] = { 700 [EPP_INDEX_DEFAULT] = 0, /* Unused index */ 701 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE, 702 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE, 703 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE, 704 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE, 705 }; 706 707 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 708 { 709 s16 epp; 710 int index = -EINVAL; 711 712 *raw_epp = 0; 713 epp = intel_pstate_get_epp(cpu_data, 0); 714 if (epp < 0) 715 return epp; 716 717 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 718 if (epp == epp_values[EPP_INDEX_PERFORMANCE]) 719 return EPP_INDEX_PERFORMANCE; 720 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE]) 721 return EPP_INDEX_BALANCE_PERFORMANCE; 722 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE]) 723 return EPP_INDEX_BALANCE_POWERSAVE; 724 if (epp == epp_values[EPP_INDEX_POWERSAVE]) 725 return EPP_INDEX_POWERSAVE; 726 *raw_epp = epp; 727 return 0; 728 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 729 /* 730 * Range: 731 * 0x00-0x03 : Performance 732 * 0x04-0x07 : Balance performance 733 * 0x08-0x0B : Balance power 734 * 0x0C-0x0F : Power 735 * The EPB is a 4 bit value, but our ranges restrict the 736 * value which can be set. Here only using top two bits 737 * effectively. 738 */ 739 index = (epp >> 2) + 1; 740 } 741 742 return index; 743 } 744 745 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) 746 { 747 int ret; 748 749 /* 750 * Use the cached HWP Request MSR value, because in the active mode the 751 * register itself may be updated by intel_pstate_hwp_boost_up() or 752 * intel_pstate_hwp_boost_down() at any time. 753 */ 754 u64 value = READ_ONCE(cpu->hwp_req_cached); 755 756 value &= ~GENMASK_ULL(31, 24); 757 value |= (u64)epp << 24; 758 /* 759 * The only other updater of hwp_req_cached in the active mode, 760 * intel_pstate_hwp_set(), is called under the same lock as this 761 * function, so it cannot run in parallel with the update below. 762 */ 763 WRITE_ONCE(cpu->hwp_req_cached, value); 764 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 765 if (!ret) 766 cpu->epp_cached = epp; 767 768 return ret; 769 } 770 771 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 772 int pref_index, bool use_raw, 773 u32 raw_epp) 774 { 775 int epp = -EINVAL; 776 int ret; 777 778 if (!pref_index) 779 epp = cpu_data->epp_default; 780 781 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 782 if (use_raw) 783 epp = raw_epp; 784 else if (epp == -EINVAL) 785 epp = epp_values[pref_index]; 786 787 /* 788 * To avoid confusion, refuse to set EPP to any values different 789 * from 0 (performance) if the current policy is "performance", 790 * because those values would be overridden. 791 */ 792 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 793 return -EBUSY; 794 795 ret = intel_pstate_set_epp(cpu_data, epp); 796 } else { 797 if (epp == -EINVAL) 798 epp = (pref_index - 1) << 2; 799 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 800 } 801 802 return ret; 803 } 804 805 static ssize_t show_energy_performance_available_preferences( 806 struct cpufreq_policy *policy, char *buf) 807 { 808 int i = 0; 809 int ret = 0; 810 811 while (energy_perf_strings[i] != NULL) 812 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 813 814 ret += sprintf(&buf[ret], "\n"); 815 816 return ret; 817 } 818 819 cpufreq_freq_attr_ro(energy_performance_available_preferences); 820 821 static struct cpufreq_driver intel_pstate; 822 823 static ssize_t store_energy_performance_preference( 824 struct cpufreq_policy *policy, const char *buf, size_t count) 825 { 826 struct cpudata *cpu = all_cpu_data[policy->cpu]; 827 char str_preference[21]; 828 bool raw = false; 829 ssize_t ret; 830 u32 epp = 0; 831 832 ret = sscanf(buf, "%20s", str_preference); 833 if (ret != 1) 834 return -EINVAL; 835 836 ret = match_string(energy_perf_strings, -1, str_preference); 837 if (ret < 0) { 838 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 839 return ret; 840 841 ret = kstrtouint(buf, 10, &epp); 842 if (ret) 843 return ret; 844 845 if (epp > 255) 846 return -EINVAL; 847 848 raw = true; 849 } 850 851 /* 852 * This function runs with the policy R/W semaphore held, which 853 * guarantees that the driver pointer will not change while it is 854 * running. 855 */ 856 if (!intel_pstate_driver) 857 return -EAGAIN; 858 859 mutex_lock(&intel_pstate_limits_lock); 860 861 if (intel_pstate_driver == &intel_pstate) { 862 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); 863 } else { 864 /* 865 * In the passive mode the governor needs to be stopped on the 866 * target CPU before the EPP update and restarted after it, 867 * which is super-heavy-weight, so make sure it is worth doing 868 * upfront. 869 */ 870 if (!raw) 871 epp = ret ? epp_values[ret] : cpu->epp_default; 872 873 if (cpu->epp_cached != epp) { 874 int err; 875 876 cpufreq_stop_governor(policy); 877 ret = intel_pstate_set_epp(cpu, epp); 878 err = cpufreq_start_governor(policy); 879 if (!ret) 880 ret = err; 881 } else { 882 ret = 0; 883 } 884 } 885 886 mutex_unlock(&intel_pstate_limits_lock); 887 888 return ret ?: count; 889 } 890 891 static ssize_t show_energy_performance_preference( 892 struct cpufreq_policy *policy, char *buf) 893 { 894 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 895 int preference, raw_epp; 896 897 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 898 if (preference < 0) 899 return preference; 900 901 if (raw_epp) 902 return sprintf(buf, "%d\n", raw_epp); 903 else 904 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 905 } 906 907 cpufreq_freq_attr_rw(energy_performance_preference); 908 909 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 910 { 911 struct cpudata *cpu = all_cpu_data[policy->cpu]; 912 int ratio, freq; 913 914 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu); 915 if (ratio <= 0) { 916 u64 cap; 917 918 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 919 ratio = HWP_GUARANTEED_PERF(cap); 920 } 921 922 freq = ratio * cpu->pstate.scaling; 923 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling) 924 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling); 925 926 return sprintf(buf, "%d\n", freq); 927 } 928 929 cpufreq_freq_attr_ro(base_frequency); 930 931 static struct freq_attr *hwp_cpufreq_attrs[] = { 932 &energy_performance_preference, 933 &energy_performance_available_preferences, 934 &base_frequency, 935 NULL, 936 }; 937 938 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) 939 { 940 u64 cap; 941 942 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); 943 WRITE_ONCE(cpu->hwp_cap_cached, cap); 944 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); 945 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); 946 } 947 948 static void intel_pstate_get_hwp_cap(struct cpudata *cpu) 949 { 950 int scaling = cpu->pstate.scaling; 951 952 __intel_pstate_get_hwp_cap(cpu); 953 954 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling; 955 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; 956 if (scaling != cpu->pstate.perf_ctl_scaling) { 957 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 958 959 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq, 960 perf_ctl_scaling); 961 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq, 962 perf_ctl_scaling); 963 } 964 } 965 966 static void intel_pstate_hwp_set(unsigned int cpu) 967 { 968 struct cpudata *cpu_data = all_cpu_data[cpu]; 969 int max, min; 970 u64 value; 971 s16 epp; 972 973 max = cpu_data->max_perf_ratio; 974 min = cpu_data->min_perf_ratio; 975 976 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 977 min = max; 978 979 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 980 981 value &= ~HWP_MIN_PERF(~0L); 982 value |= HWP_MIN_PERF(min); 983 984 value &= ~HWP_MAX_PERF(~0L); 985 value |= HWP_MAX_PERF(max); 986 987 if (cpu_data->epp_policy == cpu_data->policy) 988 goto skip_epp; 989 990 cpu_data->epp_policy = cpu_data->policy; 991 992 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 993 epp = intel_pstate_get_epp(cpu_data, value); 994 cpu_data->epp_powersave = epp; 995 /* If EPP read was failed, then don't try to write */ 996 if (epp < 0) 997 goto skip_epp; 998 999 epp = 0; 1000 } else { 1001 /* skip setting EPP, when saved value is invalid */ 1002 if (cpu_data->epp_powersave < 0) 1003 goto skip_epp; 1004 1005 /* 1006 * No need to restore EPP when it is not zero. This 1007 * means: 1008 * - Policy is not changed 1009 * - user has manually changed 1010 * - Error reading EPB 1011 */ 1012 epp = intel_pstate_get_epp(cpu_data, value); 1013 if (epp) 1014 goto skip_epp; 1015 1016 epp = cpu_data->epp_powersave; 1017 } 1018 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1019 value &= ~GENMASK_ULL(31, 24); 1020 value |= (u64)epp << 24; 1021 } else { 1022 intel_pstate_set_epb(cpu, epp); 1023 } 1024 skip_epp: 1025 WRITE_ONCE(cpu_data->hwp_req_cached, value); 1026 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 1027 } 1028 1029 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata); 1030 1031 static void intel_pstate_hwp_offline(struct cpudata *cpu) 1032 { 1033 u64 value = READ_ONCE(cpu->hwp_req_cached); 1034 int min_perf; 1035 1036 intel_pstate_disable_hwp_interrupt(cpu); 1037 1038 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1039 /* 1040 * In case the EPP has been set to "performance" by the 1041 * active mode "performance" scaling algorithm, replace that 1042 * temporary value with the cached EPP one. 1043 */ 1044 value &= ~GENMASK_ULL(31, 24); 1045 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); 1046 /* 1047 * However, make sure that EPP will be set to "performance" when 1048 * the CPU is brought back online again and the "performance" 1049 * scaling algorithm is still in effect. 