xref: /linux/drivers/cpufreq/intel_pstate.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/sched/smt.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/cpufreq.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/acpi.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pm_qos.h>
29 #include <linux/bitfield.h>
30 #include <trace/events/power.h>
31 
32 #include <asm/cpu.h>
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 #include "../drivers/thermal/intel/thermal_interrupt.h"
39 
40 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41 
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
45 
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50 
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54 
55 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
56 
57 #define EXT_BITS 6
58 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
59 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
60 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
61 
62 static inline int32_t mul_fp(int32_t x, int32_t y)
63 {
64 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
65 }
66 
67 static inline int32_t div_fp(s64 x, s64 y)
68 {
69 	return div64_s64((int64_t)x << FRAC_BITS, y);
70 }
71 
72 static inline int ceiling_fp(int32_t x)
73 {
74 	int mask, ret;
75 
76 	ret = fp_toint(x);
77 	mask = (1 << FRAC_BITS) - 1;
78 	if (x & mask)
79 		ret += 1;
80 	return ret;
81 }
82 
83 static inline u64 mul_ext_fp(u64 x, u64 y)
84 {
85 	return (x * y) >> EXT_FRAC_BITS;
86 }
87 
88 static inline u64 div_ext_fp(u64 x, u64 y)
89 {
90 	return div64_u64(x << EXT_FRAC_BITS, y);
91 }
92 
93 /**
94  * struct sample -	Store performance sample
95  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
96  *			performance during last sample period
97  * @busy_scaled:	Scaled busy value which is used to calculate next
98  *			P state. This can be different than core_avg_perf
99  *			to account for cpu idle period
100  * @aperf:		Difference of actual performance frequency clock count
101  *			read from APERF MSR between last and current sample
102  * @mperf:		Difference of maximum performance frequency clock count
103  *			read from MPERF MSR between last and current sample
104  * @tsc:		Difference of time stamp counter between last and
105  *			current sample
106  * @time:		Current time from scheduler
107  *
108  * This structure is used in the cpudata structure to store performance sample
109  * data for choosing next P State.
110  */
111 struct sample {
112 	int32_t core_avg_perf;
113 	int32_t busy_scaled;
114 	u64 aperf;
115 	u64 mperf;
116 	u64 tsc;
117 	u64 time;
118 };
119 
120 /**
121  * struct pstate_data - Store P state data
122  * @current_pstate:	Current requested P state
123  * @min_pstate:		Min P state possible for this platform
124  * @max_pstate:		Max P state possible for this platform
125  * @max_pstate_physical:This is physical Max P state for a processor
126  *			This can be higher than the max_pstate which can
127  *			be limited by platform thermal design power limits
128  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
129  * @scaling:		Scaling factor between performance and frequency
130  * @turbo_pstate:	Max Turbo P state possible for this platform
131  * @min_freq:		@min_pstate frequency in cpufreq units
132  * @max_freq:		@max_pstate frequency in cpufreq units
133  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
134  *
135  * Stores the per cpu model P state limits and current P state.
136  */
137 struct pstate_data {
138 	int	current_pstate;
139 	int	min_pstate;
140 	int	max_pstate;
141 	int	max_pstate_physical;
142 	int	perf_ctl_scaling;
143 	int	scaling;
144 	int	turbo_pstate;
145 	unsigned int min_freq;
146 	unsigned int max_freq;
147 	unsigned int turbo_freq;
148 };
149 
150 /**
151  * struct vid_data -	Stores voltage information data
152  * @min:		VID data for this platform corresponding to
153  *			the lowest P state
154  * @max:		VID data corresponding to the highest P State.
155  * @turbo:		VID data for turbo P state
156  * @ratio:		Ratio of (vid max - vid min) /
157  *			(max P state - Min P State)
158  *
159  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
160  * This data is used in Atom platforms, where in addition to target P state,
161  * the voltage data needs to be specified to select next P State.
162  */
163 struct vid_data {
164 	int min;
165 	int max;
166 	int turbo;
167 	int32_t ratio;
168 };
169 
170 /**
171  * struct global_params - Global parameters, mostly tunable via sysfs.
172  * @no_turbo:		Whether or not to use turbo P-states.
173  * @turbo_disabled:	Whether or not turbo P-states are available at all,
174  *			based on the MSR_IA32_MISC_ENABLE value and whether or
175  *			not the maximum reported turbo P-state is different from
176  *			the maximum reported non-turbo one.
177  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
178  *			P-state capacity.
179  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
180  *			P-state capacity.
181  */
182 struct global_params {
183 	bool no_turbo;
184 	bool turbo_disabled;
185 	int max_perf_pct;
186 	int min_perf_pct;
187 };
188 
189 /**
190  * struct cpudata -	Per CPU instance data storage
191  * @cpu:		CPU number for this instance data
192  * @policy:		CPUFreq policy value
193  * @update_util:	CPUFreq utility callback information
194  * @update_util_set:	CPUFreq utility callback is set
195  * @iowait_boost:	iowait-related boost fraction
196  * @last_update:	Time of the last update.
197  * @pstate:		Stores P state limits for this CPU
198  * @vid:		Stores VID limits for this CPU
199  * @last_sample_time:	Last Sample time
200  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
201  * @prev_aperf:		Last APERF value read from APERF MSR
202  * @prev_mperf:		Last MPERF value read from MPERF MSR
203  * @prev_tsc:		Last timestamp counter (TSC) value
204  * @sample:		Storage for storing last Sample data
205  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
206  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
207  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
208  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
209  * @epp_powersave:	Last saved HWP energy performance preference
210  *			(EPP) or energy performance bias (EPB),
211  *			when policy switched to performance
212  * @epp_policy:		Last saved policy used to set EPP/EPB
213  * @epp_default:	Power on default HWP energy performance
214  *			preference/bias
215  * @epp_cached:		Cached HWP energy-performance preference value
216  * @hwp_req_cached:	Cached value of the last HWP Request MSR
217  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
218  * @last_io_update:	Last time when IO wake flag was set
219  * @capacity_perf:	Highest perf used for scale invariance
220  * @sched_flags:	Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:	Last HWP boosted min performance
222  * @suspended:		Whether or not the driver has been suspended.
223  * @hwp_notify_work:	workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228 	int cpu;
229 
230 	unsigned int policy;
231 	struct update_util_data update_util;
232 	bool   update_util_set;
233 
234 	struct pstate_data pstate;
235 	struct vid_data vid;
236 
237 	u64	last_update;
238 	u64	last_sample_time;
239 	u64	aperf_mperf_shift;
240 	u64	prev_aperf;
241 	u64	prev_mperf;
242 	u64	prev_tsc;
243 	struct sample sample;
244 	int32_t	min_perf_ratio;
245 	int32_t	max_perf_ratio;
246 #ifdef CONFIG_ACPI
247 	struct acpi_processor_performance acpi_perf_data;
248 	bool valid_pss_table;
249 #endif
250 	unsigned int iowait_boost;
251 	s16 epp_powersave;
252 	s16 epp_policy;
253 	s16 epp_default;
254 	s16 epp_cached;
255 	u64 hwp_req_cached;
256 	u64 hwp_cap_cached;
257 	u64 last_io_update;
258 	unsigned int capacity_perf;
259 	unsigned int sched_flags;
260 	u32 hwp_boost_min;
261 	bool suspended;
262 	struct delayed_work hwp_notify_work;
263 };
264 
265 static struct cpudata **all_cpu_data;
266 
267 /**
268  * struct pstate_funcs - Per CPU model specific callbacks
269  * @get_max:		Callback to get maximum non turbo effective P state
270  * @get_max_physical:	Callback to get maximum non turbo physical P state
271  * @get_min:		Callback to get minimum P state
272  * @get_turbo:		Callback to get turbo P state
273  * @get_scaling:	Callback to get frequency scaling factor
274  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
275  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276  * @get_val:		Callback to convert P state to actual MSR write value
277  * @get_vid:		Callback to get VID data for Atom platforms
278  *
279  * Core and Atom CPU models have different way to get P State limits. This
280  * structure is used to store those callbacks.
281  */
282 struct pstate_funcs {
283 	int (*get_max)(int cpu);
284 	int (*get_max_physical)(int cpu);
285 	int (*get_min)(int cpu);
286 	int (*get_turbo)(int cpu);
287 	int (*get_scaling)(void);
288 	int (*get_cpu_scaling)(int cpu);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static bool hwp_active __ro_after_init;
297 static int hwp_mode_bdw __ro_after_init;
298 static bool per_cpu_limits __ro_after_init;
299 static bool hwp_forced __ro_after_init;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_is_hybrid;
302 
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304 
305 #define HYBRID_SCALING_FACTOR		78741
306 #define HYBRID_SCALING_FACTOR_MTL	80000
307 #define HYBRID_SCALING_FACTOR_LNL	86957
308 
309 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
310 
311 static inline int core_get_scaling(void)
312 {
313 	return 100000;
314 }
315 
316 #ifdef CONFIG_ACPI
317 static bool acpi_ppc;
318 #endif
319 
320 static struct global_params global;
321 
322 static DEFINE_MUTEX(intel_pstate_driver_lock);
323 static DEFINE_MUTEX(intel_pstate_limits_lock);
324 
325 #ifdef CONFIG_ACPI
326 
327 static bool intel_pstate_acpi_pm_profile_server(void)
328 {
329 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
330 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
331 		return true;
332 
333 	return false;
334 }
335 
336 static bool intel_pstate_get_ppc_enable_status(void)
337 {
338 	if (intel_pstate_acpi_pm_profile_server())
339 		return true;
340 
341 	return acpi_ppc;
342 }
343 
344 #ifdef CONFIG_ACPI_CPPC_LIB
345 
346 /* The work item is needed to avoid CPU hotplug locking issues */
347 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
348 {
349 	sched_set_itmt_support();
350 }
351 
352 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
353 
354 #define CPPC_MAX_PERF	U8_MAX
355 
356 static void intel_pstate_set_itmt_prio(int cpu)
357 {
358 	struct cppc_perf_caps cppc_perf;
359 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
360 	int ret;
361 
362 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
363 	/*
364 	 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
365 	 *
366 	 * Also, on some systems with overclocking enabled, CPPC.highest_perf is
367 	 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
368 	 * Fall back to MSR_HWP_CAPABILITIES then too.
369 	 */
370 	if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
371 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
372 
373 	/*
374 	 * The priorities can be set regardless of whether or not
375 	 * sched_set_itmt_support(true) has been called and it is valid to
376 	 * update them at any time after it has been called.
377 	 */
378 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
379 
380 	if (max_highest_perf <= min_highest_perf) {
381 		if (cppc_perf.highest_perf > max_highest_perf)
382 			max_highest_perf = cppc_perf.highest_perf;
383 
384 		if (cppc_perf.highest_perf < min_highest_perf)
385 			min_highest_perf = cppc_perf.highest_perf;
386 
387 		if (max_highest_perf > min_highest_perf) {
388 			/*
389 			 * This code can be run during CPU online under the
390 			 * CPU hotplug locks, so sched_set_itmt_support()
391 			 * cannot be called from here.  Queue up a work item
392 			 * to invoke it.
393 			 */
394 			schedule_work(&sched_itmt_work);
395 		}
396 	}
397 }
398 
399 static int intel_pstate_get_cppc_guaranteed(int cpu)
400 {
401 	struct cppc_perf_caps cppc_perf;
402 	int ret;
403 
404 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
405 	if (ret)
406 		return ret;
407 
408 	if (cppc_perf.guaranteed_perf)
409 		return cppc_perf.guaranteed_perf;
410 
411 	return cppc_perf.nominal_perf;
412 }
413 
414 static int intel_pstate_cppc_get_scaling(int cpu)
415 {
416 	struct cppc_perf_caps cppc_perf;
417 	int ret;
418 
419 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
420 
421 	/*
422 	 * If the nominal frequency and the nominal performance are not
423 	 * zero and the ratio between them is not 100, return the hybrid
424 	 * scaling factor.
425 	 */
426 	if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
427 	    cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
428 		return hybrid_scaling_factor;
429 
430 	return core_get_scaling();
431 }
432 
433 #else /* CONFIG_ACPI_CPPC_LIB */
434 static inline void intel_pstate_set_itmt_prio(int cpu)
435 {
436 }
437 #endif /* CONFIG_ACPI_CPPC_LIB */
438 
439 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
440 {
441 	struct cpudata *cpu;
442 	int ret;
443 	int i;
444 
445 	if (hwp_active) {
446 		intel_pstate_set_itmt_prio(policy->cpu);
447 		return;
448 	}
449 
450 	if (!intel_pstate_get_ppc_enable_status())
451 		return;
452 
453 	cpu = all_cpu_data[policy->cpu];
454 
455 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
456 						  policy->cpu);
457 	if (ret)
458 		return;
459 
460 	/*
461 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
462 	 * guarantee that the states returned by it map to the states in our
463 	 * list directly.