1050 */ 1051 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; 1052 } 1053 1054 /* 1055 * Clear the desired perf field in the cached HWP request value to 1056 * prevent nonzero desired values from being leaked into the active 1057 * mode. 1058 */ 1059 value &= ~HWP_DESIRED_PERF(~0L); 1060 WRITE_ONCE(cpu->hwp_req_cached, value); 1061 1062 value &= ~GENMASK_ULL(31, 0); 1063 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); 1064 1065 /* Set hwp_max = hwp_min */ 1066 value |= HWP_MAX_PERF(min_perf); 1067 value |= HWP_MIN_PERF(min_perf); 1068 1069 /* Set EPP to min */ 1070 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 1071 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 1072 1073 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 1074 } 1075 1076 #define POWER_CTL_EE_ENABLE 1 1077 #define POWER_CTL_EE_DISABLE 2 1078 1079 static int power_ctl_ee_state; 1080 1081 static void set_power_ctl_ee_state(bool input) 1082 { 1083 u64 power_ctl; 1084 1085 mutex_lock(&intel_pstate_driver_lock); 1086 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1087 if (input) { 1088 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 1089 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 1090 } else { 1091 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1092 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 1093 } 1094 wrmsrl(MSR_IA32_POWER_CTL, power_ctl); 1095 mutex_unlock(&intel_pstate_driver_lock); 1096 } 1097 1098 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 1099 1100 static void intel_pstate_hwp_reenable(struct cpudata *cpu) 1101 { 1102 intel_pstate_hwp_enable(cpu); 1103 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); 1104 } 1105 1106 static int intel_pstate_suspend(struct cpufreq_policy *policy) 1107 { 1108 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1109 1110 pr_debug("CPU %d suspending\n", cpu->cpu); 1111 1112 cpu->suspended = true; 1113 1114 /* disable HWP interrupt and cancel any pending work */ 1115 intel_pstate_disable_hwp_interrupt(cpu); 1116 1117 return 0; 1118 } 1119 1120 static int intel_pstate_resume(struct cpufreq_policy *policy) 1121 { 1122 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1123 1124 pr_debug("CPU %d resuming\n", cpu->cpu); 1125 1126 /* Only restore if the system default is changed */ 1127 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 1128 set_power_ctl_ee_state(true); 1129 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 1130 set_power_ctl_ee_state(false); 1131 1132 if (cpu->suspended && hwp_active) { 1133 mutex_lock(&intel_pstate_limits_lock); 1134 1135 /* Re-enable HWP, because "online" has not done that. */ 1136 intel_pstate_hwp_reenable(cpu); 1137 1138 mutex_unlock(&intel_pstate_limits_lock); 1139 } 1140 1141 cpu->suspended = false; 1142 1143 return 0; 1144 } 1145 1146 static void intel_pstate_update_policies(void) 1147 { 1148 int cpu; 1149 1150 for_each_possible_cpu(cpu) 1151 cpufreq_update_policy(cpu); 1152 } 1153 1154 static void __intel_pstate_update_max_freq(struct cpudata *cpudata, 1155 struct cpufreq_policy *policy) 1156 { 1157 policy->cpuinfo.max_freq = global.turbo_disabled_mf ? 1158 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 1159 refresh_frequency_limits(policy); 1160 } 1161 1162 static void intel_pstate_update_max_freq(unsigned int cpu) 1163 { 1164 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 1165 1166 if (!policy) 1167 return; 1168 1169 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy); 1170 1171 cpufreq_cpu_release(policy); 1172 } 1173 1174 static void intel_pstate_update_limits(unsigned int cpu) 1175 { 1176 mutex_lock(&intel_pstate_driver_lock); 1177 1178 update_turbo_state(); 1179 /* 1180 * If turbo has been turned on or off globally, policy limits for 1181 * all CPUs need to be updated to reflect that. 1182 */ 1183 if (global.turbo_disabled_mf != global.turbo_disabled) { 1184 global.turbo_disabled_mf = global.turbo_disabled; 1185 arch_set_max_freq_ratio(global.turbo_disabled); 1186 for_each_possible_cpu(cpu) 1187 intel_pstate_update_max_freq(cpu); 1188 } else { 1189 cpufreq_update_policy(cpu); 1190 } 1191 1192 mutex_unlock(&intel_pstate_driver_lock); 1193 } 1194 1195 /************************** sysfs begin ************************/ 1196 #define show_one(file_name, object) \ 1197 static ssize_t show_##file_name \ 1198 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 1199 { \ 1200 return sprintf(buf, "%u\n", global.object); \ 1201 } 1202 1203 static ssize_t intel_pstate_show_status(char *buf); 1204 static int intel_pstate_update_status(const char *buf, size_t size); 1205 1206 static ssize_t show_status(struct kobject *kobj, 1207 struct kobj_attribute *attr, char *buf) 1208 { 1209 ssize_t ret; 1210 1211 mutex_lock(&intel_pstate_driver_lock); 1212 ret = intel_pstate_show_status(buf); 1213 mutex_unlock(&intel_pstate_driver_lock); 1214 1215 return ret; 1216 } 1217 1218 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1219 const char *buf, size_t count) 1220 { 1221 char *p = memchr(buf, '\n', count); 1222 int ret; 1223 1224 mutex_lock(&intel_pstate_driver_lock); 1225 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1226 mutex_unlock(&intel_pstate_driver_lock); 1227 1228 return ret < 0 ? ret : count; 1229 } 1230 1231 static ssize_t show_turbo_pct(struct kobject *kobj, 1232 struct kobj_attribute *attr, char *buf) 1233 { 1234 struct cpudata *cpu; 1235 int total, no_turbo, turbo_pct; 1236 uint32_t turbo_fp; 1237 1238 mutex_lock(&intel_pstate_driver_lock); 1239 1240 if (!intel_pstate_driver) { 1241 mutex_unlock(&intel_pstate_driver_lock); 1242 return -EAGAIN; 1243 } 1244 1245 cpu = all_cpu_data[0]; 1246 1247 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1248 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1249 turbo_fp = div_fp(no_turbo, total); 1250 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1251 1252 mutex_unlock(&intel_pstate_driver_lock); 1253 1254 return sprintf(buf, "%u\n", turbo_pct); 1255 } 1256 1257 static ssize_t show_num_pstates(struct kobject *kobj, 1258 struct kobj_attribute *attr, char *buf) 1259 { 1260 struct cpudata *cpu; 1261 int total; 1262 1263 mutex_lock(&intel_pstate_driver_lock); 1264 1265 if (!intel_pstate_driver) { 1266 mutex_unlock(&intel_pstate_driver_lock); 1267 return -EAGAIN; 1268 } 1269 1270 cpu = all_cpu_data[0]; 1271 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1272 1273 mutex_unlock(&intel_pstate_driver_lock); 1274 1275 return sprintf(buf, "%u\n", total); 1276 } 1277 1278 static ssize_t show_no_turbo(struct kobject *kobj, 1279 struct kobj_attribute *attr, char *buf) 1280 { 1281 ssize_t ret; 1282 1283 mutex_lock(&intel_pstate_driver_lock); 1284 1285 if (!intel_pstate_driver) { 1286 mutex_unlock(&intel_pstate_driver_lock); 1287 return -EAGAIN; 1288 } 1289 1290 update_turbo_state(); 1291 if (global.turbo_disabled) 1292 ret = sprintf(buf, "%u\n", global.turbo_disabled); 1293 else 1294 ret = sprintf(buf, "%u\n", global.no_turbo); 1295 1296 mutex_unlock(&intel_pstate_driver_lock); 1297 1298 return ret; 1299 } 1300 1301 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1302 const char *buf, size_t count) 1303 { 1304 unsigned int input; 1305 int ret; 1306 1307 ret = sscanf(buf, "%u", &input); 1308 if (ret != 1) 1309 return -EINVAL; 1310 1311 mutex_lock(&intel_pstate_driver_lock); 1312 1313 if (!intel_pstate_driver) { 1314 mutex_unlock(&intel_pstate_driver_lock); 1315 return -EAGAIN; 1316 } 1317 1318 mutex_lock(&intel_pstate_limits_lock); 1319 1320 update_turbo_state(); 1321 if (global.turbo_disabled) { 1322 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n"); 1323 mutex_unlock(&intel_pstate_limits_lock); 1324 mutex_unlock(&intel_pstate_driver_lock); 1325 return -EPERM; 1326 } 1327 1328 global.no_turbo = clamp_t(int, input, 0, 1); 1329 1330 if (global.no_turbo) { 1331 struct cpudata *cpu = all_cpu_data[0]; 1332 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1333 1334 /* Squash the global minimum into the permitted range. */ 1335 if (global.min_perf_pct > pct) 1336 global.min_perf_pct = pct; 1337 } 1338 1339 mutex_unlock(&intel_pstate_limits_lock); 1340 1341 intel_pstate_update_policies(); 1342 arch_set_max_freq_ratio(global.no_turbo); 1343 1344 mutex_unlock(&intel_pstate_driver_lock); 1345 1346 return count; 1347 } 1348 1349 static void update_qos_request(enum freq_qos_req_type type) 1350 { 1351 struct freq_qos_request *req; 1352 struct cpufreq_policy *policy; 1353 int i; 1354 1355 for_each_possible_cpu(i) { 1356 struct cpudata *cpu = all_cpu_data[i]; 1357 unsigned int freq, perf_pct; 1358 1359 policy = cpufreq_cpu_get(i); 1360 if (!policy) 1361 continue; 1362 1363 req = policy->driver_data; 1364 cpufreq_cpu_put(policy); 1365 1366 if (!req) 1367 continue; 1368 1369 if (hwp_active) 1370 intel_pstate_get_hwp_cap(cpu); 1371 1372 if (type == FREQ_QOS_MIN) { 1373 perf_pct = global.min_perf_pct; 1374 } else { 1375 req++; 1376 perf_pct = global.max_perf_pct; 1377 } 1378 1379 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); 1380 1381 if (freq_qos_update_request(req, freq) < 0) 1382 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1383 } 1384 } 1385 1386 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1387 const char *buf, size_t count) 1388 { 1389 unsigned int input; 1390 int ret; 1391 1392 ret = sscanf(buf, "%u", &input); 1393 if (ret != 1) 1394 return -EINVAL; 1395 1396 mutex_lock(&intel_pstate_driver_lock); 1397 1398 if (!intel_pstate_driver) { 1399 mutex_unlock(&intel_pstate_driver_lock); 1400 return -EAGAIN; 1401 } 1402 1403 mutex_lock(&intel_pstate_limits_lock); 1404 1405 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1406 1407 mutex_unlock(&intel_pstate_limits_lock); 1408 1409 if (intel_pstate_driver == &intel_pstate) 1410 intel_pstate_update_policies(); 1411 else 1412 update_qos_request(FREQ_QOS_MAX); 1413 1414 mutex_unlock(&intel_pstate_driver_lock); 1415 1416 return count; 1417 } 1418 1419 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1420 const char *buf, size_t count) 1421 { 1422 unsigned int input; 1423 int ret; 1424 1425 ret = sscanf(buf, "%u", &input); 1426 if (ret != 1) 1427 return -EINVAL; 1428 1429 mutex_lock(&intel_pstate_driver_lock); 1430 1431 if (!intel_pstate_driver) { 1432 mutex_unlock(&intel_pstate_driver_lock); 1433 return -EAGAIN; 1434 } 1435 1436 mutex_lock(&intel_pstate_limits_lock); 1437 1438 global.min_perf_pct = clamp_t(int, input, 1439 min_perf_pct_min(), global.max_perf_pct); 1440 1441 mutex_unlock(&intel_pstate_limits_lock); 1442 1443 if (intel_pstate_driver == &intel_pstate) 1444 intel_pstate_update_policies(); 1445 else 1446 update_qos_request(FREQ_QOS_MIN); 1447 1448 mutex_unlock(&intel_pstate_driver_lock); 1449 1450 return count; 1451 } 1452 1453 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1454 struct kobj_attribute *attr, char *buf) 1455 { 1456 return sprintf(buf, "%u\n", hwp_boost); 1457 } 1458 1459 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1460 struct kobj_attribute *b, 1461 const char *buf, size_t count) 