464 	 */
465 	if (cpu->acpi_perf_data.control_register.space_id !=
466 						ACPI_ADR_SPACE_FIXED_HARDWARE)
467 		goto err;
468 
469 	/*
470 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
471 	 * usual without taking _PSS into account
472 	 */
473 	if (cpu->acpi_perf_data.state_count < 2)
474 		goto err;
475 
476 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
477 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
478 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
479 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
480 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
481 			 (u32) cpu->acpi_perf_data.states[i].power,
482 			 (u32) cpu->acpi_perf_data.states[i].control);
483 	}
484 
485 	cpu->valid_pss_table = true;
486 	pr_debug("_PPC limits will be enforced\n");
487 
488 	return;
489 
490  err:
491 	cpu->valid_pss_table = false;
492 	acpi_processor_unregister_performance(policy->cpu);
493 }
494 
495 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
496 {
497 	struct cpudata *cpu;
498 
499 	cpu = all_cpu_data[policy->cpu];
500 	if (!cpu->valid_pss_table)
501 		return;
502 
503 	acpi_processor_unregister_performance(policy->cpu);
504 }
505 #else /* CONFIG_ACPI */
506 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
507 {
508 }
509 
510 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
511 {
512 }
513 
514 static inline bool intel_pstate_acpi_pm_profile_server(void)
515 {
516 	return false;
517 }
518 #endif /* CONFIG_ACPI */
519 
520 #ifndef CONFIG_ACPI_CPPC_LIB
521 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
522 {
523 	return -ENOTSUPP;
524 }
525 
526 static int intel_pstate_cppc_get_scaling(int cpu)
527 {
528 	return core_get_scaling();
529 }
530 #endif /* CONFIG_ACPI_CPPC_LIB */
531 
532 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
533 					unsigned int relation)
534 {
535 	if (freq == cpu->pstate.turbo_freq)
536 		return cpu->pstate.turbo_pstate;
537 
538 	if (freq == cpu->pstate.max_freq)
539 		return cpu->pstate.max_pstate;
540 
541 	switch (relation) {
542 	case CPUFREQ_RELATION_H:
543 		return freq / cpu->pstate.scaling;
544 	case CPUFREQ_RELATION_C:
545 		return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
546 	}
547 
548 	return DIV_ROUND_UP(freq, cpu->pstate.scaling);
549 }
550 
551 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
552 {
553 	return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
554 }
555 
556 /**
557  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
558  * @cpu: Target CPU.
559  *
560  * On hybrid processors, HWP may expose more performance levels than there are
561  * P-states accessible through the PERF_CTL interface.  If that happens, the
562  * scaling factor between HWP performance levels and CPU frequency will be less
563  * than the scaling factor between P-state values and CPU frequency.
564  *
565  * In that case, adjust the CPU parameters used in computations accordingly.
566  */
567 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
568 {
569 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
570 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
571 	int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
572 	int scaling = cpu->pstate.scaling;
573 	int freq;
574 
575 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
576 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
577 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
578 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
579 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
580 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
581 
582 	cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
583 					   perf_ctl_scaling);
584 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
585 					 perf_ctl_scaling);
586 
587 	freq = perf_ctl_max_phys * perf_ctl_scaling;
588 	cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
589 
590 	freq = cpu->pstate.min_pstate * perf_ctl_scaling;
591 	cpu->pstate.min_freq = freq;
592 	/*
593 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
594 	 * the effective range of HWP performance levels.
595 	 */
596 	cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
597 }
598 
599 static bool turbo_is_disabled(void)
600 {
601 	u64 misc_en;
602 
603 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
604 
605 	return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
606 }
607 
608 static int min_perf_pct_min(void)
609 {
610 	struct cpudata *cpu = all_cpu_data[0];
611 	int turbo_pstate = cpu->pstate.turbo_pstate;
612 
613 	return turbo_pstate ?
614 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
615 }
616 
617 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
618 {
619 	u64 epb;
620 	int ret;
621 
622 	if (!boot_cpu_has(X86_FEATURE_EPB))
623 		return -ENXIO;
624 
625 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 	if (ret)
627 		return (s16)ret;
628 
629 	return (s16)(epb & 0x0f);
630 }
631 
632 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
633 {
634 	s16 epp;
635 
636 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
637 		/*
638 		 * When hwp_req_data is 0, means that caller didn't read
639 		 * MSR_HWP_REQUEST, so need to read and get EPP.
640 		 */
641 		if (!hwp_req_data) {
642 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
643 					    &hwp_req_data);
644 			if (epp)
645 				return epp;
646 		}
647 		epp = (hwp_req_data >> 24) & 0xff;
648 	} else {
649 		/* When there is no EPP present, HWP uses EPB settings */
650 		epp = intel_pstate_get_epb(cpu_data);
651 	}
652 
653 	return epp;
654 }
655 
656 static int intel_pstate_set_epb(int cpu, s16 pref)
657 {
658 	u64 epb;
659 	int ret;
660 
661 	if (!boot_cpu_has(X86_FEATURE_EPB))
662 		return -ENXIO;
663 
664 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
665 	if (ret)
666 		return ret;
667 
668 	epb = (epb & ~0x0f) | pref;
669 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
670 
671 	return 0;
672 }
673 
674 /*
675  * EPP/EPB display strings corresponding to EPP index in the
676  * energy_perf_strings[]
677  *	index		String
678  *-------------------------------------
679  *	0		default
680  *	1		performance
681  *	2		balance_performance
682  *	3		balance_power
683  *	4		power
684  */
685 
686 enum energy_perf_value_index {
687 	EPP_INDEX_DEFAULT = 0,
688 	EPP_INDEX_PERFORMANCE,
689 	EPP_INDEX_BALANCE_PERFORMANCE,
690 	EPP_INDEX_BALANCE_POWERSAVE,
691 	EPP_INDEX_POWERSAVE,
692 };
693 
694 static const char * const energy_perf_strings[] = {
695 	[EPP_INDEX_DEFAULT] = "default",
696 	[EPP_INDEX_PERFORMANCE] = "performance",
697 	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
698 	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
699 	[EPP_INDEX_POWERSAVE] = "power",
700 	NULL
701 };
702 static unsigned int epp_values[] = {
703 	[EPP_INDEX_DEFAULT] = 0, /* Unused index */
704 	[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
705 	[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
706 	[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
707 	[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
708 };
709 
710 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
711 {
712 	s16 epp;
713 	int index = -EINVAL;
714 
715 	*raw_epp = 0;
716 	epp = intel_pstate_get_epp(cpu_data, 0);
717 	if (epp < 0)
718 		return epp;
719 
720 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
721 		if (epp == epp_values[EPP_INDEX_PERFORMANCE])
722 			return EPP_INDEX_PERFORMANCE;
723 		if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
724 			return EPP_INDEX_BALANCE_PERFORMANCE;
725 		if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
726 			return EPP_INDEX_BALANCE_POWERSAVE;
727 		if (epp == epp_values[EPP_INDEX_POWERSAVE])
728 			return EPP_INDEX_POWERSAVE;
729 		*raw_epp = epp;
730 		return 0;
731 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
732 		/*
733 		 * Range:
734 		 *	0x00-0x03	:	Performance
735 		 *	0x04-0x07	:	Balance performance
736 		 *	0x08-0x0B	:	Balance power
737 		 *	0x0C-0x0F	:	Power
738 		 * The EPB is a 4 bit value, but our ranges restrict the
739 		 * value which can be set. Here only using top two bits
740 		 * effectively.
741 		 */
742 		index = (epp >> 2) + 1;
743 	}
744 
745 	return index;
746 }
747 
748 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
749 {
750 	int ret;
751 
752 	/*
753 	 * Use the cached HWP Request MSR value, because in the active mode the
754 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
755 	 * intel_pstate_hwp_boost_down() at any time.
756 	 */
757 	u64 value = READ_ONCE(cpu->hwp_req_cached);
758 
759 	value &= ~GENMASK_ULL(31, 24);
760 	value |= (u64)epp << 24;
761 	/*
762 	 * The only other updater of hwp_req_cached in the active mode,
763 	 * intel_pstate_hwp_set(), is called under the same lock as this
764 	 * function, so it cannot run in parallel with the update below.
765 	 */
766 	WRITE_ONCE(cpu->hwp_req_cached, value);
767 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
768 	if (!ret)
769 		cpu->epp_cached = epp;
770 
771 	return ret;
772 }
773 
774 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
775 					      int pref_index, bool use_raw,
776 					      u32 raw_epp)
777 {
778 	int epp = -EINVAL;
779 	int ret;
780 
781 	if (!pref_index)
782 		epp = cpu_data->epp_default;
783 
784 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
785 		if (use_raw)
786 			epp = raw_epp;
787 		else if (epp == -EINVAL)
788 			epp = epp_values[pref_index];
789 
790 		/*
791 		 * To avoid confusion, refuse to set EPP to any values different
792 		 * from 0 (performance) if the current policy is "performance",
793 		 * because those values would be overridden.
794 		 */
795 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
796 			return -EBUSY;
797 
798 		ret = intel_pstate_set_epp(cpu_data, epp);
799 	} else {
800 		if (epp == -EINVAL)
801 			epp = (pref_index - 1) << 2;
802 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
803 	}
804 
805 	return ret;
806 }
807 
808 static ssize_t show_energy_performance_available_preferences(
809 				struct cpufreq_policy *policy, char *buf)
810 {
811 	int i = 0;
812 	int ret = 0;
813 
814 	while (energy_perf_strings[i] != NULL)
815 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
816 
817 	ret += sprintf(&buf[ret], "\n");
818 
819 	return ret;
820 }
821 
822 cpufreq_freq_attr_ro(energy_performance_available_preferences);
823 
824 static struct cpufreq_driver intel_pstate;
825 
826 static ssize_t store_energy_performance_preference(
827 		struct cpufreq_policy *policy, const char *buf, size_t count)
828 {
829 	struct cpudata *cpu = all_cpu_data[policy->cpu];
830 	char str_preference[21];
831 	bool raw = false;
832 	ssize_t ret;
833 	u32 epp = 0;
834 
835 	ret = sscanf(buf, "%20s", str_preference);
836 	if (ret != 1)
837 		return -EINVAL;
838 
839 	ret = match_string(energy_perf_strings, -1, str_preference);
840 	if (ret < 0) {
841 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
842 			return ret;
843 
844 		ret = kstrtouint(buf, 10, &epp);
845 		if (ret)
846 			return ret;
847 
848 		if (epp > 255)
849 			return -EINVAL;
850 
851 		raw = true;
852 	}
853 
854 	/*
855 	 * This function runs with the policy R/W semaphore held, which
856 	 * guarantees that the driver pointer will not change while it is
857 	 * running.
858 	 */
859 	if (!intel_pstate_driver)
860 		return -EAGAIN;
861 
862 	mutex_lock(&intel_pstate_limits_lock);
863 
864 	if (intel_pstate_driver == &intel_pstate) {
865 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
866 	} else {
867 		/*
868 		 * In the passive mode the governor needs to be stopped on the
869 		 * target CPU before the EPP update and restarted after it,
870 		 * which is super-heavy-weight, so make sure it is worth doing
871 		 * upfront.
872 		 */
873 		if (!raw)
874 			epp = ret ? epp_values[ret] : cpu->epp_default;
875 
876 		if (cpu->epp_cached != epp) {
877 			int err;
878 
879 			cpufreq_stop_governor(policy);
880 			ret = intel_pstate_set_epp(cpu, epp);
881 			err = cpufreq_start_governor(policy);
882 			if (!ret)
883 				ret = err;
884 		} else {
885 			ret = 0;
886 		}
887 	}
888 
889 	mutex_unlock(&intel_pstate_limits_lock);
890 
891 	return ret ?: count;
892 }
893 
894 static ssize_t show_energy_performance_preference(
895 				struct cpufreq_policy *policy, char *buf)
896 {
897 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
898 	int preference, raw_epp;
899 
900 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
901 	if (preference < 0)
902 		return preference;
903 
904 	if (raw_epp)
905 		return  sprintf(buf, "%d\n", raw_epp);
906 	else
907 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
908 }
909 
910 cpufreq_freq_attr_rw(energy_performance_preference);
911 
912 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
913 {
914 	struct cpudata *cpu = all_cpu_data[policy->cpu];
915 	int ratio, freq;
916 
917 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
918 	if (ratio <= 0) {
919 		u64 cap;
920 
921 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
922 		ratio = HWP_GUARANTEED_PERF(cap);
923 	}
924 
925 	freq = ratio * cpu->pstate.scaling;
926 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
927 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
928 
929 	return sprintf(buf, "%d\n", freq);
930 }
931 
932 cpufreq_freq_attr_ro(base_frequency);
933 
934 static struct freq_attr *hwp_cpufreq_attrs[] = {
935 	&energy_performance_preference,
936 	&energy_performance_available_preferences,
937 	&base_frequency,
938 	NULL,
939 };
940 
941 static struct cpudata *hybrid_max_perf_cpu __read_mostly;
942 /*
943  * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata,
944  * and the x86 arch scale-invariance information from concurrent updates.
945  */
946 static DEFINE_MUTEX(hybrid_capacity_lock);
947 
948 static void hybrid_set_cpu_capacity(struct cpudata *cpu)
949 {
950 	arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf,
951 			      hybrid_max_perf_cpu->capacity_perf,
952 			      cpu->capacity_perf,
953 			      cpu->pstate.max_pstate_physical);
954 
955 	pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu,
956 		 cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf,
957 		 cpu->pstate.max_pstate_physical);
958 }
959 
960 static void hybrid_clear_cpu_capacity(unsigned int cpunum)
961 {
962 	arch_set_cpu_capacity(cpunum, 1, 1, 1, 1);
963 }
964 
965 static void hybrid_get_capacity_perf(struct cpudata *cpu)
966 {
967 	if (READ_ONCE(global.no_turbo)) {
968 		cpu->capacity_perf = cpu->pstate.max_pstate_physical;
969 		return;
970 	}
971 
972 	cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
973 }
974 
975 static void hybrid_set_capacity_of_cpus(void)
976 {
977 	int cpunum;
978 
979 	for_each_online_cpu(cpunum) {
980 		struct cpudata *cpu = all_cpu_data[cpunum];
981 
982 		if (cpu)
983 			hybrid_set_cpu_capacity(cpu);
984 	}
985 }
986 
987 static void hybrid_update_cpu_capacity_scaling(void)
988 {
989 	struct cpudata *max_perf_cpu = NULL;
990 	unsigned int max_cap_perf = 0;
991 	int cpunum;
992 
993 	for_each_online_cpu(cpunum) {
994 		struct cpudata *cpu = all_cpu_data[cpunum];
995 
996 		if (!cpu)
997 			continue;
998 
999 		/*
1000 		 * During initialization, CPU performance at full capacity needs
1001 		 * to be determined.
1002 		 */
1003 		if (!hybrid_max_perf_cpu)
1004 			hybrid_get_capacity_perf(cpu);
1005 
1006 		/*
1007 		 * If hybrid_max_perf_cpu is not NULL at this point, it is
1008 		 * being replaced, so don't take it into account when looking
1009 		 * for the new one.