1462 { 1463 unsigned int input; 1464 int ret; 1465 1466 ret = kstrtouint(buf, 10, &input); 1467 if (ret) 1468 return ret; 1469 1470 mutex_lock(&intel_pstate_driver_lock); 1471 hwp_boost = !!input; 1472 intel_pstate_update_policies(); 1473 mutex_unlock(&intel_pstate_driver_lock); 1474 1475 return count; 1476 } 1477 1478 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1479 char *buf) 1480 { 1481 u64 power_ctl; 1482 int enable; 1483 1484 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1485 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1486 return sprintf(buf, "%d\n", !enable); 1487 } 1488 1489 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1490 const char *buf, size_t count) 1491 { 1492 bool input; 1493 int ret; 1494 1495 ret = kstrtobool(buf, &input); 1496 if (ret) 1497 return ret; 1498 1499 set_power_ctl_ee_state(input); 1500 1501 return count; 1502 } 1503 1504 show_one(max_perf_pct, max_perf_pct); 1505 show_one(min_perf_pct, min_perf_pct); 1506 1507 define_one_global_rw(status); 1508 define_one_global_rw(no_turbo); 1509 define_one_global_rw(max_perf_pct); 1510 define_one_global_rw(min_perf_pct); 1511 define_one_global_ro(turbo_pct); 1512 define_one_global_ro(num_pstates); 1513 define_one_global_rw(hwp_dynamic_boost); 1514 define_one_global_rw(energy_efficiency); 1515 1516 static struct attribute *intel_pstate_attributes[] = { 1517 &status.attr, 1518 &no_turbo.attr, 1519 NULL 1520 }; 1521 1522 static const struct attribute_group intel_pstate_attr_group = { 1523 .attrs = intel_pstate_attributes, 1524 }; 1525 1526 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1527 1528 static struct kobject *intel_pstate_kobject; 1529 1530 static void __init intel_pstate_sysfs_expose_params(void) 1531 { 1532 struct device *dev_root = bus_get_dev_root(&cpu_subsys); 1533 int rc; 1534 1535 if (dev_root) { 1536 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj); 1537 put_device(dev_root); 1538 } 1539 if (WARN_ON(!intel_pstate_kobject)) 1540 return; 1541 1542 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1543 if (WARN_ON(rc)) 1544 return; 1545 1546 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1547 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr); 1548 WARN_ON(rc); 1549 1550 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr); 1551 WARN_ON(rc); 1552 } 1553 1554 /* 1555 * If per cpu limits are enforced there are no global limits, so 1556 * return without creating max/min_perf_pct attributes 1557 */ 1558 if (per_cpu_limits) 1559 return; 1560 1561 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1562 WARN_ON(rc); 1563 1564 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1565 WARN_ON(rc); 1566 1567 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1568 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1569 WARN_ON(rc); 1570 } 1571 } 1572 1573 static void __init intel_pstate_sysfs_remove(void) 1574 { 1575 if (!intel_pstate_kobject) 1576 return; 1577 1578 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); 1579 1580 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1581 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr); 1582 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr); 1583 } 1584 1585 if (!per_cpu_limits) { 1586 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); 1587 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); 1588 1589 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) 1590 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); 1591 } 1592 1593 kobject_put(intel_pstate_kobject); 1594 } 1595 1596 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) 1597 { 1598 int rc; 1599 1600 if (!hwp_active) 1601 return; 1602 1603 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1604 WARN_ON_ONCE(rc); 1605 } 1606 1607 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) 1608 { 1609 if (!hwp_active) 1610 return; 1611 1612 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1613 } 1614 1615 /************************** sysfs end ************************/ 1616 1617 static void intel_pstate_notify_work(struct work_struct *work) 1618 { 1619 struct cpudata *cpudata = 1620 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work); 1621 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu); 1622 1623 if (policy) { 1624 intel_pstate_get_hwp_cap(cpudata); 1625 __intel_pstate_update_max_freq(cpudata, policy); 1626 1627 cpufreq_cpu_release(policy); 1628 } 1629 1630 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1631 } 1632 1633 static DEFINE_SPINLOCK(hwp_notify_lock); 1634 static cpumask_t hwp_intr_enable_mask; 1635 1636 void notify_hwp_interrupt(void) 1637 { 1638 unsigned int this_cpu = smp_processor_id(); 1639 struct cpudata *cpudata; 1640 unsigned long flags; 1641 u64 value; 1642 1643 if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1644 return; 1645 1646 rdmsrl_safe(MSR_HWP_STATUS, &value); 1647 if (!(value & 0x01)) 1648 return; 1649 1650 spin_lock_irqsave(&hwp_notify_lock, flags); 1651 1652 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask)) 1653 goto ack_intr; 1654 1655 /* 1656 * Currently we never free all_cpu_data. And we can't reach here 1657 * without this allocated. But for safety for future changes, added 1658 * check. 1659 */ 1660 if (unlikely(!READ_ONCE(all_cpu_data))) 1661 goto ack_intr; 1662 1663 /* 1664 * The free is done during cleanup, when cpufreq registry is failed. 1665 * We wouldn't be here if it fails on init or switch status. But for 1666 * future changes, added check. 1667 */ 1668 cpudata = READ_ONCE(all_cpu_data[this_cpu]); 1669 if (unlikely(!cpudata)) 1670 goto ack_intr; 1671 1672 schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10)); 1673 1674 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1675 1676 return; 1677 1678 ack_intr: 1679 wrmsrl_safe(MSR_HWP_STATUS, 0); 1680 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1681 } 1682 1683 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata) 1684 { 1685 unsigned long flags; 1686 1687 if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1688 return; 1689 1690 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1691 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1692 1693 spin_lock_irqsave(&hwp_notify_lock, flags); 1694 if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask)) 1695 cancel_delayed_work(&cpudata->hwp_notify_work); 1696 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1697 } 1698 1699 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata) 1700 { 1701 /* Enable HWP notification interrupt for guaranteed performance change */ 1702 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) { 1703 unsigned long flags; 1704 1705 spin_lock_irqsave(&hwp_notify_lock, flags); 1706 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work); 1707 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask); 1708 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1709 1710 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1711 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01); 1712 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1713 } 1714 } 1715 1716 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata) 1717 { 1718 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1719 1720 /* 1721 * If the EPP is set by firmware, which means that firmware enabled HWP 1722 * - Is equal or less than 0x80 (default balance_perf EPP) 1723 * - But less performance oriented than performance EPP 1724 * then use this as new balance_perf EPP. 1725 */ 1726 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE && 1727 cpudata->epp_default > HWP_EPP_PERFORMANCE) { 1728 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default; 1729 return; 1730 } 1731 1732 /* 1733 * If this CPU gen doesn't call for change in balance_perf 1734 * EPP return. 1735 */ 1736 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) 1737 return; 1738 1739 /* 1740 * Use hard coded value per gen to update the balance_perf 1741 * and default EPP. 1742 */ 1743 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE]; 1744 intel_pstate_set_epp(cpudata, cpudata->epp_default); 1745 } 1746 1747 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1748 { 1749 /* First disable HWP notification interrupt till we activate again */ 1750 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1751 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1752 1753 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1754 1755 intel_pstate_enable_hwp_interrupt(cpudata); 1756 1757 if (cpudata->epp_default >= 0) 1758 return; 1759 1760 intel_pstate_update_epp_defaults(cpudata); 1761 } 1762 1763 static int atom_get_min_pstate(int not_used) 1764 { 1765 u64 value; 1766 1767 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1768 return (value >> 8) & 0x7F; 1769 } 1770 1771 static int atom_get_max_pstate(int not_used) 1772 { 1773 u64 value; 1774 1775 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1776 return (value >> 16) & 0x7F; 1777 } 1778 1779 static int atom_get_turbo_pstate(int not_used) 1780 { 1781 u64 value; 1782 1783 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1784 return value & 0x7F; 1785 } 1786 1787 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1788 { 1789 u64 val; 1790 int32_t vid_fp; 1791 u32 vid; 1792 1793 val = (u64)pstate << 8; 1794 if (global.no_turbo && !global.turbo_disabled) 1795 val |= (u64)1 << 32; 1796 1797 vid_fp = cpudata->vid.min + mul_fp( 1798 int_tofp(pstate - cpudata->pstate.min_pstate), 1799 cpudata->vid.ratio); 1800 1801 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1802 vid = ceiling_fp(vid_fp); 1803 1804 if (pstate > cpudata->pstate.max_pstate) 1805 vid = cpudata->vid.turbo; 1806 1807 return val | vid; 1808 } 1809 1810 static int silvermont_get_scaling(void) 1811 { 1812 u64 value; 1813 int i; 1814 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1815 static int silvermont_freq_table[] = { 1816 83300, 100000, 133300, 116700, 80000}; 1817 1818 rdmsrl(MSR_FSB_FREQ, value); 1819 i = value & 0x7; 1820 WARN_ON(i > 4); 1821 1822 return silvermont_freq_table[i]; 1823 } 1824 1825 static int airmont_get_scaling(void) 1826 { 1827 u64 value; 1828 int i; 1829 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1830 static int airmont_freq_table[] = { 1831 83300, 100000, 133300, 116700, 80000, 1832 93300, 90000, 88900, 87500}; 1833 1834 rdmsrl(MSR_FSB_FREQ, value); 1835 i = value & 0xF; 1836 WARN_ON(i > 8); 1837 1838 return airmont_freq_table[i]; 1839 } 1840 1841 static void atom_get_vid(struct cpudata *cpudata) 1842 { 1843 u64 value; 1844 1845 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1846 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1847 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1848 cpudata->vid.ratio = div_fp( 1849 cpudata->vid.max - cpudata->vid.min, 1850 int_tofp(cpudata->pstate.max_pstate - 1851 cpudata->pstate.min_pstate)); 1852 1853 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1854 cpudata->vid.turbo = value & 0x7f; 1855 } 1856 1857 static int core_get_min_pstate(int cpu) 1858 { 1859 u64 value; 1860 1861 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1862 return (value >> 40) & 0xFF; 1863 } 1864 1865 static int core_get_max_pstate_physical(int cpu) 1866 { 1867 u64 value; 1868 1869 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1870 return (value >> 8) & 0xFF; 1871 } 1872 1873 static int core_get_tdp_ratio(int cpu, u64 plat_info) 1874 { 1875 /* Check how many TDP levels present */ 1876 if (plat_info & 0x600000000) { 1877 u64 tdp_ctrl; 1878 u64 tdp_ratio; 1879 int tdp_msr; 1880 int err; 1881 1882 /* Get the TDP level (0, 1, 2) to get ratios */ 1883 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1884 if (err) 1885 return err; 1886 1887 /* TDP MSR are continuous starting at 0x648 */ 1888 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1889 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio); 1890 if (err) 1891 return err; 1892 1893 /* For level 1 and 2, bits[23:16] contain the ratio */ 1894 if (tdp_ctrl & 0x03) 1895 tdp_ratio >>= 16; 1896 1897 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1898 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1899 1900 return (int)tdp_ratio; 1901 } 1902 1903 return -ENXIO; 1904 } 1905 1906 static int core_get_max_pstate(int cpu) 1907 { 1908 u64 tar; 1909 u64 plat_info; 1910 int max_pstate; 1911 int tdp_ratio; 1912 int err; 1913 1914 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info); 1915 max_pstate = (plat_info >> 8) & 0xFF; 1916 1917 tdp_ratio = core_get_tdp_ratio(cpu, plat_info); 1918 if (tdp_ratio <= 0) 1919 return max_pstate; 1920 1921 if (hwp_active) { 1922 /* Turbo activation ratio is not used on HWP platforms */ 1923 return tdp_ratio; 1924 } 1925 1926 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar); 1927 if (!err) { 1928 int tar_levels; 1929 1930 /* Do some sanity checking for safety */ 1931 tar_levels = tar & 0xff; 1932 if (tdp_ratio - 1 == tar_levels) { 1933 max_pstate = tar_levels; 1934 pr_debug("max_pstate=TAC %x\n", max_pstate); 1935 } 1936 } 1937 1938 return max_pstate; 1939 } 1940 1941 static int core_get_turbo_pstate(int cpu) 1942 { 1943 u64 value; 1944 int nont, ret; 1945 1946 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1947 nont = core_get_max_pstate(cpu); 1948 ret = (value) & 255; 1949 if (ret <= nont) 1950 ret = nont; 1951 return ret; 1952 } 1953 1954 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1955 { 1956 u64 val; 1957 1958 val = (u64)pstate << 8; 1959 if (global.no_turbo && !global.turbo_disabled) 1960 val |= (u64)1 << 32; 1961 1962 return val; 1963 } 1964 1965 static int knl_get_aperf_mperf_shift(void) 1966 { 1967 return 10; 1968 } 1969 1970 static int knl_get_turbo_pstate(int cpu) 1971 { 1972 u64 value; 1973 int nont, ret; 1974 1975 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1976 nont = core_get_max_pstate(cpu); 1977 ret = (((value) >> 8) & 0xFF); 1978 if (ret <= nont) 1979 ret = nont; 1980 return ret; 1981 } 1982 1983 static void hybrid_get_type(void *data) 1984 { 1985 u8 *cpu_type = data; 1986 1987 *cpu_type = get_this_hybrid_cpu_type(); 1988 } 1989 1990 static int hwp_get_cpu_scaling(int cpu) 1991 { 1992 u8 cpu_type = 0; 1993 1994 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1); 1995 /* P-cores have a smaller perf level-to-freqency scaling factor. */ 1996 if (cpu_type == 0x40) 1997 return hybrid_scaling_factor; 1998 1999 /* Use default core scaling for E-cores */ 2000 if (cpu_type == 0x20) 2001 return core_get_scaling(); 2002 2003 /* 2004 * If reached here, this system is either non-hybrid (like Tiger 2005 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with 2006 * no E cores (in which case CPUID for hybrid support is 0). 2007 * 2008 * The CPPC nominal_frequency field is 0 for non-hybrid systems, 2009 * so the default core scaling will be used for them. 2010 */ 2011 return intel_pstate_cppc_get_scaling(cpu); 2012 } 2013 2014 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 2015 { 2016 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 2017 cpu->pstate.current_pstate = pstate; 2018 /* 2019 * Generally, there is no guarantee that this code will always run on 2020 * the CPU being updated, so force the register update to run on the 2021 * right CPU. 2022 */ 2023 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2024 pstate_funcs.get_val(cpu, pstate)); 2025 } 2026 2027 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 2028 { 2029 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 2030 } 2031 2032 static void intel_pstate_max_within_limits(struct cpudata *cpu) 2033 { 2034 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 2035 2036 update_turbo_state(); 2037 intel_pstate_set_pstate(cpu, pstate); 2038 } 2039 2040 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 2041 { 2042 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu); 2043 int perf_ctl_scaling = pstate_funcs.get_scaling(); 2044 2045 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu); 2046 cpu->pstate.max_pstate_physical = perf_ctl_max_phys; 2047 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling; 2048 2049 if (hwp_active && !hwp_mode_bdw) { 2050 __intel_pstate_get_hwp_cap(cpu); 2051 2052 if (pstate_funcs.get_cpu_scaling) { 2053 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu); 2054 if (cpu->pstate.scaling != perf_ctl_scaling) 2055 intel_pstate_hybrid_hwp_adjust(cpu); 2056 } else { 2057 cpu->pstate.scaling = perf_ctl_scaling; 2058 } 2059 } else { 2060 cpu->pstate.scaling = perf_ctl_scaling; 2061 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu); 2062 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu); 2063 } 2064 2065 if (cpu->pstate.scaling == perf_ctl_scaling) { 2066 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 2067 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling; 2068 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling; 2069 } 2070 2071 if (pstate_funcs.get_aperf_mperf_shift) 2072 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 2073 2074 if (pstate_funcs.get_vid) 2075 pstate_funcs.get_vid(cpu); 2076 2077 intel_pstate_set_min_pstate(cpu); 2078 } 2079 2080 /* 2081 * Long hold time will keep high perf limits for long time, 2082 * which negatively impacts perf/watt for some workloads, 2083 * like specpower. 3ms is based on experiements on some 2084 * workoads. 2085 */ 2086 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 2087 2088 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 2089 { 2090 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 2091 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2092 u32 max_limit = (hwp_req & 0xff00) >> 8; 2093 u32 min_limit = (hwp_req & 0xff); 2094 u32 boost_level1; 2095 2096 /* 2097 * Cases to consider (User changes via sysfs or boot time): 2098 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 2099 * No boost, return. 2100 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 2101 * Should result in one level boost only for P0. 2102 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 2103 * Should result in two level boost: 2104 * (min + p1)/2 and P1. 2105 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 2106 * Should result in three level boost: 2107 * (min + p1)/2, P1 and P0. 2108 */ 2109 2110 /* If max and min are equal or already at max, nothing to boost */ 2111 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 2112 return; 2113 2114 if (!cpu->hwp_boost_min) 2115 cpu->hwp_boost_min = min_limit; 2116 2117 /* level at half way mark between min and guranteed */ 2118 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; 2119 2120 if (cpu->hwp_boost_min < boost_level1) 2121 cpu->hwp_boost_min = boost_level1; 2122 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) 2123 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); 2124 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && 2125 max_limit != HWP_GUARANTEED_PERF(hwp_cap)) 2126 cpu->hwp_boost_min = max_limit; 2127 else 2128 return; 2129 2130 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 2131 wrmsrl(MSR_HWP_REQUEST, hwp_req); 2132 cpu->last_update = cpu->sample.time; 2133 } 2134 2135 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 2136 { 2137 if (cpu->hwp_boost_min) { 2138 bool expired; 2139 2140 /* Check if we are idle for hold time to boost down */ 2141 expired = time_after64(cpu->sample.time, cpu->last_update + 2142 hwp_boost_hold_time_ns); 2143 if (expired) { 2144 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); 2145 cpu->hwp_boost_min = 0; 2146 } 2147 } 2148 cpu->last_update = cpu->sample.time; 2149 } 2150 2151 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 2152 u64 time) 2153 { 2154 cpu->sample.time = time; 2155 2156 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 2157 bool do_io = false; 2158 2159 cpu->sched_flags = 0; 2160 /* 2161 * Set iowait_boost flag and update time. Since IO WAIT flag 2162 * is set all the time, we can't just conclude that there is 2163 * some IO bound activity is scheduled on this CPU with just 2164 * one occurrence. If we receive at least two in two 2165 * consecutive ticks, then we treat as boost candidate. 