1010 		 */
1011 		if (cpu == hybrid_max_perf_cpu)
1012 			continue;
1013 
1014 		if (cpu->capacity_perf > max_cap_perf) {
1015 			max_cap_perf = cpu->capacity_perf;
1016 			max_perf_cpu = cpu;
1017 		}
1018 	}
1019 
1020 	if (max_perf_cpu) {
1021 		hybrid_max_perf_cpu = max_perf_cpu;
1022 		hybrid_set_capacity_of_cpus();
1023 	} else {
1024 		pr_info("Found no CPUs with nonzero maximum performance\n");
1025 		/* Revert to the flat CPU capacity structure. */
1026 		for_each_online_cpu(cpunum)
1027 			hybrid_clear_cpu_capacity(cpunum);
1028 	}
1029 }
1030 
1031 static void __hybrid_init_cpu_capacity_scaling(void)
1032 {
1033 	hybrid_max_perf_cpu = NULL;
1034 	hybrid_update_cpu_capacity_scaling();
1035 }
1036 
1037 static void hybrid_init_cpu_capacity_scaling(void)
1038 {
1039 	bool disable_itmt = false;
1040 
1041 	mutex_lock(&hybrid_capacity_lock);
1042 
1043 	/*
1044 	 * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity
1045 	 * scaling has been enabled already and the driver is just changing the
1046 	 * operation mode.
1047 	 */
1048 	if (hybrid_max_perf_cpu) {
1049 		__hybrid_init_cpu_capacity_scaling();
1050 		goto unlock;
1051 	}
1052 
1053 	/*
1054 	 * On hybrid systems, use asym capacity instead of ITMT, but because
1055 	 * the capacity of SMT threads is not deterministic even approximately,
1056 	 * do not do that when SMT is in use.
1057 	 */
1058 	if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) {
1059 		__hybrid_init_cpu_capacity_scaling();
1060 		disable_itmt = true;
1061 	}
1062 
1063 unlock:
1064 	mutex_unlock(&hybrid_capacity_lock);
1065 
1066 	/*
1067 	 * Disabling ITMT causes sched domains to be rebuilt to disable asym
1068 	 * packing and enable asym capacity.
1069 	 */
1070 	if (disable_itmt)
1071 		sched_clear_itmt_support();
1072 }
1073 
1074 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
1075 {
1076 	u64 cap;
1077 
1078 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
1079 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
1080 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
1081 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
1082 }
1083 
1084 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
1085 {
1086 	int scaling = cpu->pstate.scaling;
1087 
1088 	__intel_pstate_get_hwp_cap(cpu);
1089 
1090 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
1091 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
1092 	if (scaling != cpu->pstate.perf_ctl_scaling) {
1093 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
1094 
1095 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1096 						 perf_ctl_scaling);
1097 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1098 						   perf_ctl_scaling);
1099 	}
1100 }
1101 
1102 static void hybrid_update_capacity(struct cpudata *cpu)
1103 {
1104 	unsigned int max_cap_perf;
1105 
1106 	mutex_lock(&hybrid_capacity_lock);
1107 
1108 	if (!hybrid_max_perf_cpu)
1109 		goto unlock;
1110 
1111 	/*
1112 	 * The maximum performance of the CPU may have changed, but assume
1113 	 * that the performance of the other CPUs has not changed.
1114 	 */
1115 	max_cap_perf = hybrid_max_perf_cpu->capacity_perf;
1116 
1117 	intel_pstate_get_hwp_cap(cpu);
1118 
1119 	hybrid_get_capacity_perf(cpu);
1120 	/* Should hybrid_max_perf_cpu be replaced by this CPU? */
1121 	if (cpu->capacity_perf > max_cap_perf) {
1122 		hybrid_max_perf_cpu = cpu;
1123 		hybrid_set_capacity_of_cpus();
1124 		goto unlock;
1125 	}
1126 
1127 	/* If this CPU is hybrid_max_perf_cpu, should it be replaced? */
1128 	if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) {
1129 		hybrid_update_cpu_capacity_scaling();
1130 		goto unlock;
1131 	}
1132 
1133 	hybrid_set_cpu_capacity(cpu);
1134 
1135 unlock:
1136 	mutex_unlock(&hybrid_capacity_lock);
1137 }
1138 
1139 static void intel_pstate_hwp_set(unsigned int cpu)
1140 {
1141 	struct cpudata *cpu_data = all_cpu_data[cpu];
1142 	int max, min;
1143 	u64 value;
1144 	s16 epp;
1145 
1146 	max = cpu_data->max_perf_ratio;
1147 	min = cpu_data->min_perf_ratio;
1148 
1149 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1150 		min = max;
1151 
1152 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1153 
1154 	value &= ~HWP_MIN_PERF(~0L);
1155 	value |= HWP_MIN_PERF(min);
1156 
1157 	value &= ~HWP_MAX_PERF(~0L);
1158 	value |= HWP_MAX_PERF(max);
1159 
1160 	if (cpu_data->epp_policy == cpu_data->policy)
1161 		goto skip_epp;
1162 
1163 	cpu_data->epp_policy = cpu_data->policy;
1164 
1165 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1166 		epp = intel_pstate_get_epp(cpu_data, value);
1167 		cpu_data->epp_powersave = epp;
1168 		/* If EPP read was failed, then don't try to write */
1169 		if (epp < 0)
1170 			goto skip_epp;
1171 
1172 		epp = 0;
1173 	} else {
1174 		/* skip setting EPP, when saved value is invalid */
1175 		if (cpu_data->epp_powersave < 0)
1176 			goto skip_epp;
1177 
1178 		/*
1179 		 * No need to restore EPP when it is not zero. This
1180 		 * means:
1181 		 *  - Policy is not changed
1182 		 *  - user has manually changed
1183 		 *  - Error reading EPB
1184 		 */
1185 		epp = intel_pstate_get_epp(cpu_data, value);
1186 		if (epp)
1187 			goto skip_epp;
1188 
1189 		epp = cpu_data->epp_powersave;
1190 	}
1191 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1192 		value &= ~GENMASK_ULL(31, 24);
1193 		value |= (u64)epp << 24;
1194 	} else {
1195 		intel_pstate_set_epb(cpu, epp);
1196 	}
1197 skip_epp:
1198 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1199 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1200 }
1201 
1202 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1203 
1204 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1205 {
1206 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1207 	int min_perf;
1208 
1209 	intel_pstate_disable_hwp_interrupt(cpu);
1210 
1211 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1212 		/*
1213 		 * In case the EPP has been set to "performance" by the
1214 		 * active mode "performance" scaling algorithm, replace that
1215 		 * temporary value with the cached EPP one.
1216 		 */
1217 		value &= ~GENMASK_ULL(31, 24);
1218 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1219 		/*
1220 		 * However, make sure that EPP will be set to "performance" when
1221 		 * the CPU is brought back online again and the "performance"
1222 		 * scaling algorithm is still in effect.
1223 		 */
1224 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1225 	}
1226 
1227 	/*
1228 	 * Clear the desired perf field in the cached HWP request value to
1229 	 * prevent nonzero desired values from being leaked into the active
1230 	 * mode.
1231 	 */
1232 	value &= ~HWP_DESIRED_PERF(~0L);
1233 	WRITE_ONCE(cpu->hwp_req_cached, value);
1234 
1235 	value &= ~GENMASK_ULL(31, 0);
1236 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1237 
1238 	/* Set hwp_max = hwp_min */
1239 	value |= HWP_MAX_PERF(min_perf);
1240 	value |= HWP_MIN_PERF(min_perf);
1241 
1242 	/* Set EPP to min */
1243 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1244 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1245 
1246 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1247 
1248 	mutex_lock(&hybrid_capacity_lock);
1249 
1250 	if (!hybrid_max_perf_cpu) {
1251 		mutex_unlock(&hybrid_capacity_lock);
1252 
1253 		return;
1254 	}
1255 
1256 	if (hybrid_max_perf_cpu == cpu)
1257 		hybrid_update_cpu_capacity_scaling();
1258 
1259 	mutex_unlock(&hybrid_capacity_lock);
1260 
1261 	/* Reset the capacity of the CPU going offline to the initial value. */
1262 	hybrid_clear_cpu_capacity(cpu->cpu);
1263 }
1264 
1265 #define POWER_CTL_EE_ENABLE	1
1266 #define POWER_CTL_EE_DISABLE	2
1267 
1268 static int power_ctl_ee_state;
1269 
1270 static void set_power_ctl_ee_state(bool input)
1271 {
1272 	u64 power_ctl;
1273 
1274 	mutex_lock(&intel_pstate_driver_lock);
1275 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1276 	if (input) {
1277 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1278 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1279 	} else {
1280 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1281 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1282 	}
1283 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1284 	mutex_unlock(&intel_pstate_driver_lock);
1285 }
1286 
1287 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1288 
1289 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1290 {
1291 	intel_pstate_hwp_enable(cpu);
1292 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1293 }
1294 
1295 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1296 {
1297 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1298 
1299 	pr_debug("CPU %d suspending\n", cpu->cpu);
1300 
1301 	cpu->suspended = true;
1302 
1303 	/* disable HWP interrupt and cancel any pending work */
1304 	intel_pstate_disable_hwp_interrupt(cpu);
1305 
1306 	return 0;
1307 }
1308 
1309 static int intel_pstate_resume(struct cpufreq_policy *policy)
1310 {
1311 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1312 
1313 	pr_debug("CPU %d resuming\n", cpu->cpu);
1314 
1315 	/* Only restore if the system default is changed */
1316 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1317 		set_power_ctl_ee_state(true);
1318 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1319 		set_power_ctl_ee_state(false);
1320 
1321 	if (cpu->suspended && hwp_active) {
1322 		mutex_lock(&intel_pstate_limits_lock);
1323 
1324 		/* Re-enable HWP, because "online" has not done that. */
1325 		intel_pstate_hwp_reenable(cpu);
1326 
1327 		mutex_unlock(&intel_pstate_limits_lock);
1328 	}
1329 
1330 	cpu->suspended = false;
1331 
1332 	return 0;
1333 }
1334 
1335 static void intel_pstate_update_policies(void)
1336 {
1337 	int cpu;
1338 
1339 	for_each_possible_cpu(cpu)
1340 		cpufreq_update_policy(cpu);
1341 }
1342 
1343 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1344 					   struct cpufreq_policy *policy)
1345 {
1346 	if (hwp_active)
1347 		intel_pstate_get_hwp_cap(cpudata);
1348 
1349 	policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1350 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1351 
1352 	refresh_frequency_limits(policy);
1353 }
1354 
1355 static void intel_pstate_update_limits(unsigned int cpu)
1356 {
1357 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1358 	struct cpudata *cpudata;
1359 
1360 	if (!policy)
1361 		return;
1362 
1363 	cpudata = all_cpu_data[cpu];
1364 
1365 	__intel_pstate_update_max_freq(cpudata, policy);
1366 
1367 	/* Prevent the driver from being unregistered now. */
1368 	mutex_lock(&intel_pstate_driver_lock);
1369 
1370 	cpufreq_cpu_release(policy);
1371 
1372 	hybrid_update_capacity(cpudata);
1373 
1374 	mutex_unlock(&intel_pstate_driver_lock);
1375 }
1376 
1377 static void intel_pstate_update_limits_for_all(void)
1378 {
1379 	int cpu;
1380 
1381 	for_each_possible_cpu(cpu) {
1382 		struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1383 
1384 		if (!policy)
1385 			continue;
1386 
1387 		__intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1388 
1389 		cpufreq_cpu_release(policy);
1390 	}
1391 
1392 	mutex_lock(&hybrid_capacity_lock);
1393 
1394 	if (hybrid_max_perf_cpu)
1395 		__hybrid_init_cpu_capacity_scaling();
1396 
1397 	mutex_unlock(&hybrid_capacity_lock);
1398 }
1399 
1400 /************************** sysfs begin ************************/
1401 #define show_one(file_name, object)					\
1402 	static ssize_t show_##file_name					\
1403 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1404 	{								\
1405 		return sprintf(buf, "%u\n", global.object);		\
1406 	}
1407 
1408 static ssize_t intel_pstate_show_status(char *buf);
1409 static int intel_pstate_update_status(const char *buf, size_t size);
1410 
1411 static ssize_t show_status(struct kobject *kobj,
1412 			   struct kobj_attribute *attr, char *buf)
1413 {
1414 	ssize_t ret;
1415 
1416 	mutex_lock(&intel_pstate_driver_lock);
1417 	ret = intel_pstate_show_status(buf);
1418 	mutex_unlock(&intel_pstate_driver_lock);
1419 
1420 	return ret;
1421 }
1422 
1423 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1424 			    const char *buf, size_t count)
1425 {
1426 	char *p = memchr(buf, '\n', count);
1427 	int ret;
1428 
1429 	mutex_lock(&intel_pstate_driver_lock);
1430 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1431 	mutex_unlock(&intel_pstate_driver_lock);
1432 
1433 	return ret < 0 ? ret : count;
1434 }
1435 
1436 static ssize_t show_turbo_pct(struct kobject *kobj,
1437 				struct kobj_attribute *attr, char *buf)
1438 {
1439 	struct cpudata *cpu;
1440 	int total, no_turbo, turbo_pct;
1441 	uint32_t turbo_fp;
1442 
1443 	mutex_lock(&intel_pstate_driver_lock);
1444 
1445 	if (!intel_pstate_driver) {
1446 		mutex_unlock(&intel_pstate_driver_lock);
1447 		return -EAGAIN;
1448 	}
1449 
1450 	cpu = all_cpu_data[0];
1451 
1452 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1453 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1454 	turbo_fp = div_fp(no_turbo, total);
1455 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1456 
1457 	mutex_unlock(&intel_pstate_driver_lock);
1458 
1459 	return sprintf(buf, "%u\n", turbo_pct);
1460 }
1461 
1462 static ssize_t show_num_pstates(struct kobject *kobj,
1463 				struct kobj_attribute *attr, char *buf)
1464 {
1465 	struct cpudata *cpu;
1466 	int total;
1467 
1468 	mutex_lock(&intel_pstate_driver_lock);
1469 
1470 	if (!intel_pstate_driver) {