2166 */ 2167 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 2168 do_io = true; 2169 2170 cpu->last_io_update = time; 2171 2172 if (do_io) 2173 intel_pstate_hwp_boost_up(cpu); 2174 2175 } else { 2176 intel_pstate_hwp_boost_down(cpu); 2177 } 2178 } 2179 2180 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 2181 u64 time, unsigned int flags) 2182 { 2183 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2184 2185 cpu->sched_flags |= flags; 2186 2187 if (smp_processor_id() == cpu->cpu) 2188 intel_pstate_update_util_hwp_local(cpu, time); 2189 } 2190 2191 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 2192 { 2193 struct sample *sample = &cpu->sample; 2194 2195 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 2196 } 2197 2198 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 2199 { 2200 u64 aperf, mperf; 2201 unsigned long flags; 2202 u64 tsc; 2203 2204 local_irq_save(flags); 2205 rdmsrl(MSR_IA32_APERF, aperf); 2206 rdmsrl(MSR_IA32_MPERF, mperf); 2207 tsc = rdtsc(); 2208 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 2209 local_irq_restore(flags); 2210 return false; 2211 } 2212 local_irq_restore(flags); 2213 2214 cpu->last_sample_time = cpu->sample.time; 2215 cpu->sample.time = time; 2216 cpu->sample.aperf = aperf; 2217 cpu->sample.mperf = mperf; 2218 cpu->sample.tsc = tsc; 2219 cpu->sample.aperf -= cpu->prev_aperf; 2220 cpu->sample.mperf -= cpu->prev_mperf; 2221 cpu->sample.tsc -= cpu->prev_tsc; 2222 2223 cpu->prev_aperf = aperf; 2224 cpu->prev_mperf = mperf; 2225 cpu->prev_tsc = tsc; 2226 /* 2227 * First time this function is invoked in a given cycle, all of the 2228 * previous sample data fields are equal to zero or stale and they must 2229 * be populated with meaningful numbers for things to work, so assume 2230 * that sample.time will always be reset before setting the utilization 2231 * update hook and make the caller skip the sample then. 2232 */ 2233 if (cpu->last_sample_time) { 2234 intel_pstate_calc_avg_perf(cpu); 2235 return true; 2236 } 2237 return false; 2238 } 2239 2240 static inline int32_t get_avg_frequency(struct cpudata *cpu) 2241 { 2242 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 2243 } 2244 2245 static inline int32_t get_avg_pstate(struct cpudata *cpu) 2246 { 2247 return mul_ext_fp(cpu->pstate.max_pstate_physical, 2248 cpu->sample.core_avg_perf); 2249 } 2250 2251 static inline int32_t get_target_pstate(struct cpudata *cpu) 2252 { 2253 struct sample *sample = &cpu->sample; 2254 int32_t busy_frac; 2255 int target, avg_pstate; 2256 2257 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 2258 sample->tsc); 2259 2260 if (busy_frac < cpu->iowait_boost) 2261 busy_frac = cpu->iowait_boost; 2262 2263 sample->busy_scaled = busy_frac * 100; 2264 2265 target = global.no_turbo || global.turbo_disabled ? 2266 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2267 target += target >> 2; 2268 target = mul_fp(target, busy_frac); 2269 if (target < cpu->pstate.min_pstate) 2270 target = cpu->pstate.min_pstate; 2271 2272 /* 2273 * If the average P-state during the previous cycle was higher than the 2274 * current target, add 50% of the difference to the target to reduce 2275 * possible performance oscillations and offset possible performance 2276 * loss related to moving the workload from one CPU to another within 2277 * a package/module. 2278 */ 2279 avg_pstate = get_avg_pstate(cpu); 2280 if (avg_pstate > target) 2281 target += (avg_pstate - target) >> 1; 2282 2283 return target; 2284 } 2285 2286 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 2287 { 2288 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 2289 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 2290 2291 return clamp_t(int, pstate, min_pstate, max_pstate); 2292 } 2293 2294 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 2295 { 2296 if (pstate == cpu->pstate.current_pstate) 2297 return; 2298 2299 cpu->pstate.current_pstate = pstate; 2300 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 2301 } 2302 2303 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 2304 { 2305 int from = cpu->pstate.current_pstate; 2306 struct sample *sample; 2307 int target_pstate; 2308 2309 update_turbo_state(); 2310 2311 target_pstate = get_target_pstate(cpu); 2312 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2313 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 2314 intel_pstate_update_pstate(cpu, target_pstate); 2315 2316 sample = &cpu->sample; 2317 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 2318 fp_toint(sample->busy_scaled), 2319 from, 2320 cpu->pstate.current_pstate, 2321 sample->mperf, 2322 sample->aperf, 2323 sample->tsc, 2324 get_avg_frequency(cpu), 2325 fp_toint(cpu->iowait_boost * 100)); 2326 } 2327 2328 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 2329 unsigned int flags) 2330 { 2331 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2332 u64 delta_ns; 2333 2334 /* Don't allow remote callbacks */ 2335 if (smp_processor_id() != cpu->cpu) 2336 return; 2337 2338 delta_ns = time - cpu->last_update; 2339 if (flags & SCHED_CPUFREQ_IOWAIT) { 2340 /* Start over if the CPU may have been idle. */ 2341 if (delta_ns > TICK_NSEC) { 2342 cpu->iowait_boost = ONE_EIGHTH_FP; 2343 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 2344 cpu->iowait_boost <<= 1; 2345 if (cpu->iowait_boost > int_tofp(1)) 2346 cpu->iowait_boost = int_tofp(1); 2347 } else { 2348 cpu->iowait_boost = ONE_EIGHTH_FP; 2349 } 2350 } else if (cpu->iowait_boost) { 2351 /* Clear iowait_boost if the CPU may have been idle. */ 2352 if (delta_ns > TICK_NSEC) 2353 cpu->iowait_boost = 0; 2354 else 2355 cpu->iowait_boost >>= 1; 2356 } 2357 cpu->last_update = time; 2358 delta_ns = time - cpu->sample.time; 2359 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 2360 return; 2361 2362 if (intel_pstate_sample(cpu, time)) 2363 intel_pstate_adjust_pstate(cpu); 2364 } 2365 2366 static struct pstate_funcs core_funcs = { 2367 .get_max = core_get_max_pstate, 2368 .get_max_physical = core_get_max_pstate_physical, 2369 .get_min = core_get_min_pstate, 2370 .get_turbo = core_get_turbo_pstate, 2371 .get_scaling = core_get_scaling, 2372 .get_val = core_get_val, 2373 }; 2374 2375 static const struct pstate_funcs silvermont_funcs = { 2376 .get_max = atom_get_max_pstate, 2377 .get_max_physical = atom_get_max_pstate, 2378 .get_min = atom_get_min_pstate, 2379 .get_turbo = atom_get_turbo_pstate, 2380 .get_val = atom_get_val, 2381 .get_scaling = silvermont_get_scaling, 2382 .get_vid = atom_get_vid, 2383 }; 2384 2385 static const struct pstate_funcs airmont_funcs = { 2386 .get_max = atom_get_max_pstate, 2387 .get_max_physical = atom_get_max_pstate, 2388 .get_min = atom_get_min_pstate, 2389 .get_turbo = atom_get_turbo_pstate, 2390 .get_val = atom_get_val, 2391 .get_scaling = airmont_get_scaling, 2392 .get_vid = atom_get_vid, 2393 }; 2394 2395 static const struct pstate_funcs knl_funcs = { 2396 .get_max = core_get_max_pstate, 2397 .get_max_physical = core_get_max_pstate_physical, 2398 .get_min = core_get_min_pstate, 2399 .get_turbo = knl_get_turbo_pstate, 2400 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 2401 .get_scaling = core_get_scaling, 2402 .get_val = core_get_val, 2403 }; 2404 2405 #define X86_MATCH(model, policy) \ 2406 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 2407 X86_FEATURE_APERFMPERF, &policy) 2408 2409 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 2410 X86_MATCH(SANDYBRIDGE, core_funcs), 2411 X86_MATCH(SANDYBRIDGE_X, core_funcs), 2412 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs), 2413 X86_MATCH(IVYBRIDGE, core_funcs), 2414 X86_MATCH(HASWELL, core_funcs), 2415 X86_MATCH(BROADWELL, core_funcs), 2416 X86_MATCH(IVYBRIDGE_X, core_funcs), 2417 X86_MATCH(HASWELL_X, core_funcs), 2418 X86_MATCH(HASWELL_L, core_funcs), 2419 X86_MATCH(HASWELL_G, core_funcs), 2420 X86_MATCH(BROADWELL_G, core_funcs), 2421 X86_MATCH(ATOM_AIRMONT, airmont_funcs), 2422 X86_MATCH(SKYLAKE_L, core_funcs), 2423 X86_MATCH(BROADWELL_X, core_funcs), 2424 X86_MATCH(SKYLAKE, core_funcs), 2425 X86_MATCH(BROADWELL_D, core_funcs), 2426 X86_MATCH(XEON_PHI_KNL, knl_funcs), 2427 X86_MATCH(XEON_PHI_KNM, knl_funcs), 2428 X86_MATCH(ATOM_GOLDMONT, core_funcs), 2429 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs), 2430 X86_MATCH(SKYLAKE_X, core_funcs), 2431 X86_MATCH(COMETLAKE, core_funcs), 2432 X86_MATCH(ICELAKE_X, core_funcs), 2433 X86_MATCH(TIGERLAKE, core_funcs), 2434 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs), 2435 X86_MATCH(EMERALDRAPIDS_X, core_funcs), 2436 {} 2437 }; 2438 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2439 2440 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2441 X86_MATCH(BROADWELL_D, core_funcs), 2442 X86_MATCH(BROADWELL_X, core_funcs), 2443 X86_MATCH(SKYLAKE_X, core_funcs), 2444 X86_MATCH(ICELAKE_X, core_funcs), 2445 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs), 2446 {} 2447 }; 2448 2449 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2450 X86_MATCH(KABYLAKE, core_funcs), 2451 {} 2452 }; 2453 2454 static int intel_pstate_init_cpu(unsigned int cpunum) 2455 { 2456 struct cpudata *cpu; 2457 2458 cpu = all_cpu_data[cpunum]; 2459 2460 if (!cpu) { 2461 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2462 if (!cpu) 2463 return -ENOMEM; 2464 2465 WRITE_ONCE(all_cpu_data[cpunum], cpu); 2466 2467 cpu->cpu = cpunum; 2468 2469 cpu->epp_default = -EINVAL; 2470 2471 if (hwp_active) { 2472 intel_pstate_hwp_enable(cpu); 2473 2474 if (intel_pstate_acpi_pm_profile_server()) 2475 hwp_boost = true; 2476 } 2477 } else if (hwp_active) { 2478 /* 2479 * Re-enable HWP in case this happens after a resume from ACPI 2480 * S3 if the CPU was offline during the whole system/resume 2481 * cycle. 2482 */ 2483 intel_pstate_hwp_reenable(cpu); 2484 } 2485 2486 cpu->epp_powersave = -EINVAL; 2487 cpu->epp_policy = 0; 2488 2489 intel_pstate_get_cpu_pstates(cpu); 2490 2491 pr_debug("controlling: cpu %d\n", cpunum); 2492 2493 return 0; 2494 } 2495 2496 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2497 { 2498 struct cpudata *cpu = all_cpu_data[cpu_num]; 2499 2500 if (hwp_active && !hwp_boost) 2501 return; 2502 2503 if (cpu->update_util_set) 2504 return; 2505 2506 /* Prevent intel_pstate_update_util() from using stale data. */ 2507 cpu->sample.time = 0; 2508 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2509 (hwp_active ? 2510 intel_pstate_update_util_hwp : 2511 intel_pstate_update_util)); 2512 cpu->update_util_set = true; 2513 } 2514 2515 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2516 { 2517 struct cpudata *cpu_data = all_cpu_data[cpu]; 2518 2519 if (!cpu_data->update_util_set) 2520 return; 2521 2522 cpufreq_remove_update_util_hook(cpu); 2523 cpu_data->update_util_set = false; 2524 synchronize_rcu(); 2525 } 2526 2527 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2528 { 2529 return global.turbo_disabled || global.no_turbo ? 2530 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2531 } 2532 2533 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2534 unsigned int policy_min, 2535 unsigned int policy_max) 2536 { 2537 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 2538 int32_t max_policy_perf, min_policy_perf; 2539 2540 max_policy_perf = policy_max / perf_ctl_scaling; 2541 if (policy_max == policy_min) { 2542 min_policy_perf = max_policy_perf; 2543 } else { 2544 min_policy_perf = policy_min / perf_ctl_scaling; 2545 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2546 0, max_policy_perf); 2547 } 2548 2549 /* 2550 * HWP needs some special consideration, because HWP_REQUEST uses 2551 * abstract values to represent performance rather than pure ratios. 2552 */ 2553 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) { 2554 int freq; 2555 2556 freq = max_policy_perf * perf_ctl_scaling; 2557 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); 2558 freq = min_policy_perf * perf_ctl_scaling; 2559 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); 2560 } 2561 2562 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", 2563 cpu->cpu, min_policy_perf, max_policy_perf); 2564 2565 /* Normalize user input to [min_perf, max_perf] */ 2566 if (per_cpu_limits) { 2567 cpu->min_perf_ratio = min_policy_perf; 2568 cpu->max_perf_ratio = max_policy_perf; 2569 } else { 2570 int turbo_max = cpu->pstate.turbo_pstate; 2571 int32_t global_min, global_max; 2572 2573 /* Global limits are in percent of the maximum turbo P-state. */ 2574 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2575 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2576 global_min = clamp_t(int32_t, global_min, 0, global_max); 2577 2578 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2579 global_min, global_max); 2580 2581 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2582 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2583 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2584 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2585 2586 /* Make sure min_perf <= max_perf */ 2587 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2588 cpu->max_perf_ratio); 2589 2590 } 2591 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2592 cpu->max_perf_ratio, 2593 cpu->min_perf_ratio); 2594 } 2595 2596 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2597 { 2598 struct cpudata *cpu; 2599 2600 if (!policy->cpuinfo.max_freq) 2601 return -ENODEV; 2602 2603 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2604 policy->cpuinfo.max_freq, policy->max); 2605 2606 cpu = all_cpu_data[policy->cpu]; 2607 cpu->policy = policy->policy; 2608 2609 mutex_lock(&intel_pstate_limits_lock); 2610 2611 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2612 2613 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2614 /* 2615 * NOHZ_FULL CPUs need this as the governor callback may not 2616 * be invoked on them. 2617 */ 2618 intel_pstate_clear_update_util_hook(policy->cpu); 2619 intel_pstate_max_within_limits(cpu); 2620 } else { 2621 intel_pstate_set_update_util_hook(policy->cpu); 2622 } 2623 2624 if (hwp_active) { 2625 /* 2626 * When hwp_boost was active before and dynamically it 2627 * was turned off, in that case we need to clear the 2628 * update util hook. 2629 */ 2630 if (!hwp_boost) 2631 intel_pstate_clear_update_util_hook(policy->cpu); 2632 intel_pstate_hwp_set(policy->cpu); 2633 } 2634 /* 2635 * policy->cur is never updated with the intel_pstate driver, but it 2636 * is used as a stale frequency value. So, keep it within limits. 2637 */ 2638 policy->cur = policy->min; 2639 2640 mutex_unlock(&intel_pstate_limits_lock); 2641 2642 return 0; 2643 } 2644 2645 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2646 struct cpufreq_policy_data *policy) 2647 { 2648 if (!hwp_active && 2649 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2650 policy->max < policy->cpuinfo.max_freq && 2651 policy->max > cpu->pstate.max_freq) { 2652 pr_debug("policy->max > max non turbo frequency\n"); 2653 policy->max = policy->cpuinfo.max_freq; 2654 } 2655 } 2656 2657 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 2658 struct cpufreq_policy_data *policy) 2659 { 2660 int max_freq; 2661 2662 update_turbo_state(); 2663 if (hwp_active) { 2664 intel_pstate_get_hwp_cap(cpu); 2665 max_freq = global.no_turbo || global.turbo_disabled ? 2666 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2667 } else { 2668 max_freq = intel_pstate_get_max_freq(cpu); 2669 } 2670 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); 2671 2672 intel_pstate_adjust_policy_max(cpu, policy); 2673 } 2674 2675 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 2676 { 2677 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 2678 2679 return 0; 2680 } 2681 2682 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy) 2683 { 2684 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2685 2686 pr_debug("CPU %d going offline\n", cpu->cpu); 2687 2688 if (cpu->suspended) 2689 return 0; 2690 2691 /* 2692 * If the CPU is an SMT thread and it goes offline with the performance 2693 * settings different from the minimum, it will prevent its sibling 2694 * from getting to lower performance levels, so force the minimum 2695 * performance on CPU offline to prevent that from happening. 2696 */ 2697 if (hwp_active) 2698 intel_pstate_hwp_offline(cpu); 2699 else 2700 intel_pstate_set_min_pstate(cpu); 2701 2702 intel_pstate_exit_perf_limits(policy); 2703 2704 return 0; 2705 } 2706 2707 static int intel_pstate_cpu_online(struct cpufreq_policy *policy) 2708 { 2709 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2710 2711 pr_debug("CPU %d going online\n", cpu->cpu); 2712 2713 intel_pstate_init_acpi_perf_limits(policy); 2714 2715 if (hwp_active) { 2716 /* 2717 * Re-enable HWP and clear the "suspended" flag to let "resume" 2718 * know that it need not do that. 2719 */ 2720 intel_pstate_hwp_reenable(cpu); 2721 cpu->suspended = false; 2722 } 2723 2724 return 0; 2725 } 2726 2727 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) 2728 { 2729 intel_pstate_clear_update_util_hook(policy->cpu); 2730 2731 return intel_cpufreq_cpu_offline(policy); 2732 } 2733 2734 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2735 { 2736 pr_debug("CPU %d exiting\n", policy->cpu); 2737 2738 policy->fast_switch_possible = false; 2739 2740 return 0; 2741 } 2742 2743 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2744 { 2745 struct cpudata *cpu; 2746 int rc; 2747 2748 rc = intel_pstate_init_cpu(policy->cpu); 2749 if (rc) 2750 return rc; 2751 2752 cpu = all_cpu_data[policy->cpu]; 2753 2754 cpu->max_perf_ratio = 0xFF; 2755 cpu->min_perf_ratio = 0; 2756 2757 /* cpuinfo and default policy values */ 2758 policy->cpuinfo.min_freq = cpu->pstate.min_freq; 2759 update_turbo_state(); 2760 global.turbo_disabled_mf = global.turbo_disabled; 2761 policy->cpuinfo.max_freq = global.turbo_disabled ? 2762 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2763 2764 policy->min = policy->cpuinfo.min_freq; 2765 policy->max = policy->cpuinfo.max_freq; 2766 2767 intel_pstate_init_acpi_perf_limits(policy); 2768 2769 policy->fast_switch_possible = true; 2770 2771 return 0; 2772 } 2773 2774 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2775 { 2776 int ret = __intel_pstate_cpu_init(policy); 2777 2778 if (ret) 2779 return ret; 2780 2781 /* 2782 * Set the policy to powersave to provide a valid fallback value in case 2783 * the default cpufreq governor is neither powersave nor performance. 2784 */ 2785 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2786 2787 if (hwp_active) { 2788 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2789 2790 cpu->epp_cached = intel_pstate_get_epp(cpu, 0); 2791 } 2792 2793 return 0; 2794 } 2795 2796 static struct cpufreq_driver intel_pstate = { 2797 .flags = CPUFREQ_CONST_LOOPS, 2798 .verify = intel_pstate_verify_policy, 2799 .setpolicy = intel_pstate_set_policy, 2800 .suspend = intel_pstate_suspend, 2801 .resume = intel_pstate_resume, 2802 .init = intel_pstate_cpu_init, 2803 .exit = intel_pstate_cpu_exit, 2804 .offline = intel_pstate_cpu_offline, 2805 .online = intel_pstate_cpu_online, 2806 .update_limits = intel_pstate_update_limits, 2807 .name = "intel_pstate", 2808 }; 2809 2810 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 2811 { 2812 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2813 2814 intel_pstate_verify_cpu_policy(cpu, policy); 2815 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2816 2817 return 0; 2818 } 2819 2820 /* Use of trace in passive mode: 2821 * 2822 * In passive mode the trace core_busy field (also known as the 2823 * performance field, and lablelled as such on the graphs; also known as 2824 * core_avg_perf) is not needed and so is re-assigned to indicate if the 2825 * driver call was via the normal or fast switch path. Various graphs 2826 * output from the intel_pstate_tracer.py utility that include core_busy 2827 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 2828 * so we use 10 to indicate the normal path through the driver, and 2829 * 90 to indicate the fast switch path through the driver. 2830 * The scaled_busy field is not used, and is set to 0. 2831 */ 2832 2833 #define INTEL_PSTATE_TRACE_TARGET 10 2834 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 2835 2836 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 2837 { 2838 struct sample *sample; 2839 2840 if (!trace_pstate_sample_enabled()) 2841 return; 2842 2843 if (!intel_pstate_sample(cpu, ktime_get())) 2844 return; 2845 2846 sample = &cpu->sample; 2847 trace_pstate_sample(trace_type, 2848 0, 2849 old_pstate, 2850 cpu->pstate.current_pstate, 2851 sample->mperf, 2852 sample->aperf, 2853 sample->tsc, 2854 get_avg_frequency(cpu), 2855 fp_toint(cpu->iowait_boost * 100)); 2856 } 2857 2858 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, 2859 u32 desired, bool fast_switch) 2860 { 2861 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; 2862 2863 value &= ~HWP_MIN_PERF(~0L); 2864 value |= HWP_MIN_PERF(min); 2865 2866 value &= ~HWP_MAX_PERF(~0L); 2867 value |= HWP_MAX_PERF(max); 2868 2869 value &= ~HWP_DESIRED_PERF(~0L); 2870 value |= HWP_DESIRED_PERF(desired); 2871 2872 if (value == prev) 2873 return; 2874 2875 WRITE_ONCE(cpu->hwp_req_cached, value); 2876 if (fast_switch) 2877 wrmsrl(MSR_HWP_REQUEST, value); 2878 else 2879 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 2880 } 2881 2882 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, 2883 u32 target_pstate, bool fast_switch) 2884 { 2885 if (fast_switch) 2886 wrmsrl(MSR_IA32_PERF_CTL, 2887 pstate_funcs.get_val(cpu, target_pstate)); 2888 else 2889 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2890 pstate_funcs.get_val(cpu, target_pstate)); 2891 } 2892 2893 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, 2894 int target_pstate, bool fast_switch) 2895 { 2896 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2897 int old_pstate = cpu->pstate.current_pstate; 2898 2899 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2900 if (hwp_active) { 2901 int max_pstate = policy->strict_target ? 