1471 		mutex_unlock(&intel_pstate_driver_lock);
1472 		return -EAGAIN;
1473 	}
1474 
1475 	cpu = all_cpu_data[0];
1476 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1477 
1478 	mutex_unlock(&intel_pstate_driver_lock);
1479 
1480 	return sprintf(buf, "%u\n", total);
1481 }
1482 
1483 static ssize_t show_no_turbo(struct kobject *kobj,
1484 			     struct kobj_attribute *attr, char *buf)
1485 {
1486 	ssize_t ret;
1487 
1488 	mutex_lock(&intel_pstate_driver_lock);
1489 
1490 	if (!intel_pstate_driver) {
1491 		mutex_unlock(&intel_pstate_driver_lock);
1492 		return -EAGAIN;
1493 	}
1494 
1495 	ret = sprintf(buf, "%u\n", global.no_turbo);
1496 
1497 	mutex_unlock(&intel_pstate_driver_lock);
1498 
1499 	return ret;
1500 }
1501 
1502 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1503 			      const char *buf, size_t count)
1504 {
1505 	unsigned int input;
1506 	bool no_turbo;
1507 
1508 	if (sscanf(buf, "%u", &input) != 1)
1509 		return -EINVAL;
1510 
1511 	mutex_lock(&intel_pstate_driver_lock);
1512 
1513 	if (!intel_pstate_driver) {
1514 		count = -EAGAIN;
1515 		goto unlock_driver;
1516 	}
1517 
1518 	no_turbo = !!clamp_t(int, input, 0, 1);
1519 
1520 	WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1521 	if (global.turbo_disabled && !no_turbo) {
1522 		pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1523 		count = -EPERM;
1524 		if (global.no_turbo)
1525 			goto unlock_driver;
1526 		else
1527 			no_turbo = 1;
1528 	}
1529 
1530 	if (no_turbo == global.no_turbo) {
1531 		goto unlock_driver;
1532 	}
1533 
1534 	WRITE_ONCE(global.no_turbo, no_turbo);
1535 
1536 	mutex_lock(&intel_pstate_limits_lock);
1537 
1538 	if (no_turbo) {
1539 		struct cpudata *cpu = all_cpu_data[0];
1540 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1541 
1542 		/* Squash the global minimum into the permitted range. */
1543 		if (global.min_perf_pct > pct)
1544 			global.min_perf_pct = pct;
1545 	}
1546 
1547 	mutex_unlock(&intel_pstate_limits_lock);
1548 
1549 	intel_pstate_update_limits_for_all();
1550 	arch_set_max_freq_ratio(no_turbo);
1551 
1552 unlock_driver:
1553 	mutex_unlock(&intel_pstate_driver_lock);
1554 
1555 	return count;
1556 }
1557 
1558 static void update_qos_request(enum freq_qos_req_type type)
1559 {
1560 	struct freq_qos_request *req;
1561 	struct cpufreq_policy *policy;
1562 	int i;
1563 
1564 	for_each_possible_cpu(i) {
1565 		struct cpudata *cpu = all_cpu_data[i];
1566 		unsigned int freq, perf_pct;
1567 
1568 		policy = cpufreq_cpu_get(i);
1569 		if (!policy)
1570 			continue;
1571 
1572 		req = policy->driver_data;
1573 		cpufreq_cpu_put(policy);
1574 
1575 		if (!req)
1576 			continue;
1577 
1578 		if (hwp_active)
1579 			intel_pstate_get_hwp_cap(cpu);
1580 
1581 		if (type == FREQ_QOS_MIN) {
1582 			perf_pct = global.min_perf_pct;
1583 		} else {
1584 			req++;
1585 			perf_pct = global.max_perf_pct;
1586 		}
1587 
1588 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1589 
1590 		if (freq_qos_update_request(req, freq) < 0)
1591 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1592 	}
1593 }
1594 
1595 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1596 				  const char *buf, size_t count)
1597 {
1598 	unsigned int input;
1599 	int ret;
1600 
1601 	ret = sscanf(buf, "%u", &input);
1602 	if (ret != 1)
1603 		return -EINVAL;
1604 
1605 	mutex_lock(&intel_pstate_driver_lock);
1606 
1607 	if (!intel_pstate_driver) {
1608 		mutex_unlock(&intel_pstate_driver_lock);
1609 		return -EAGAIN;
1610 	}
1611 
1612 	mutex_lock(&intel_pstate_limits_lock);
1613 
1614 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1615 
1616 	mutex_unlock(&intel_pstate_limits_lock);
1617 
1618 	if (intel_pstate_driver == &intel_pstate)
1619 		intel_pstate_update_policies();
1620 	else
1621 		update_qos_request(FREQ_QOS_MAX);
1622 
1623 	mutex_unlock(&intel_pstate_driver_lock);
1624 
1625 	return count;
1626 }
1627 
1628 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1629 				  const char *buf, size_t count)
1630 {
1631 	unsigned int input;
1632 	int ret;
1633 
1634 	ret = sscanf(buf, "%u", &input);
1635 	if (ret != 1)
1636 		return -EINVAL;
1637 
1638 	mutex_lock(&intel_pstate_driver_lock);
1639 
1640 	if (!intel_pstate_driver) {
1641 		mutex_unlock(&intel_pstate_driver_lock);
1642 		return -EAGAIN;
1643 	}
1644 
1645 	mutex_lock(&intel_pstate_limits_lock);
1646 
1647 	global.min_perf_pct = clamp_t(int, input,
1648 				      min_perf_pct_min(), global.max_perf_pct);
1649 
1650 	mutex_unlock(&intel_pstate_limits_lock);
1651 
1652 	if (intel_pstate_driver == &intel_pstate)
1653 		intel_pstate_update_policies();
1654 	else
1655 		update_qos_request(FREQ_QOS_MIN);
1656 
1657 	mutex_unlock(&intel_pstate_driver_lock);
1658 
1659 	return count;
1660 }
1661 
1662 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1663 				struct kobj_attribute *attr, char *buf)
1664 {
1665 	return sprintf(buf, "%u\n", hwp_boost);
1666 }
1667 
1668 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1669 				       struct kobj_attribute *b,
1670 				       const char *buf, size_t count)
1671 {
1672 	unsigned int input;
1673 	int ret;
1674 
1675 	ret = kstrtouint(buf, 10, &input);
1676 	if (ret)
1677 		return ret;
1678 
1679 	mutex_lock(&intel_pstate_driver_lock);
1680 	hwp_boost = !!input;
1681 	intel_pstate_update_policies();
1682 	mutex_unlock(&intel_pstate_driver_lock);
1683 
1684 	return count;
1685 }
1686 
1687 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1688 				      char *buf)
1689 {
1690 	u64 power_ctl;
1691 	int enable;
1692 
1693 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1694 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1695 	return sprintf(buf, "%d\n", !enable);
1696 }
1697 
1698 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1699 				       const char *buf, size_t count)
1700 {
1701 	bool input;
1702 	int ret;
1703 
1704 	ret = kstrtobool(buf, &input);
1705 	if (ret)
1706 		return ret;
1707 
1708 	set_power_ctl_ee_state(input);
1709 
1710 	return count;
1711 }
1712 
1713 show_one(max_perf_pct, max_perf_pct);
1714 show_one(min_perf_pct, min_perf_pct);
1715 
1716 define_one_global_rw(status);
1717 define_one_global_rw(no_turbo);
1718 define_one_global_rw(max_perf_pct);
1719 define_one_global_rw(min_perf_pct);
1720 define_one_global_ro(turbo_pct);
1721 define_one_global_ro(num_pstates);
1722 define_one_global_rw(hwp_dynamic_boost);
1723 define_one_global_rw(energy_efficiency);
1724 
1725 static struct attribute *intel_pstate_attributes[] = {
1726 	&status.attr,
1727 	&no_turbo.attr,
1728 	NULL
1729 };
1730 
1731 static const struct attribute_group intel_pstate_attr_group = {
1732 	.attrs = intel_pstate_attributes,
1733 };
1734 
1735 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1736 
1737 static struct kobject *intel_pstate_kobject;
1738 
1739 static void __init intel_pstate_sysfs_expose_params(void)
1740 {
1741 	struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1742 	int rc;
1743 
1744 	if (dev_root) {
1745 		intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1746 		put_device(dev_root);
1747 	}
1748 	if (WARN_ON(!intel_pstate_kobject))
1749 		return;
1750 
1751 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1752 	if (WARN_ON(rc))
1753 		return;
1754 
1755 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1756 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1757 		WARN_ON(rc);
1758 
1759 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1760 		WARN_ON(rc);
1761 	}
1762 
1763 	/*
1764 	 * If per cpu limits are enforced there are no global limits, so
1765 	 * return without creating max/min_perf_pct attributes
1766 	 */
1767 	if (per_cpu_limits)
1768 		return;
1769 
1770 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1771 	WARN_ON(rc);
1772 
1773 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1774 	WARN_ON(rc);
1775 
1776 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1777 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1778 		WARN_ON(rc);
1779 	}
1780 }
1781 
1782 static void __init intel_pstate_sysfs_remove(void)
1783 {
1784 	if (!intel_pstate_kobject)
1785 		return;
1786 
1787 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1788 
1789 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1790 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1791 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1792 	}
1793 
1794 	if (!per_cpu_limits) {
1795 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1796 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1797 
1798 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1799 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1800 	}
1801 
1802 	kobject_put(intel_pstate_kobject);
1803 }
1804 
1805 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1806 {
1807 	int rc;
1808 
1809 	if (!hwp_active)
1810 		return;
1811 
1812 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1813 	WARN_ON_ONCE(rc);
1814 }
1815 
1816 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1817 {
1818 	if (!hwp_active)
1819 		return;
1820 
1821 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1822 }
1823 
1824 /************************** sysfs end ************************/
1825 
1826 static void intel_pstate_notify_work(struct work_struct *work)
1827 {
1828 	struct cpudata *cpudata =
1829 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1830 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1831 
1832 	if (policy) {
1833 		__intel_pstate_update_max_freq(cpudata, policy);
1834 
1835 		cpufreq_cpu_release(policy);
1836 
1837 		/*
1838 		 * The driver will not be unregistered while this function is
1839 		 * running, so update the capacity without acquiring the driver
1840 		 * lock.
1841 		 */
1842 		hybrid_update_capacity(cpudata);
1843 	}
1844 
1845 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1846 }
1847 
1848 static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1849 static cpumask_t hwp_intr_enable_mask;
1850 
1851 #define HWP_GUARANTEED_PERF_CHANGE_STATUS      BIT(0)
1852 #define HWP_HIGHEST_PERF_CHANGE_STATUS         BIT(3)
1853 
1854 void notify_hwp_interrupt(void)
1855 {
1856 	unsigned int this_cpu = smp_processor_id();
1857 	u64 value, status_mask;
1858 	unsigned long flags;
1859 
1860 	if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1861 		return;
1862 
1863 	status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1864 	if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1865 		status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
1866 
1867 	rdmsrl_safe(MSR_HWP_STATUS, &value);
1868 	if (!(value & status_mask))
1869 		return;
1870 
1871 	raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1872 
1873 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1874 		goto ack_intr;
1875 
1876 	schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1877 			      msecs_to_jiffies(10));
1878 
1879 	raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1880 
1881 	return;
1882 
1883 ack_intr:
1884 	wrmsrl_safe(MSR_HWP_STATUS, 0);
1885 	raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1886 }
1887 
1888 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1889 {
1890 	bool cancel_work;
1891 
1892 	if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1893 		return;
1894 
1895 	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1896 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1897 
1898 	raw_spin_lock_irq(&hwp_notify_lock);
1899 	cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1900 	raw_spin_unlock_irq(&hwp_notify_lock);
1901 
1902 	if (cancel_work)
1903 		cancel_delayed_work_sync(&cpudata->hwp_notify_work);
1904 }
1905 
1906 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
1907 #define HWP_HIGHEST_PERF_CHANGE_REQ    BIT(2)
1908 
1909 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1910 {
1911 	/* Enable HWP notification interrupt for performance change */
1912 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1913 		u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
1914 
1915 		raw_spin_lock_irq(&hwp_notify_lock);
1916 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1917 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1918 		raw_spin_unlock_irq(&hwp_notify_lock);
1919 
1920 		if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1921 			interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
1922 
1923 		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1924 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
1925 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1926 	}
1927 }
1928 
1929 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1930 {
1931 	cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1932 
1933 	/*
1934 	 * If the EPP is set by firmware, which means that firmware enabled HWP
1935 	 * - Is equal or less than 0x80 (default balance_perf EPP)
1936 	 * - But less performance oriented than performance EPP
1937 	 *   then use this as new balance_perf EPP.
1938 	 */
1939 	if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1940 	    cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1941 		epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1942 		return;
1943 	}
1944 
1945 	/*
1946 	 * If this CPU gen doesn't call for change in balance_perf
1947 	 * EPP return.
1948 	 */
1949 	if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1950 		return;
1951 
1952 	/*
1953 	 * Use hard coded value per gen to update the balance_perf
1954 	 * and default EPP.