2902 target_pstate : cpu->max_perf_ratio; 2903 2904 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, 2905 fast_switch); 2906 } else if (target_pstate != old_pstate) { 2907 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); 2908 } 2909 2910 cpu->pstate.current_pstate = target_pstate; 2911 2912 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : 2913 INTEL_PSTATE_TRACE_TARGET, old_pstate); 2914 2915 return target_pstate; 2916 } 2917 2918 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2919 unsigned int target_freq, 2920 unsigned int relation) 2921 { 2922 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2923 struct cpufreq_freqs freqs; 2924 int target_pstate; 2925 2926 update_turbo_state(); 2927 2928 freqs.old = policy->cur; 2929 freqs.new = target_freq; 2930 2931 cpufreq_freq_transition_begin(policy, &freqs); 2932 2933 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation); 2934 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); 2935 2936 freqs.new = target_pstate * cpu->pstate.scaling; 2937 2938 cpufreq_freq_transition_end(policy, &freqs, false); 2939 2940 return 0; 2941 } 2942 2943 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2944 unsigned int target_freq) 2945 { 2946 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2947 int target_pstate; 2948 2949 update_turbo_state(); 2950 2951 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq); 2952 2953 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); 2954 2955 return target_pstate * cpu->pstate.scaling; 2956 } 2957 2958 static void intel_cpufreq_adjust_perf(unsigned int cpunum, 2959 unsigned long min_perf, 2960 unsigned long target_perf, 2961 unsigned long capacity) 2962 { 2963 struct cpudata *cpu = all_cpu_data[cpunum]; 2964 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2965 int old_pstate = cpu->pstate.current_pstate; 2966 int cap_pstate, min_pstate, max_pstate, target_pstate; 2967 2968 update_turbo_state(); 2969 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) : 2970 HWP_HIGHEST_PERF(hwp_cap); 2971 2972 /* Optimization: Avoid unnecessary divisions. */ 2973 2974 target_pstate = cap_pstate; 2975 if (target_perf < capacity) 2976 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); 2977 2978 min_pstate = cap_pstate; 2979 if (min_perf < capacity) 2980 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); 2981 2982 if (min_pstate < cpu->pstate.min_pstate) 2983 min_pstate = cpu->pstate.min_pstate; 2984 2985 if (min_pstate < cpu->min_perf_ratio) 2986 min_pstate = cpu->min_perf_ratio; 2987 2988 if (min_pstate > cpu->max_perf_ratio) 2989 min_pstate = cpu->max_perf_ratio; 2990 2991 max_pstate = min(cap_pstate, cpu->max_perf_ratio); 2992 if (max_pstate < min_pstate) 2993 max_pstate = min_pstate; 2994 2995 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); 2996 2997 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); 2998 2999 cpu->pstate.current_pstate = target_pstate; 3000 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 3001 } 3002 3003 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 3004 { 3005 struct freq_qos_request *req; 3006 struct cpudata *cpu; 3007 struct device *dev; 3008 int ret, freq; 3009 3010 dev = get_cpu_device(policy->cpu); 3011 if (!dev) 3012 return -ENODEV; 3013 3014 ret = __intel_pstate_cpu_init(policy); 3015 if (ret) 3016 return ret; 3017 3018 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 3019 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 3020 policy->cur = policy->cpuinfo.min_freq; 3021 3022 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 3023 if (!req) { 3024 ret = -ENOMEM; 3025 goto pstate_exit; 3026 } 3027 3028 cpu = all_cpu_data[policy->cpu]; 3029 3030 if (hwp_active) { 3031 u64 value; 3032 3033 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; 3034 3035 intel_pstate_get_hwp_cap(cpu); 3036 3037 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); 3038 WRITE_ONCE(cpu->hwp_req_cached, value); 3039 3040 cpu->epp_cached = intel_pstate_get_epp(cpu, value); 3041 } else { 3042 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 3043 } 3044 3045 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); 3046 3047 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 3048 freq); 3049 if (ret < 0) { 3050 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 3051 goto free_req; 3052 } 3053 3054 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); 3055 3056 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 3057 freq); 3058 if (ret < 0) { 3059 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 3060 goto remove_min_req; 3061 } 3062 3063 policy->driver_data = req; 3064 3065 return 0; 3066 3067 remove_min_req: 3068 freq_qos_remove_request(req); 3069 free_req: 3070 kfree(req); 3071 pstate_exit: 3072 intel_pstate_exit_perf_limits(policy); 3073 3074 return ret; 3075 } 3076 3077 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 3078 { 3079 struct freq_qos_request *req; 3080 3081 req = policy->driver_data; 3082 3083 freq_qos_remove_request(req + 1); 3084 freq_qos_remove_request(req); 3085 kfree(req); 3086 3087 return intel_pstate_cpu_exit(policy); 3088 } 3089 3090 static int intel_cpufreq_suspend(struct cpufreq_policy *policy) 3091 { 3092 intel_pstate_suspend(policy); 3093 3094 if (hwp_active) { 3095 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3096 u64 value = READ_ONCE(cpu->hwp_req_cached); 3097 3098 /* 3099 * Clear the desired perf field in MSR_HWP_REQUEST in case 3100 * intel_cpufreq_adjust_perf() is in use and the last value 3101 * written by it may not be suitable. 3102 */ 3103 value &= ~HWP_DESIRED_PERF(~0L); 3104 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 3105 WRITE_ONCE(cpu->hwp_req_cached, value); 3106 } 3107 3108 return 0; 3109 } 3110 3111 static struct cpufreq_driver intel_cpufreq = { 3112 .flags = CPUFREQ_CONST_LOOPS, 3113 .verify = intel_cpufreq_verify_policy, 3114 .target = intel_cpufreq_target, 3115 .fast_switch = intel_cpufreq_fast_switch, 3116 .init = intel_cpufreq_cpu_init, 3117 .exit = intel_cpufreq_cpu_exit, 3118 .offline = intel_cpufreq_cpu_offline, 3119 .online = intel_pstate_cpu_online, 3120 .suspend = intel_cpufreq_suspend, 3121 .resume = intel_pstate_resume, 3122 .update_limits = intel_pstate_update_limits, 3123 .name = "intel_cpufreq", 3124 }; 3125 3126 static struct cpufreq_driver *default_driver; 3127 3128 static void intel_pstate_driver_cleanup(void) 3129 { 3130 unsigned int cpu; 3131 3132 cpus_read_lock(); 3133 for_each_online_cpu(cpu) { 3134 if (all_cpu_data[cpu]) { 3135 if (intel_pstate_driver == &intel_pstate) 3136 intel_pstate_clear_update_util_hook(cpu); 3137 3138 spin_lock(&hwp_notify_lock); 3139 kfree(all_cpu_data[cpu]); 3140 WRITE_ONCE(all_cpu_data[cpu], NULL); 3141 spin_unlock(&hwp_notify_lock); 3142 } 3143 } 3144 cpus_read_unlock(); 3145 3146 intel_pstate_driver = NULL; 3147 } 3148 3149 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 3150 { 3151 int ret; 3152 3153 if (driver == &intel_pstate) 3154 intel_pstate_sysfs_expose_hwp_dynamic_boost(); 3155 3156 memset(&global, 0, sizeof(global)); 3157 global.max_perf_pct = 100; 3158 3159 intel_pstate_driver = driver; 3160 ret = cpufreq_register_driver(intel_pstate_driver); 3161 if (ret) { 3162 intel_pstate_driver_cleanup(); 3163 return ret; 3164 } 3165 3166 global.min_perf_pct = min_perf_pct_min(); 3167 3168 return 0; 3169 } 3170 3171 static ssize_t intel_pstate_show_status(char *buf) 3172 { 3173 if (!intel_pstate_driver) 3174 return sprintf(buf, "off\n"); 3175 3176 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 3177 "active" : "passive"); 3178 } 3179 3180 static int intel_pstate_update_status(const char *buf, size_t size) 3181 { 3182 if (size == 3 && !strncmp(buf, "off", size)) { 3183 if (!intel_pstate_driver) 3184 return -EINVAL; 3185 3186 if (hwp_active) 3187 return -EBUSY; 3188 3189 cpufreq_unregister_driver(intel_pstate_driver); 3190 intel_pstate_driver_cleanup(); 3191 return 0; 3192 } 3193 3194 if (size == 6 && !strncmp(buf, "active", size)) { 3195 if (intel_pstate_driver) { 3196 if (intel_pstate_driver == &intel_pstate) 3197 return 0; 3198 3199 cpufreq_unregister_driver(intel_pstate_driver); 3200 } 3201 3202 return intel_pstate_register_driver(&intel_pstate); 3203 } 3204 3205 if (size == 7 && !strncmp(buf, "passive", size)) { 3206 if (intel_pstate_driver) { 3207 if (intel_pstate_driver == &intel_cpufreq) 3208 return 0; 3209 3210 cpufreq_unregister_driver(intel_pstate_driver); 3211 intel_pstate_sysfs_hide_hwp_dynamic_boost(); 3212 } 3213 3214 return intel_pstate_register_driver(&intel_cpufreq); 3215 } 3216 3217 return -EINVAL; 3218 } 3219 3220 static int no_load __initdata; 3221 static int no_hwp __initdata; 3222 static int hwp_only __initdata; 3223 static unsigned int force_load __initdata; 3224 3225 static int __init intel_pstate_msrs_not_valid(void) 3226 { 3227 if (!pstate_funcs.get_max(0) || 3228 !pstate_funcs.get_min(0) || 3229 !pstate_funcs.get_turbo(0)) 3230 return -ENODEV; 3231 3232 return 0; 3233 } 3234 3235 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 3236 { 3237 pstate_funcs.get_max = funcs->get_max; 3238 pstate_funcs.get_max_physical = funcs->get_max_physical; 3239 pstate_funcs.get_min = funcs->get_min; 3240 pstate_funcs.get_turbo = funcs->get_turbo; 3241 pstate_funcs.get_scaling = funcs->get_scaling; 3242 pstate_funcs.get_val = funcs->get_val; 3243 pstate_funcs.get_vid = funcs->get_vid; 3244 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 3245 } 3246 3247 #ifdef CONFIG_ACPI 3248 3249 static bool __init intel_pstate_no_acpi_pss(void) 3250 { 3251 int i; 3252 3253 for_each_possible_cpu(i) { 3254 acpi_status status; 3255 union acpi_object *pss; 3256 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 3257 struct acpi_processor *pr = per_cpu(processors, i); 3258 3259 if (!pr) 3260 continue; 3261 3262 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 3263 