1955 	 */
1956 	cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1957 	intel_pstate_set_epp(cpudata, cpudata->epp_default);
1958 }
1959 
1960 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1961 {
1962 	/* First disable HWP notification interrupt till we activate again */
1963 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1964 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1965 
1966 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1967 
1968 	intel_pstate_enable_hwp_interrupt(cpudata);
1969 
1970 	if (cpudata->epp_default >= 0)
1971 		return;
1972 
1973 	intel_pstate_update_epp_defaults(cpudata);
1974 }
1975 
1976 static int atom_get_min_pstate(int not_used)
1977 {
1978 	u64 value;
1979 
1980 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1981 	return (value >> 8) & 0x7F;
1982 }
1983 
1984 static int atom_get_max_pstate(int not_used)
1985 {
1986 	u64 value;
1987 
1988 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1989 	return (value >> 16) & 0x7F;
1990 }
1991 
1992 static int atom_get_turbo_pstate(int not_used)
1993 {
1994 	u64 value;
1995 
1996 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1997 	return value & 0x7F;
1998 }
1999 
2000 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
2001 {
2002 	u64 val;
2003 	int32_t vid_fp;
2004 	u32 vid;
2005 
2006 	val = (u64)pstate << 8;
2007 	if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2008 		val |= (u64)1 << 32;
2009 
2010 	vid_fp = cpudata->vid.min + mul_fp(
2011 		int_tofp(pstate - cpudata->pstate.min_pstate),
2012 		cpudata->vid.ratio);
2013 
2014 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
2015 	vid = ceiling_fp(vid_fp);
2016 
2017 	if (pstate > cpudata->pstate.max_pstate)
2018 		vid = cpudata->vid.turbo;
2019 
2020 	return val | vid;
2021 }
2022 
2023 static int silvermont_get_scaling(void)
2024 {
2025 	u64 value;
2026 	int i;
2027 	/* Defined in Table 35-6 from SDM (Sept 2015) */
2028 	static int silvermont_freq_table[] = {
2029 		83300, 100000, 133300, 116700, 80000};
2030 
2031 	rdmsrl(MSR_FSB_FREQ, value);
2032 	i = value & 0x7;
2033 	WARN_ON(i > 4);
2034 
2035 	return silvermont_freq_table[i];
2036 }
2037 
2038 static int airmont_get_scaling(void)
2039 {
2040 	u64 value;
2041 	int i;
2042 	/* Defined in Table 35-10 from SDM (Sept 2015) */
2043 	static int airmont_freq_table[] = {
2044 		83300, 100000, 133300, 116700, 80000,
2045 		93300, 90000, 88900, 87500};
2046 
2047 	rdmsrl(MSR_FSB_FREQ, value);
2048 	i = value & 0xF;
2049 	WARN_ON(i > 8);
2050 
2051 	return airmont_freq_table[i];
2052 }
2053 
2054 static void atom_get_vid(struct cpudata *cpudata)
2055 {
2056 	u64 value;
2057 
2058 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
2059 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
2060 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
2061 	cpudata->vid.ratio = div_fp(
2062 		cpudata->vid.max - cpudata->vid.min,
2063 		int_tofp(cpudata->pstate.max_pstate -
2064 			cpudata->pstate.min_pstate));
2065 
2066 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
2067 	cpudata->vid.turbo = value & 0x7f;
2068 }
2069 
2070 static int core_get_min_pstate(int cpu)
2071 {
2072 	u64 value;
2073 
2074 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2075 	return (value >> 40) & 0xFF;
2076 }
2077 
2078 static int core_get_max_pstate_physical(int cpu)
2079 {
2080 	u64 value;
2081 
2082 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2083 	return (value >> 8) & 0xFF;
2084 }
2085 
2086 static int core_get_tdp_ratio(int cpu, u64 plat_info)
2087 {
2088 	/* Check how many TDP levels present */
2089 	if (plat_info & 0x600000000) {
2090 		u64 tdp_ctrl;
2091 		u64 tdp_ratio;
2092 		int tdp_msr;
2093 		int err;
2094 
2095 		/* Get the TDP level (0, 1, 2) to get ratios */
2096 		err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
2097 		if (err)
2098 			return err;
2099 
2100 		/* TDP MSR are continuous starting at 0x648 */
2101 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
2102 		err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
2103 		if (err)
2104 			return err;
2105 
2106 		/* For level 1 and 2, bits[23:16] contain the ratio */
2107 		if (tdp_ctrl & 0x03)
2108 			tdp_ratio >>= 16;
2109 
2110 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
2111 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
2112 
2113 		return (int)tdp_ratio;
2114 	}
2115 
2116 	return -ENXIO;
2117 }
2118 
2119 static int core_get_max_pstate(int cpu)
2120 {
2121 	u64 tar;
2122 	u64 plat_info;
2123 	int max_pstate;
2124 	int tdp_ratio;
2125 	int err;
2126 
2127 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
2128 	max_pstate = (plat_info >> 8) & 0xFF;
2129 
2130 	tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
2131 	if (tdp_ratio <= 0)
2132 		return max_pstate;
2133 
2134 	if (hwp_active) {
2135 		/* Turbo activation ratio is not used on HWP platforms */
2136 		return tdp_ratio;
2137 	}
2138 
2139 	err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
2140 	if (!err) {
2141 		int tar_levels;
2142 
2143 		/* Do some sanity checking for safety */
2144 		tar_levels = tar & 0xff;
2145 		if (tdp_ratio - 1 == tar_levels) {
2146 			max_pstate = tar_levels;
2147 			pr_debug("max_pstate=TAC %x\n", max_pstate);
2148 		}
2149 	}
2150 
2151 	return max_pstate;
2152 }
2153 
2154 static int core_get_turbo_pstate(int cpu)
2155 {
2156 	u64 value;
2157 	int nont, ret;
2158 
2159 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2160 	nont = core_get_max_pstate(cpu);
2161 	ret = (value) & 255;
2162 	if (ret <= nont)
2163 		ret = nont;
2164 	return ret;
2165 }
2166 
2167 static u64 core_get_val(struct cpudata *cpudata, int pstate)
2168 {
2169 	u64 val;
2170 
2171 	val = (u64)pstate << 8;
2172 	if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2173 		val |= (u64)1 << 32;
2174 
2175 	return val;
2176 }
2177 
2178 static int knl_get_aperf_mperf_shift(void)
2179 {
2180 	return 10;
2181 }
2182 
2183 static int knl_get_turbo_pstate(int cpu)
2184 {
2185 	u64 value;
2186 	int nont, ret;
2187 
2188 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2189 	nont = core_get_max_pstate(cpu);
2190 	ret = (((value) >> 8) & 0xFF);
2191 	if (ret <= nont)
2192 		ret = nont;
2193 	return ret;
2194 }
2195 
2196 static void hybrid_get_type(void *data)
2197 {
2198 	u8 *cpu_type = data;
2199 
2200 	*cpu_type = get_this_hybrid_cpu_type();
2201 }
2202 
2203 static int hwp_get_cpu_scaling(int cpu)
2204 {
2205 	u8 cpu_type = 0;
2206 
2207 	smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
2208 	/* P-cores have a smaller perf level-to-freqency scaling factor. */
2209 	if (cpu_type == 0x40)
2210 		return hybrid_scaling_factor;
2211 
2212 	/* Use default core scaling for E-cores */
2213 	if (cpu_type == 0x20)
2214 		return core_get_scaling();
2215 
2216 	/*
2217 	 * If reached here, this system is either non-hybrid (like Tiger
2218 	 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
2219 	 * no E cores (in which case CPUID for hybrid support is 0).
2220 	 *
2221 	 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2222 	 * so the default core scaling will be used for them.
2223 	 */
2224 	return intel_pstate_cppc_get_scaling(cpu);
2225 }
2226 
2227 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2228 {
2229 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2230 	cpu->pstate.current_pstate = pstate;
2231 	/*
2232 	 * Generally, there is no guarantee that this code will always run on
2233 	 * the CPU being updated, so force the register update to run on the
2234 	 * right CPU.
2235 	 */
2236 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2237 		      pstate_funcs.get_val(cpu, pstate));
2238 }
2239 
2240 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2241 {
2242 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2243 }
2244 
2245 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2246 {
2247 	int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2248 	int perf_ctl_scaling = pstate_funcs.get_scaling();
2249 
2250 	cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2251 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2252 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2253 
2254 	if (hwp_active && !hwp_mode_bdw) {
2255 		__intel_pstate_get_hwp_cap(cpu);
2256 
2257 		if (pstate_funcs.get_cpu_scaling) {
2258 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2259 			if (cpu->pstate.scaling != perf_ctl_scaling) {
2260 				intel_pstate_hybrid_hwp_adjust(cpu);
2261 				hwp_is_hybrid = true;
2262 			}
2263 		} else {
2264 			cpu->pstate.scaling = perf_ctl_scaling;
2265 		}
2266 	} else {
2267 		cpu->pstate.scaling = perf_ctl_scaling;
2268 		cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2269 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2270 	}
2271 
2272 	if (cpu->pstate.scaling == perf_ctl_scaling) {
2273 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2274 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2275 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2276 	}
2277 
2278 	if (pstate_funcs.get_aperf_mperf_shift)
2279 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2280 
2281 	if (pstate_funcs.get_vid)
2282 		pstate_funcs.get_vid(cpu);
2283 
2284 	intel_pstate_set_min_pstate(cpu);
2285 }
2286 
2287 /*
2288  * Long hold time will keep high perf limits for long time,
2289  * which negatively impacts perf/watt for some workloads,
2290  * like specpower. 3ms is based on experiements on some
2291  * workoads.
2292  */
2293 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2294 
2295 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2296 {
2297 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2298 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2299 	u32 max_limit = (hwp_req & 0xff00) >> 8;
2300 	u32 min_limit = (hwp_req & 0xff);
2301 	u32 boost_level1;
2302 
2303 	/*
2304 	 * Cases to consider (User changes via sysfs or boot time):
2305 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2306 	 *	No boost, return.
2307 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2308 	 *     Should result in one level boost only for P0.
2309 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2310 	 *     Should result in two level boost:
2311 	 *         (min + p1)/2 and P1.
2312 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2313 	 *     Should result in three level boost:
2314 	 *        (min + p1)/2, P1 and P0.
2315 	 */
2316 
2317 	/* If max and min are equal or already at max, nothing to boost */
2318 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2319 		return;
2320 
2321 	if (!cpu->hwp_boost_min)
2322 		cpu->hwp_boost_min = min_limit;
2323 
2324 	/* level at half way mark between min and guranteed */
2325 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2326 
2327 	if (cpu->hwp_boost_min < boost_level1)
2328 		cpu->hwp_boost_min = boost_level1;
2329 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2330 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2331 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2332 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2333 		cpu->hwp_boost_min = max_limit;
2334 	else
2335 		return;
2336 
2337 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2338 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2339 	cpu->last_update = cpu->sample.time;
2340 }
2341 
2342 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2343 {
2344 	if (cpu->hwp_boost_min) {
2345 		bool expired;
2346 
2347 		/* Check if we are idle for hold time to boost down */
2348 		expired = time_after64(cpu->sample.time, cpu->last_update +
2349 				       hwp_boost_hold_time_ns);
2350 		if (expired) {
2351 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2352 			cpu->hwp_boost_min = 0;
2353 		}
2354 	}
2355 	cpu->last_update = cpu->sample.time;
2356 }
2357 
2358 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2359 						      u64 time)
2360 {
2361 	cpu->sample.time = time;
2362 
2363 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2364 		bool do_io = false;
2365 
2366 		cpu->sched_flags = 0;
2367 		/*
2368 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2369 		 * is set all the time, we can't just conclude that there is
2370 		 * some IO bound activity is scheduled on this CPU with just
2371 		 * one occurrence. If we receive at least two in two
2372 		 * consecutive ticks, then we treat as boost candidate.
2373 		 */
2374 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2375 			do_io = true;
2376 
2377 		cpu->last_io_update = time;
2378 
2379 		if (do_io)
2380 			intel_pstate_hwp_boost_up(cpu);
2381 
2382 	} else {
2383 		intel_pstate_hwp_boost_down(cpu);
2384 	}
2385 }
2386 
2387 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2388 						u64 time, unsigned int flags)
2389 {
2390 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2391 
2392 	cpu->sched_flags |= flags;
2393 
2394 	if (smp_processor_id() == cpu->cpu)
2395 		intel_pstate_update_util_hwp_local(cpu, time);
2396 }
2397 
2398 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2399 {
2400 	struct sample *sample = &cpu->sample;
2401 
2402 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2403 }
2404 
2405 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2406 {
2407 	u64 aperf, mperf;
2408 	unsigned long flags;
2409 	u64 tsc;
2410 
2411 	local_irq_save(flags);
2412 	rdmsrl(MSR_IA32_APERF, aperf);
2413 	rdmsrl(MSR_IA32_MPERF, mperf);
2414 	tsc = rdtsc();
2415 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2416 		local_irq_restore(flags);
2417 		return false;
2418 	}
2419 	local_irq_restore(flags);
2420 
2421 	cpu->last_sample_time = cpu->sample.time;
2422 	cpu->sample.time = time;
2423 	cpu->sample.aperf = aperf;
2424 	cpu->sample.mperf = mperf;
2425 	cpu->sample.tsc =  tsc;
2426 	cpu->sample.aperf -= cpu->prev_aperf;
2427 	cpu->sample.mperf -= cpu->prev_mperf;
2428 	cpu->sample.tsc -= cpu->prev_tsc;
2429 
2430 	cpu->prev_aperf = aperf;
2431 	cpu->prev_mperf = mperf;
2432 	cpu->prev_tsc = tsc;
2433 	/*
2434 	 * First time this function is invoked in a given cycle, all of the
2435 	 * previous sample data fields are equal to zero or stale and they must
2436 	 * be populated with meaningful numbers for things to work, so assume
2437 	 * that sample.time will always be reset before setting the utilization
2438 	 * update hook and make the caller skip the sample then.
2439 	 */
2440 	if (cpu->last_sample_time) {
2441 		intel_pstate_calc_avg_perf(cpu);
2442 		return true;
2443 	}
2444 	return false;
2445 }
2446 
2447 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2448 {
2449 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2450 }
2451 
2452 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2453 {
2454 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2455 			  cpu->sample.core_avg_perf);
2456 }
2457 
2458 static inline int32_t get_target_pstate(struct cpudata *cpu)
2459 {
2460 	struct sample *sample = &cpu->sample;
2461 	int32_t busy_frac;
2462 	int target, avg_pstate;
2463 
2464 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2465 			   sample->tsc);
2466 
2467 	if (busy_frac < cpu->iowait_boost)
2468 		busy_frac = cpu->iowait_boost;
2469 
2470 	sample->busy_scaled = busy_frac * 100;
2471 
2472 	target = READ_ONCE(global.no_turbo) ?
2473 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2474 	target += target >> 2;
2475 	target = mul_fp(target, busy_frac);
2476 	if (target < cpu->pstate.min_pstate)
2477 		target = cpu->pstate.min_pstate;
2478 
2479 	/*
2480 	 * If the average P-state during the previous cycle was higher than the
2481 	 * current target, add 50% of the difference to the target to reduce
2482 	 * possible performance oscillations and offset possible performance
2483 	 * loss related to moving the workload from one CPU to another within
2484 	 * a package/module.
2485 	 */
2486 	avg_pstate = get_avg_pstate(cpu);
2487 	if (avg_pstate > target)
2488 		target += (avg_pstate - target) >> 1;
2489 
2490 	return target;
2491 }
2492 
2493 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2494 {
2495 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2496 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2497 
2498 	return clamp_t(int, pstate, min_pstate, max_pstate);
2499 }
2500 
2501 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2502 {
2503 	if (pstate == cpu->pstate.current_pstate)
2504 		return;
2505 
2506 	cpu->pstate.current_pstate = pstate;
2507 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2508 }
2509 
2510 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2511 {
2512 	int from = cpu->pstate.current_pstate;
2513 	struct sample *sample;
2514 	int target_pstate;
2515 
2516 	target_pstate = get_target_pstate(cpu);
2517 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2518 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2519 	intel_pstate_update_pstate(cpu, target_pstate);
2520 
2521 	sample = &cpu->sample;
2522 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2523 		fp_toint(sample->busy_scaled),
2524 		from,
2525 		cpu->pstate.current_pstate,
2526 		sample->mperf,
2527 		sample->aperf,
2528 		sample->tsc,
2529 		get_avg_frequency(cpu),
2530 		fp_toint(cpu->iowait_boost * 100));
2531 }
2532 
2533 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2534 				     unsigned int flags)
2535 {
2536 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2537 	u64 delta_ns;
2538 
2539 	/* Don't allow remote callbacks */
2540 	if (smp_processor_id() != cpu->cpu)
2541 		return;
2542 
2543 	delta_ns = time - cpu->last_update;
2544 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2545 		/* Start over if the CPU may have been idle. */
2546 		if (delta_ns > TICK_NSEC) {
2547 			cpu->iowait_boost = ONE_EIGHTH_FP;
2548 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2549 			cpu->iowait_boost <<= 1;
2550 			if (cpu->iowait_boost > int_tofp(1))
2551 				cpu->iowait_boost = int_tofp(1);
2552 		} else {
2553 			cpu->iowait_boost = ONE_EIGHTH_FP;
2554 		}
2555 	} else if (cpu->iowait_boost) {
2556 		/* Clear iowait_boost if the CPU may have been idle. */
2557 		if (delta_ns > TICK_NSEC)
2558 			cpu->iowait_boost = 0;
2559 		else
2560 			cpu->iowait_boost >>= 1;
2561 	}
2562 	cpu->last_update = time;
2563 	delta_ns = time - cpu->sample.time;
2564 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2565 		return;
2566 
2567 	if (intel_pstate_sample(cpu, time))
2568 		intel_pstate_adjust_pstate(cpu);
2569 }
2570 
2571 static struct pstate_funcs core_funcs = {
2572 	.get_max = core_get_max_pstate,
2573 	.get_max_physical = core_get_max_pstate_physical,
2574 	.get_min = core_get_min_pstate,
2575 	.get_turbo = core_get_turbo_pstate,
2576 	.get_scaling = core_get_scaling,
2577 	.get_val = core_get_val,
2578 };
2579 
2580 static const struct pstate_funcs silvermont_funcs = {
2581 	.get_max = atom_get_max_pstate,
2582 	.get_max_physical = atom_get_max_pstate,
2583 	.get_min = atom_get_min_pstate,
2584 	.get_turbo = atom_get_turbo_pstate,
2585 	.get_val = atom_get_val,
2586 	.get_scaling = silvermont_get_scaling,
2587 	.get_vid = atom_get_vid,
2588 };
2589 
2590 static const struct pstate_funcs airmont_funcs = {
2591 	.get_max = atom_get_max_pstate,
2592 	.get_max_physical = atom_get_max_pstate,
2593 	.get_min = atom_get_min_pstate,
2594 	.get_turbo = atom_get_turbo_pstate,
2595 	.get_val = atom_get_val,
2596 	.get_scaling = airmont_get_scaling,
2597 	.get_vid = atom_get_vid,
2598 };
2599 
2600 static const struct pstate_funcs knl_funcs = {
2601 	.get_max = core_get_max_pstate,
2602 	.get_max_physical = core_get_max_pstate_physical,
2603 	.get_min = core_get_min_pstate,
2604 	.get_turbo = knl_get_turbo_pstate,
2605 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2606 	.get_scaling = core_get_scaling,
2607 	.get_val = core_get_val,
2608 };
2609 
2610 #define X86_MATCH(vfm, policy)					 \
2611 	X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2612 
2613 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2614 	X86_MATCH(INTEL_SANDYBRIDGE,		core_funcs),
2615 	X86_MATCH(INTEL_SANDYBRIDGE_X,		core_funcs),
2616 	X86_MATCH(INTEL_ATOM_SILVERMONT,	silvermont_funcs),
2617 	X86_MATCH(INTEL_IVYBRIDGE,		core_funcs),
2618 	X86_MATCH(INTEL_HASWELL,		core_funcs),
2619 	X86_MATCH(INTEL_BROADWELL,		core_funcs),
2620 	X86_MATCH(INTEL_IVYBRIDGE_X,		core_funcs),
2621 	X86_MATCH(INTEL_HASWELL_X,		core_funcs),
2622 	X86_MATCH(INTEL_HASWELL_L,		core_funcs),
2623 	X86_MATCH(INTEL_HASWELL_G,		core_funcs),
2624 	X86_MATCH(INTEL_BROADWELL_G,		core_funcs),
2625 	X86_MATCH(INTEL_ATOM_AIRMONT,		airmont_funcs),
2626 	X86_MATCH(INTEL_SKYLAKE_L,		core_funcs),
2627 	X86_MATCH(INTEL_BROADWELL_X,		core_funcs),
2628 	X86_MATCH(INTEL_SKYLAKE,		core_funcs),
2629 	X86_MATCH(INTEL_BROADWELL_D,		core_funcs),
2630 	X86_MATCH(INTEL_XEON_PHI_KNL,		knl_funcs),
2631 	X86_MATCH(INTEL_XEON_PHI_KNM,		knl_funcs),
2632 	X86_MATCH(INTEL_ATOM_GOLDMONT,		core_funcs),
2633 	X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS,	core_funcs),
2634 	X86_MATCH(INTEL_SKYLAKE_X,		core_funcs),
2635 	X86_MATCH(INTEL_COMETLAKE,		core_funcs),
2636 	X86_MATCH(INTEL_ICELAKE_X,		core_funcs),
2637 	X86_MATCH(INTEL_TIGERLAKE,		core_funcs),
2638 	X86_MATCH(INTEL_SAPPHIRERAPIDS_X,	core_funcs),
2639 	X86_MATCH(INTEL_EMERALDRAPIDS_X,	core_funcs),
2640 	{}
2641 };
2642 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2643 
2644 #ifdef CONFIG_ACPI
2645 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2646 	X86_MATCH(INTEL_BROADWELL_D,		core_funcs),
2647 	X86_MATCH(INTEL_BROADWELL_X,		core_funcs),
2648 	X86_MATCH(INTEL_SKYLAKE_X,		core_funcs),
2649 	X86_MATCH(INTEL_ICELAKE_X,		core_funcs),
2650 	X86_MATCH(INTEL_SAPPHIRERAPIDS_X,	core_funcs),
2651 	X86_MATCH(INTEL_EMERALDRAPIDS_X,	core_funcs),
2652 	X86_MATCH(INTEL_GRANITERAPIDS_D,	core_funcs),
2653 	X86_MATCH(INTEL_GRANITERAPIDS_X,	core_funcs),
2654 	X86_MATCH(INTEL_ATOM_CRESTMONT,		core_funcs),
2655 	X86_MATCH(INTEL_ATOM_CRESTMONT_X,	core_funcs),
2656 	{}
2657 };
2658 #endif
2659 
2660 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2661 	X86_MATCH(INTEL_KABYLAKE,		core_funcs),
2662 	{}
2663 };
2664 
2665 static int intel_pstate_init_cpu(unsigned int cpunum)
2666 {
2667 	struct cpudata *cpu;
2668 
2669 	cpu = all_cpu_data[cpunum];
2670 
2671 	if (!cpu) {
2672 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2673 		if (!cpu)
2674 			return -ENOMEM;
2675 
2676 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2677 
2678 		cpu->cpu = cpunum;
2679 
2680 		cpu->epp_default = -EINVAL;
2681 
2682 		if (hwp_active) {
2683 			intel_pstate_hwp_enable(cpu);
2684 
2685 			if (intel_pstate_acpi_pm_profile_server())
2686 				hwp_boost = true;
2687 		}
2688 	} else if (hwp_active) {
2689 		/*
2690 		 * Re-enable HWP in case this happens after a resume from ACPI
2691 		 * S3 if the CPU was offline during the whole system/resume
2692 		 * cycle.
2693 		 */
2694 		intel_pstate_hwp_reenable(cpu);
2695 	}
2696 
2697 	cpu->epp_powersave = -EINVAL;
2698 	cpu->epp_policy = 0;
2699 
2700 	intel_pstate_get_cpu_pstates(cpu);
2701 
2702 	pr_debug("controlling: cpu %d\n", cpunum);
2703 
2704 	return 0;
2705 }
2706 
2707 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2708 {
2709 	struct cpudata *cpu = all_cpu_data[cpu_num];
2710 
2711 	if (hwp_active && !hwp_boost)
2712 		return;
2713 
2714 	if (cpu->update_util_set)
2715 		return;
2716 
2717 	/* Prevent intel_pstate_update_util() from using stale data. */
2718 	cpu->sample.time = 0;
2719 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2720 				     (hwp_active ?
2721 				      intel_pstate_update_util_hwp :
2722 				      intel_pstate_update_util));
2723 	cpu->update_util_set = true;
2724 }
2725 
2726 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2727 {
2728 	struct cpudata *cpu_data = all_cpu_data[cpu];
2729 
2730 	if (!cpu_data->update_util_set)
2731 		return;
2732 
2733 	cpufreq_remove_update_util_hook(cpu);
2734 	cpu_data->update_util_set = false;
2735 	synchronize_rcu();
2736 }
2737 
2738 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2739 {
2740 	return READ_ONCE(global.no_turbo) ?
2741 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2742 }
2743 
2744 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2745 					    unsigned int policy_min,
2746 					    unsigned int policy_max)
2747 {
2748 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2749 	int32_t max_policy_perf, min_policy_perf;
2750 
2751 	max_policy_perf = policy_max / perf_ctl_scaling;
2752 	if (policy_max == policy_min) {
2753 		min_policy_perf = max_policy_perf;
2754 	} else {
2755 		min_policy_perf = policy_min / perf_ctl_scaling;
2756 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2757 					  0, max_policy_perf);
2758 	}
2759 
2760 	/*
2761 	 * HWP needs some special consideration, because HWP_REQUEST uses
2762 	 * abstract values to represent performance rather than pure ratios.
2763 	 */
2764 	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2765 		int freq;
2766 
2767 		freq = max_policy_perf * perf_ctl_scaling;
2768 		max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2769 		freq = min_policy_perf * perf_ctl_scaling;
2770 		min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2771 	}
2772 
2773 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2774 		 cpu->cpu, min_policy_perf, max_policy_perf);
2775 
2776 	/* Normalize user input to [min_perf, max_perf] */
2777 	if (per_cpu_limits) {
2778 		cpu->min_perf_ratio = min_policy_perf;
2779 		cpu->max_perf_ratio = max_policy_perf;
2780 	} else {
2781 		int turbo_max = cpu->pstate.turbo_pstate;
2782 		int32_t global_min, global_max;
2783 
2784 		/* Global limits are in percent of the maximum turbo P-state. */
2785 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2786 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2787 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2788 
2789 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2790 			 global_min, global_max);
2791 
2792 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2793 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2794 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2795 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2796 
2797 		/* Make sure min_perf <= max_perf */
2798 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2799 					  cpu->max_perf_ratio);
2800 
2801 	}
2802 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2803 		 cpu->max_perf_ratio,
2804 		 cpu->min_perf_ratio);
2805 }
2806 
2807 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2808 {
2809 	struct cpudata *cpu;
2810 
2811 	if (!policy->cpuinfo.max_freq)
2812 		return -ENODEV;
2813 
2814 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2815 		 policy->cpuinfo.max_freq, policy->max);
2816 
2817 	cpu = all_cpu_data[policy->cpu];
2818 	cpu->policy = policy->policy;
2819 
2820 	mutex_lock(&intel_pstate_limits_lock);
2821 
2822 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2823 
2824 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2825 		int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2826 
2827 		/*
2828 		 * NOHZ_FULL CPUs need this as the governor callback may not
2829 		 * be invoked on them.
2830 		 */
2831 		intel_pstate_clear_update_util_hook(policy->cpu);
2832 		intel_pstate_set_pstate(cpu, pstate);
2833 	} else {
2834 		intel_pstate_set_update_util_hook(policy->cpu);
2835 	}
2836 
2837 	if (hwp_active) {
2838 		/*
2839 		 * When hwp_boost was active before and dynamically it
2840 		 * was turned off, in that case we need to clear the
2841 		 * update util hook.