if (ACPI_FAILURE(status)) 3264 continue; 3265 3266 pss = buffer.pointer; 3267 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 3268 kfree(pss); 3269 return false; 3270 } 3271 3272 kfree(pss); 3273 } 3274 3275 pr_debug("ACPI _PSS not found\n"); 3276 return true; 3277 } 3278 3279 static bool __init intel_pstate_no_acpi_pcch(void) 3280 { 3281 acpi_status status; 3282 acpi_handle handle; 3283 3284 status = acpi_get_handle(NULL, "\\_SB", &handle); 3285 if (ACPI_FAILURE(status)) 3286 goto not_found; 3287 3288 if (acpi_has_method(handle, "PCCH")) 3289 return false; 3290 3291 not_found: 3292 pr_debug("ACPI PCCH not found\n"); 3293 return true; 3294 } 3295 3296 static bool __init intel_pstate_has_acpi_ppc(void) 3297 { 3298 int i; 3299 3300 for_each_possible_cpu(i) { 3301 struct acpi_processor *pr = per_cpu(processors, i); 3302 3303 if (!pr) 3304 continue; 3305 if (acpi_has_method(pr->handle, "_PPC")) 3306 return true; 3307 } 3308 pr_debug("ACPI _PPC not found\n"); 3309 return false; 3310 } 3311 3312 enum { 3313 PSS, 3314 PPC, 3315 }; 3316 3317 /* Hardware vendor-specific info that has its own power management modes */ 3318 static struct acpi_platform_list plat_info[] __initdata = { 3319 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 3320 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3321 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3322 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3323 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3324 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3325 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3326 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3327 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3328 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3329 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3330 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3331 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3332 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3333 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3334 { } /* End */ 3335 }; 3336 3337 #define BITMASK_OOB (BIT(8) | BIT(18)) 3338 3339 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 3340 { 3341 const struct x86_cpu_id *id; 3342 u64 misc_pwr; 3343 int idx; 3344 3345 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 3346 if (id) { 3347 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 3348 if (misc_pwr & BITMASK_OOB) { 3349 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 3350 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 3351 return true; 3352 } 3353 } 3354 3355 idx = acpi_match_platform_list(plat_info); 3356 if (idx < 0) 3357 return false; 3358 3359 switch (plat_info[idx].data) { 3360 case PSS: 3361 if (!intel_pstate_no_acpi_pss()) 3362 return false; 3363 3364 return intel_pstate_no_acpi_pcch(); 3365 case PPC: 3366 return intel_pstate_has_acpi_ppc() && !force_load; 3367 } 3368 3369 return false; 3370 } 3371 3372 static void intel_pstate_request_control_from_smm(void) 3373 { 3374 /* 3375 * It may be unsafe to request P-states control from SMM if _PPC support 3376 * has not been enabled. 3377 */ 3378 if (acpi_ppc) 3379 acpi_processor_pstate_control(); 3380 } 3381 #else /* CONFIG_ACPI not enabled */ 3382 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 3383 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 3384 static inline void intel_pstate_request_control_from_smm(void) {} 3385 #endif /* CONFIG_ACPI */ 3386 3387 #define INTEL_PSTATE_HWP_BROADWELL 0x01 3388 3389 #define X86_MATCH_HWP(model, hwp_mode) \ 3390 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 3391 X86_FEATURE_HWP, hwp_mode) 3392 3393 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 3394 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 3395 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 3396 X86_MATCH_HWP(ANY, 0), 3397 {} 3398 }; 3399 3400 static bool intel_pstate_hwp_is_enabled(void) 3401 { 3402 u64 value; 3403 3404 rdmsrl(MSR_PM_ENABLE, value); 3405 return !!(value & 0x1); 3406 } 3407 3408 #define POWERSAVE_MASK GENMASK(7, 0) 3409 #define BALANCE_POWER_MASK GENMASK(15, 8) 3410 #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16) 3411 #define PERFORMANCE_MASK GENMASK(31, 24) 3412 3413 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \ 3414 (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\ 3415 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\ 3416 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\ 3417 FIELD_PREP_CONST(PERFORMANCE_MASK, performance)) 3418 3419 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \ 3420 (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\ 3421 balance_perf, HWP_EPP_PERFORMANCE)) 3422 3423 static const struct x86_cpu_id intel_epp_default[] = { 3424 /* 3425 * Set EPP value as 102, this is the max suggested EPP 3426 * which can result in one core turbo frequency for 3427 * AlderLake Mobile CPUs. 3428 */ 3429 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)), 3430 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)), 3431 X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, 3432 HWP_EPP_BALANCE_POWERSAVE, 115, 16)), 3433 {} 3434 }; 3435 3436 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = { 3437 X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL), 3438 {} 3439 }; 3440 3441 static int __init intel_pstate_init(void) 3442 { 3443 static struct cpudata **_all_cpu_data; 3444 const struct x86_cpu_id *id; 3445 int rc; 3446 3447 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 3448 return -ENODEV; 3449 3450 id = x86_match_cpu(hwp_support_ids); 3451 if (id) { 3452 hwp_forced = intel_pstate_hwp_is_enabled(); 3453 3454 if (hwp_forced) 3455 pr_info("HWP enabled by BIOS\n"); 3456 else if (no_load) 3457 return -ENODEV; 3458 3459 copy_cpu_funcs(&core_funcs); 3460 /* 3461 * Avoid enabling HWP for processors without EPP support, 3462 * because that means incomplete HWP implementation which is a 3463 * corner case and supporting it is generally problematic. 3464 * 3465 * If HWP is enabled already, though, there is no choice but to 3466 * deal with it. 3467 */ 3468 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { 3469 WRITE_ONCE(hwp_active, 1); 3470 hwp_mode_bdw = id->driver_data; 3471 intel_pstate.attr = hwp_cpufreq_attrs; 3472 intel_cpufreq.attr = hwp_cpufreq_attrs; 3473 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; 3474 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; 3475 if (!default_driver) 3476 default_driver = &intel_pstate; 3477 3478 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling; 3479 3480 goto hwp_cpu_matched; 3481 } 3482 pr_info("HWP not enabled\n"); 3483 } else { 3484 if (no_load) 3485 return -ENODEV; 3486 3487 id = x86_match_cpu(intel_pstate_cpu_ids); 3488 if (!id) { 3489 pr_info("CPU model not supported\n"); 3490 return -ENODEV; 3491 } 3492 3493 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 3494 } 3495 3496 if (intel_pstate_msrs_not_valid()) { 3497 pr_info("Invalid MSRs\n"); 3498 return -ENODEV; 3499 } 3500 /* Without HWP start in the passive mode. */ 3501 if (!default_driver) 3502 default_driver = &intel_cpufreq; 3503 3504 hwp_cpu_matched: 3505 /* 3506 * The Intel pstate driver will be ignored if the platform 3507 * firmware has its own power management modes. 3508 */ 3509 if (intel_pstate_platform_pwr_mgmt_exists()) { 3510 pr_info("P-states controlled by the platform\n"); 3511 return -ENODEV; 3512 } 3513 3514 if (!hwp_active && hwp_only) 3515 return -ENOTSUPP; 3516 3517 pr_info("Intel P-state driver initializing\n"); 3518 3519 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 3520 if (!_all_cpu_data) 3521 return -ENOMEM; 3522 3523 WRITE_ONCE(all_cpu_data, _all_cpu_data); 3524 3525 intel_pstate_request_control_from_smm(); 3526 3527 intel_pstate_sysfs_expose_params(); 3528 3529 if (hwp_active) { 3530 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default); 3531 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor); 3532 3533 if (id) { 3534 epp_values[EPP_INDEX_POWERSAVE] = 3535 FIELD_GET(POWERSAVE_MASK, id->driver_data); 3536 epp_values[EPP_INDEX_BALANCE_POWERSAVE] = 3537 FIELD_GET(BALANCE_POWER_MASK, id->driver_data); 3538 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = 3539 FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data); 3540 epp_values[EPP_INDEX_PERFORMANCE] = 3541 FIELD_GET(PERFORMANCE_MASK, id->driver_data); 3542 pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n", 3543 epp_values[EPP_INDEX_POWERSAVE], 3544 epp_values[EPP_INDEX_BALANCE_POWERSAVE], 3545 epp_values[EPP_INDEX_BALANCE_PERFORMANCE], 3546 epp_values[EPP_INDEX_PERFORMANCE]); 3547 } 3548 3549 if (hybrid_id) { 3550 hybrid_scaling_factor = hybrid_id->driver_data; 3551 pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor); 3552 } 3553 3554 } 3555 3556 mutex_lock(&intel_pstate_driver_lock); 3557 rc = intel_pstate_register_driver(default_driver); 3558 mutex_unlock(&intel_pstate_driver_lock); 3559 if (rc) { 3560 intel_pstate_sysfs_remove(); 3561 return rc; 3562 } 3563 3564 if (hwp_active) { 3565 const struct x86_cpu_id *id; 3566 3567 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 3568 if (id) { 3569 set_power_ctl_ee_state(false); 3570 pr_info("Disabling energy efficiency optimization\n"); 3571 } 3572 3573 pr_info("HWP enabled\n"); 3574 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 3575 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n"); 3576 } 3577 3578 return 0; 3579 } 3580 device_initcall(intel_pstate_init); 3581 3582 static int __init intel_pstate_setup(char *str) 3583 { 3584 if (!str) 3585 return -EINVAL; 3586 3587 if (!strcmp(str, "disable")) 3588 no_load = 1; 3589 else if (!strcmp(str, "active")) 3590 default_driver = &intel_pstate; 3591 else if (!strcmp(str, "passive")) 3592 default_driver = &intel_cpufreq; 3593 3594 if (!strcmp(str, "no_hwp")) 3595 no_hwp = 1; 3596 3597 if (!strcmp(str, "force")) 3598 force_load = 1; 3599 if (!strcmp(str, "hwp_only")) 3600 hwp_only = 1; 3601 if (!strcmp(str, "per_cpu_perf_limits")) 3602 per_cpu_limits = true; 3603 3604 #ifdef CONFIG_ACPI 3605 if (!strcmp(str, "support_acpi_ppc")) 3606 acpi_ppc = true; 3607 #endif 3608 3609 return 0; 3610 } 3611 early_param("intel_pstate", intel_pstate_setup); 3612 3613 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 3614 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 3615