2842 		 */
2843 		if (!hwp_boost)
2844 			intel_pstate_clear_update_util_hook(policy->cpu);
2845 		intel_pstate_hwp_set(policy->cpu);
2846 	}
2847 	/*
2848 	 * policy->cur is never updated with the intel_pstate driver, but it
2849 	 * is used as a stale frequency value. So, keep it within limits.
2850 	 */
2851 	policy->cur = policy->min;
2852 
2853 	mutex_unlock(&intel_pstate_limits_lock);
2854 
2855 	return 0;
2856 }
2857 
2858 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2859 					   struct cpufreq_policy_data *policy)
2860 {
2861 	if (!hwp_active &&
2862 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2863 	    policy->max < policy->cpuinfo.max_freq &&
2864 	    policy->max > cpu->pstate.max_freq) {
2865 		pr_debug("policy->max > max non turbo frequency\n");
2866 		policy->max = policy->cpuinfo.max_freq;
2867 	}
2868 }
2869 
2870 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2871 					   struct cpufreq_policy_data *policy)
2872 {
2873 	int max_freq;
2874 
2875 	if (hwp_active) {
2876 		intel_pstate_get_hwp_cap(cpu);
2877 		max_freq = READ_ONCE(global.no_turbo) ?
2878 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2879 	} else {
2880 		max_freq = intel_pstate_get_max_freq(cpu);
2881 	}
2882 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2883 
2884 	intel_pstate_adjust_policy_max(cpu, policy);
2885 }
2886 
2887 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2888 {
2889 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2890 
2891 	return 0;
2892 }
2893 
2894 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2895 {
2896 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2897 
2898 	pr_debug("CPU %d going offline\n", cpu->cpu);
2899 
2900 	if (cpu->suspended)
2901 		return 0;
2902 
2903 	/*
2904 	 * If the CPU is an SMT thread and it goes offline with the performance
2905 	 * settings different from the minimum, it will prevent its sibling
2906 	 * from getting to lower performance levels, so force the minimum
2907 	 * performance on CPU offline to prevent that from happening.
2908 	 */
2909 	if (hwp_active)
2910 		intel_pstate_hwp_offline(cpu);
2911 	else
2912 		intel_pstate_set_min_pstate(cpu);
2913 
2914 	intel_pstate_exit_perf_limits(policy);
2915 
2916 	return 0;
2917 }
2918 
2919 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2920 {
2921 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2922 
2923 	pr_debug("CPU %d going online\n", cpu->cpu);
2924 
2925 	intel_pstate_init_acpi_perf_limits(policy);
2926 
2927 	if (hwp_active) {
2928 		/*
2929 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2930 		 * know that it need not do that.
2931 		 */
2932 		intel_pstate_hwp_reenable(cpu);
2933 		cpu->suspended = false;
2934 
2935 		hybrid_update_capacity(cpu);
2936 	}
2937 
2938 	return 0;
2939 }
2940 
2941 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2942 {
2943 	intel_pstate_clear_update_util_hook(policy->cpu);
2944 
2945 	return intel_cpufreq_cpu_offline(policy);
2946 }
2947 
2948 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2949 {
2950 	pr_debug("CPU %d exiting\n", policy->cpu);
2951 
2952 	policy->fast_switch_possible = false;
2953 }
2954 
2955 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2956 {
2957 	struct cpudata *cpu;
2958 	int rc;
2959 
2960 	rc = intel_pstate_init_cpu(policy->cpu);
2961 	if (rc)
2962 		return rc;
2963 
2964 	cpu = all_cpu_data[policy->cpu];
2965 
2966 	cpu->max_perf_ratio = 0xFF;
2967 	cpu->min_perf_ratio = 0;
2968 
2969 	/* cpuinfo and default policy values */
2970 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2971 	policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
2972 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2973 
2974 	policy->min = policy->cpuinfo.min_freq;
2975 	policy->max = policy->cpuinfo.max_freq;
2976 
2977 	intel_pstate_init_acpi_perf_limits(policy);
2978 
2979 	policy->fast_switch_possible = true;
2980 
2981 	return 0;
2982 }
2983 
2984 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2985 {
2986 	int ret = __intel_pstate_cpu_init(policy);
2987 
2988 	if (ret)
2989 		return ret;
2990 
2991 	/*
2992 	 * Set the policy to powersave to provide a valid fallback value in case
2993 	 * the default cpufreq governor is neither powersave nor performance.
2994 	 */
2995 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2996 
2997 	if (hwp_active) {
2998 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2999 
3000 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
3001 	}
3002 
3003 	return 0;
3004 }
3005 
3006 static struct cpufreq_driver intel_pstate = {
3007 	.flags		= CPUFREQ_CONST_LOOPS,
3008 	.verify		= intel_pstate_verify_policy,
3009 	.setpolicy	= intel_pstate_set_policy,
3010 	.suspend	= intel_pstate_suspend,
3011 	.resume		= intel_pstate_resume,
3012 	.init		= intel_pstate_cpu_init,
3013 	.exit		= intel_pstate_cpu_exit,
3014 	.offline	= intel_pstate_cpu_offline,
3015 	.online		= intel_pstate_cpu_online,
3016 	.update_limits	= intel_pstate_update_limits,
3017 	.name		= "intel_pstate",
3018 };
3019 
3020 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
3021 {
3022 	struct cpudata *cpu = all_cpu_data[policy->cpu];
3023 
3024 	intel_pstate_verify_cpu_policy(cpu, policy);
3025 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
3026 
3027 	return 0;
3028 }
3029 
3030 /* Use of trace in passive mode:
3031  *
3032  * In passive mode the trace core_busy field (also known as the
3033  * performance field, and lablelled as such on the graphs; also known as
3034  * core_avg_perf) is not needed and so is re-assigned to indicate if the
3035  * driver call was via the normal or fast switch path. Various graphs
3036  * output from the intel_pstate_tracer.py utility that include core_busy
3037  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
3038  * so we use 10 to indicate the normal path through the driver, and
3039  * 90 to indicate the fast switch path through the driver.
3040  * The scaled_busy field is not used, and is set to 0.
3041  */
3042 
3043 #define	INTEL_PSTATE_TRACE_TARGET 10
3044 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
3045 
3046 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
3047 {
3048 	struct sample *sample;
3049 
3050 	if (!trace_pstate_sample_enabled())
3051 		return;
3052 
3053 	if (!intel_pstate_sample(cpu, ktime_get()))
3054 		return;
3055 
3056 	sample = &cpu->sample;
3057 	trace_pstate_sample(trace_type,
3058 		0,
3059 		old_pstate,
3060 		cpu->pstate.current_pstate,
3061 		sample->mperf,
3062 		sample->aperf,
3063 		sample->tsc,
3064 		get_avg_frequency(cpu),
3065 		fp_toint(cpu->iowait_boost * 100));
3066 }
3067 
3068 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
3069 				     u32 desired, bool fast_switch)
3070 {
3071 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
3072 
3073 	value &= ~HWP_MIN_PERF(~0L);
3074 	value |= HWP_MIN_PERF(min);
3075 
3076 	value &= ~HWP_MAX_PERF(~0L);
3077 	value |= HWP_MAX_PERF(max);
3078 
3079 	value &= ~HWP_DESIRED_PERF(~0L);
3080 	value |= HWP_DESIRED_PERF(desired);
3081 
3082 	if (value == prev)
3083 		return;
3084 
3085 	WRITE_ONCE(cpu->hwp_req_cached, value);
3086 	if (fast_switch)
3087 		wrmsrl(MSR_HWP_REQUEST, value);
3088 	else
3089 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3090 }
3091 
3092 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
3093 					  u32 target_pstate, bool fast_switch)
3094 {
3095 	if (fast_switch)
3096 		wrmsrl(MSR_IA32_PERF_CTL,
3097 		       pstate_funcs.get_val(cpu, target_pstate));
3098 	else
3099 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
3100 			      pstate_funcs.get_val(cpu, target_pstate));
3101 }
3102 
3103 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
3104 				       int target_pstate, bool fast_switch)
3105 {
3106 	struct cpudata *cpu = all_cpu_data[policy->cpu];
3107 	int old_pstate = cpu->pstate.current_pstate;
3108 
3109 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
3110 	if (hwp_active) {
3111 		int max_pstate = policy->strict_target ?
3112 					target_pstate : cpu->max_perf_ratio;
3113 
3114 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
3115 					 fast_switch);
3116 	} else if (target_pstate != old_pstate) {
3117 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
3118 	}
3119 
3120 	cpu->pstate.current_pstate = target_pstate;
3121 
3122 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
3123 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
3124 
3125 	return target_pstate;
3126 }
3127 
3128 static int intel_cpufreq_target(struct cpufreq_policy *policy,
3129 				unsigned int target_freq,
3130 				unsigned int relation)
3131 {
3132 	struct cpudata *cpu = all_cpu_data[policy->cpu];
3133 	struct cpufreq_freqs freqs;
3134 	int target_pstate;
3135 
3136 	freqs.old = policy->cur;
3137 	freqs.new = target_freq;
3138 
3139 	cpufreq_freq_transition_begin(policy, &freqs);
3140 
3141 	target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
3142 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
3143 
3144 	freqs.new = target_pstate * cpu->pstate.scaling;
3145 
3146 	cpufreq_freq_transition_end(policy, &freqs, false);
3147 
3148 	return 0;
3149 }
3150 
3151 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
3152 					      unsigned int target_freq)
3153 {
3154 	struct cpudata *cpu = all_cpu_data[policy->cpu];
3155 	int target_pstate;
3156 
3157 	target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
3158 
3159 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
3160 
3161 	return target_pstate * cpu->pstate.scaling;
3162 }
3163 
3164 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
3165 				      unsigned long min_perf,
3166 				      unsigned long target_perf,
3167 				      unsigned long capacity)
3168 {
3169 	struct cpudata *cpu = all_cpu_data[cpunum];
3170 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
3171 	int old_pstate = cpu->pstate.current_pstate;
3172 	int cap_pstate, min_pstate, max_pstate, target_pstate;
3173 
3174 	cap_pstate = READ_ONCE(global.no_turbo) ?
3175 					HWP_GUARANTEED_PERF(hwp_cap) :
3176 					HWP_HIGHEST_PERF(hwp_cap);
3177 
3178 	/* Optimization: Avoid unnecessary divisions. */
3179 
3180 	target_pstate = cap_pstate;
3181 	if (target_perf < capacity)
3182 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
3183 
3184 	min_pstate = cap_pstate;
3185 	if (min_perf < capacity)
3186 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
3187 
3188 	if (min_pstate < cpu->pstate.min_pstate)
3189 		min_pstate = cpu->pstate.min_pstate;
3190 
3191 	if (min_pstate < cpu->min_perf_ratio)
3192 		min_pstate = cpu->min_perf_ratio;
3193 
3194 	if (min_pstate > cpu->max_perf_ratio)
3195 		min_pstate = cpu->max_perf_ratio;
3196 
3197 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
3198 	if (max_pstate < min_pstate)
3199 		max_pstate = min_pstate;
3200 
3201 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
3202 
3203 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3204 
3205 	cpu->pstate.current_pstate = target_pstate;
3206 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3207 }
3208 
3209 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3210 {
3211 	struct freq_qos_request *req;
3212 	struct cpudata *cpu;
3213 	struct device *dev;
3214 	int ret, freq;
3215 
3216 	dev = get_cpu_device(policy->cpu);
3217 	if (!dev)
3218 		return -ENODEV;
3219 
3220 	ret = __intel_pstate_cpu_init(policy);
3221 	if (ret)
3222 		return ret;
3223 
3224 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3225 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
3226 	policy->cur = policy->cpuinfo.min_freq;
3227 
3228 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3229 	if (!req) {
3230 		ret = -ENOMEM;
3231 		goto pstate_exit;
3232 	}
3233 
3234 	cpu = all_cpu_data[policy->cpu];
3235 
3236 	if (hwp_active) {
3237 		u64 value;
3238 
3239 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3240 
3241 		intel_pstate_get_hwp_cap(cpu);
3242 
3243 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3244 		WRITE_ONCE(cpu->hwp_req_cached, value);
3245 
3246 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3247 	} else {
3248 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3249 	}
3250 
3251 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3252 
3253 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3254 				   freq);
3255 	if (ret < 0) {
3256 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3257 		goto free_req;
3258 	}
3259 
3260 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3261 
3262 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3263 				   freq);
3264 	if (ret < 0) {
3265 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3266 		goto remove_min_req;
3267 	}
3268 
3269 	policy->driver_data = req;
3270 
3271 	return 0;
3272 
3273 remove_min_req:
3274 	freq_qos_remove_request(req);
3275 free_req:
3276 	kfree(req);
3277 pstate_exit:
3278 	intel_pstate_exit_perf_limits(policy);
3279 
3280 	return ret;
3281 }
3282 
3283 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3284 {
3285 	struct freq_qos_request *req;
3286 
3287 	req = policy->driver_data;
3288 
3289 	freq_qos_remove_request(req + 1);
3290 	freq_qos_remove_request(req);
3291 	kfree(req);
3292 
3293 	intel_pstate_cpu_exit(policy);
3294 }
3295 
3296 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3297 {
3298 	intel_pstate_suspend(policy);
3299 
3300 	if (hwp_active) {
3301 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3302 		u64 value = READ_ONCE(cpu->hwp_req_cached);
3303 
3304 		/*
3305 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3306 		 * intel_cpufreq_adjust_perf() is in use and the last value
3307 		 * written by it may not be suitable.
3308 		 */
3309 		value &= ~HWP_DESIRED_PERF(~0L);
3310 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3311 		WRITE_ONCE(cpu->hwp_req_cached, value);
3312 	}
3313 
3314 	return 0;
3315 }
3316 
3317 static struct cpufreq_driver intel_cpufreq = {
3318 	.flags		= CPUFREQ_CONST_LOOPS,
3319 	.verify		= intel_cpufreq_verify_policy,
3320 	.target		= intel_cpufreq_target,
3321 	.fast_switch	= intel_cpufreq_fast_switch,
3322 	.init		= intel_cpufreq_cpu_init,
3323 	.exit		= intel_cpufreq_cpu_exit,
3324 	.offline	= intel_cpufreq_cpu_offline,
3325 	.online		= intel_pstate_cpu_online,
3326 	.suspend	= intel_cpufreq_suspend,
3327 	.resume		= intel_pstate_resume,
3328 	.update_limits	= intel_pstate_update_limits,
3329 	.name		= "intel_cpufreq",
3330 };
3331 
3332 static struct cpufreq_driver *default_driver;
3333 
3334 static void intel_pstate_driver_cleanup(void)
3335 {
3336 	unsigned int cpu;
3337 
3338 	cpus_read_lock();
3339 	for_each_online_cpu(cpu) {
3340 		if (all_cpu_data[cpu]) {
3341 			if (intel_pstate_driver == &intel_pstate)
3342 				intel_pstate_clear_update_util_hook(cpu);
3343 
3344 			kfree(all_cpu_data[cpu]);
3345 			WRITE_ONCE(all_cpu_data[cpu], NULL);
3346 		}
3347 	}
3348 	cpus_read_unlock();
3349 
3350 	intel_pstate_driver = NULL;
3351 }
3352 
3353 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3354 {
3355 	int ret;
3356 
3357 	if (driver == &intel_pstate)
3358 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3359 
3360 	memset(&global, 0, sizeof(global));
3361 	global.max_perf_pct = 100;
3362 	global.turbo_disabled = turbo_is_disabled();
3363 	global.no_turbo = global.turbo_disabled;
3364 
3365 	arch_set_max_freq_ratio(global.turbo_disabled);
3366 
3367 	intel_pstate_driver = driver;
3368 	ret = cpufreq_register_driver(intel_pstate_driver);
3369 	if (ret) {
3370 		intel_pstate_driver_cleanup();
3371 		return ret;
3372 	}
3373 
3374 	global.min_perf_pct = min_perf_pct_min();
3375 
3376 	hybrid_init_cpu_capacity_scaling();
3377 
3378 	return 0;
3379 }
3380 
3381 static ssize_t intel_pstate_show_status(char *buf)
3382 {
3383 	if (!intel_pstate_driver)
3384 		return sprintf(buf, "off\n");
3385 
3386 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3387 					"active" : "passive");
3388 }
3389 
3390 static int intel_pstate_update_status(const char *buf, size_t size)
3391 {
3392 	if (size == 3 && !strncmp(buf, "off", size)) {
3393 		if (!intel_pstate_driver)
3394 			return -EINVAL;
3395 
3396 		if (hwp_active)
3397 			return -EBUSY;
3398 
3399 		cpufreq_unregister_driver(intel_pstate_driver);
3400 		intel_pstate_driver_cleanup();
3401 		return 0;
3402 	}
3403 
3404 	if (size == 6 && !strncmp(buf, "active", size)) {
3405 		if (intel_pstate_driver) {
3406 			if (intel_pstate_driver == &intel_pstate)
3407 				return 0;
3408 
3409 			cpufreq_unregister_driver(intel_pstate_driver);
3410 		}
3411 
3412 		return intel_pstate_register_driver(&intel_pstate);
3413 	}
3414 
3415 	if (size == 7 && !strncmp(buf, "passive", size)) {
3416 		if (intel_pstate_driver) {
3417 			if (intel_pstate_driver == &intel_cpufreq)
3418 				return 0;
3419 
3420 			cpufreq_unregister_driver(intel_pstate_driver);
3421 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3422 		}
3423 
3424 		return intel_pstate_register_driver(&intel_cpufreq);
3425 	}
3426 
3427 	return -EINVAL;
3428 }
3429 
3430 static int no_load __initdata;
3431 static int no_hwp __initdata;
3432 static int hwp_only __initdata;
3433 static unsigned int force_load __initdata;
3434 
3435 static int __init intel_pstate_msrs_not_valid(void)
3436 {
3437 	if (!pstate_funcs.get_max(0) ||
3438 	    !pstate_funcs.get_min(0) ||
3439 	    !pstate_funcs.get_turbo(0))
3440 		return -ENODEV;
3441 
3442 	return 0;
3443 }
3444 
3445 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3446 {
3447 	pstate_funcs.get_max   = funcs->get_max;
3448 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3449 	pstate_funcs.get_min   = funcs->get_min;
3450 	pstate_funcs.get_turbo = funcs->get_turbo;
3451 	pstate_funcs.get_scaling = funcs->get_scaling;
3452 	pstate_funcs.get_val   = funcs->get_val;
3453 	pstate_funcs.get_vid   = funcs->get_vid;
3454 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3455 }
3456 
3457 #ifdef CONFIG_ACPI
3458 
3459 static bool __init intel_pstate_no_acpi_pss(void)
3460 {
3461 	int i;
3462 
3463 	for_each_possible_cpu(i) {
3464 		acpi_status status;
3465 		union acpi_object *pss;
3466 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3467 		struct acpi_processor *pr = per_cpu(processors, i);
3468 
3469 		if (!pr)
3470 			continue;
3471 
3472 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3473 		if (ACPI_FAILURE(status))
3474 			continue;
3475 
3476 		pss = buffer.pointer;
3477 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3478 			kfree(pss);
3479 			return false;
3480 		}
3481 
3482 		kfree(pss);
3483 	}
3484 
3485 	pr_debug("ACPI _PSS not found\n");
3486 	return true;
3487 }
3488 
3489 static bool __init intel_pstate_no_acpi_pcch(void)
3490 {
3491 	acpi_status status;
3492 	acpi_handle handle;
3493 
3494 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3495 	if (ACPI_FAILURE(status))
3496 		goto not_found;
3497 
3498 	if (acpi_has_method(handle, "PCCH"))
3499 		return false;
3500 
3501 not_found:
3502 	pr_debug("ACPI PCCH not found\n");
3503 	return true;
3504 }
3505 
3506 static bool __init intel_pstate_has_acpi_ppc(void)
3507 {
3508 	int i;
3509 
3510 	for_each_possible_cpu(i) {
3511 		struct acpi_processor *pr = per_cpu(processors, i);
3512 
3513 		if (!pr)
3514 			continue;
3515 		if (acpi_has_method(pr->handle, "_PPC"))
3516 			return true;
3517 	}
3518 	pr_debug("ACPI _PPC not found\n");
3519 	return false;
3520 }
3521 
3522 enum {
3523 	PSS,
3524 	PPC,
3525 };
3526 
3527 /* Hardware vendor-specific info that has its own power management modes */
3528 static struct acpi_platform_list plat_info[] __initdata = {
3529 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3530 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3531 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3532 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3533 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3534 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3535 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3536 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3537 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3538 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3539 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3540 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3541 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3542 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3543 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3544 	{ } /* End */
3545 };
3546 
3547 #define BITMASK_OOB	(BIT(8) | BIT(18))
3548 
3549 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3550 {
3551 	const struct x86_cpu_id *id;
3552 	u64 misc_pwr;
3553 	int idx;
3554 
3555 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3556 	if (id) {
3557 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3558 		if (misc_pwr & BITMASK_OOB) {
3559 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3560 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3561 			return true;
3562 		}
3563 	}
3564 
3565 	idx = acpi_match_platform_list(plat_info);
3566 	if (idx < 0)
3567 		return false;
3568 
3569 	switch (plat_info[idx].data) {
3570 	case PSS:
3571 		if (!intel_pstate_no_acpi_pss())
3572 			return false;
3573 
3574 		return intel_pstate_no_acpi_pcch();
3575 	case PPC:
3576 		return intel_pstate_has_acpi_ppc() && !force_load;
3577 	}
3578 
3579 	return false;
3580 }
3581 
3582 static void intel_pstate_request_control_from_smm(void)
3583 {
3584 	/*
3585 	 * It may be unsafe to request P-states control from SMM if _PPC support
3586 	 * has not been enabled.
3587 	 */
3588 	if (acpi_ppc)
3589 		acpi_processor_pstate_control();
3590 }
3591 #else /* CONFIG_ACPI not enabled */
3592 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3593 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3594 static inline void intel_pstate_request_control_from_smm(void) {}
3595 #endif /* CONFIG_ACPI */
3596 
3597 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3598 
3599 #define X86_MATCH_HWP(vfm, hwp_mode)				\
3600 	X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3601 
3602 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3603 	X86_MATCH_HWP(INTEL_BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3604 	X86_MATCH_HWP(INTEL_BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3605 	X86_MATCH_HWP(INTEL_ANY,		0),
3606 	{}
3607 };
3608 
3609 static bool intel_pstate_hwp_is_enabled(void)
3610 {
3611 	u64 value;
3612 
3613 	rdmsrl(MSR_PM_ENABLE, value);
3614 	return !!(value & 0x1);
3615 }
3616 
3617 #define POWERSAVE_MASK			GENMASK(7, 0)
3618 #define BALANCE_POWER_MASK		GENMASK(15, 8)
3619 #define BALANCE_PERFORMANCE_MASK	GENMASK(23, 16)
3620 #define PERFORMANCE_MASK		GENMASK(31, 24)
3621 
3622 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3623 	(FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3624 	 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3625 	 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3626 	 FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3627 
3628 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3629 	(HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3630 	 balance_perf, HWP_EPP_PERFORMANCE))
3631 
3632 static const struct x86_cpu_id intel_epp_default[] = {
3633 	/*
3634 	 * Set EPP value as 102, this is the max suggested EPP
3635 	 * which can result in one core turbo frequency for
3636 	 * AlderLake Mobile CPUs.
3637 	 */
3638 	X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3639 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3640 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3641 	X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3642 		      179, 64, 16)),
3643 	X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3644 		      179, 64, 16)),
3645 	{}
3646 };
3647 
3648 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3649 	X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3650 	X86_MATCH_VFM(INTEL_ARROWLAKE, HYBRID_SCALING_FACTOR_MTL),
3651 	X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3652 	{}
3653 };
3654 
3655 static int __init intel_pstate_init(void)
3656 {
3657 	static struct cpudata **_all_cpu_data;
3658 	const struct x86_cpu_id *id;
3659 	int rc;
3660 
3661 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3662 		return -ENODEV;
3663 
3664 	id = x86_match_cpu(hwp_support_ids);
3665 	if (id) {
3666 		hwp_forced = intel_pstate_hwp_is_enabled();
3667 
3668 		if (hwp_forced)
3669 			pr_info("HWP enabled by BIOS\n");
3670 		else if (no_load)
3671 			return -ENODEV;
3672 
3673 		copy_cpu_funcs(&core_funcs);
3674 		/*
3675 		 * Avoid enabling HWP for processors without EPP support,
3676 		 * because that means incomplete HWP implementation which is a
3677 		 * corner case and supporting it is generally problematic.
3678 		 *
3679 		 * If HWP is enabled already, though, there is no choice but to
3680 		 * deal with it.
3681 		 */
3682 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3683 			hwp_active = true;
3684 			hwp_mode_bdw = id->driver_data;
3685 			intel_pstate.attr = hwp_cpufreq_attrs;
3686 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3687 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3688 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3689 			if (!default_driver)
3690 				default_driver = &intel_pstate;
3691 
3692 			pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3693 
3694 			goto hwp_cpu_matched;
3695 		}
3696 		pr_info("HWP not enabled\n");
3697 	} else {
3698 		if (no_load)
3699 			return -ENODEV;
3700 
3701 		id = x86_match_cpu(intel_pstate_cpu_ids);
3702 		if (!id) {
3703 			pr_info("CPU model not supported\n");
3704 			return -ENODEV;
3705 		}
3706 
3707 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3708 	}
3709 
3710 	if (intel_pstate_msrs_not_valid()) {
3711 		pr_info("Invalid MSRs\n");
3712 		return -ENODEV;
3713 	}
3714 	/* Without HWP start in the passive mode. */
3715 	if (!default_driver)
3716 		default_driver = &intel_cpufreq;
3717 
3718 hwp_cpu_matched:
3719 	/*
3720 	 * The Intel pstate driver will be ignored if the platform
3721 	 * firmware has its own power management modes.
3722 	 */
3723 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3724 		pr_info("P-states controlled by the platform\n");
3725 		return -ENODEV;
3726 	}
3727 
3728 	if (!hwp_active && hwp_only)
3729 		return -ENOTSUPP;
3730 
3731 	pr_info("Intel P-state driver initializing\n");
3732 
3733 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3734 	if (!_all_cpu_data)
3735 		return -ENOMEM;
3736 
3737 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
3738 
3739 	intel_pstate_request_control_from_smm();
3740 
3741 	intel_pstate_sysfs_expose_params();
3742 
3743 	if (hwp_active) {
3744 		const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3745 		const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3746 
3747 		if (id) {
3748 			epp_values[EPP_INDEX_POWERSAVE] =
3749 					FIELD_GET(POWERSAVE_MASK, id->driver_data);
3750 			epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3751 					FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3752 			epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3753 					FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3754 			epp_values[EPP_INDEX_PERFORMANCE] =
3755 					FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3756 			pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3757 				 epp_values[EPP_INDEX_POWERSAVE],
3758 				 epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3759 				 epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3760 				 epp_values[EPP_INDEX_PERFORMANCE]);
3761 		}
3762 
3763 		if (hybrid_id) {
3764 			hybrid_scaling_factor = hybrid_id->driver_data;
3765 			pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3766 		}
3767 
3768 	}
3769 
3770 	mutex_lock(&intel_pstate_driver_lock);
3771 	rc = intel_pstate_register_driver(default_driver);
3772 	mutex_unlock(&intel_pstate_driver_lock);
3773 	if (rc) {
3774 		intel_pstate_sysfs_remove();
3775 		return rc;
3776 	}
3777 
3778 	if (hwp_active) {
3779 		const struct x86_cpu_id *id;
3780 
3781 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3782 		if (id) {
3783 			set_power_ctl_ee_state(false);
3784 			pr_info("Disabling energy efficiency optimization\n");
3785 		}
3786 
3787 		pr_info("HWP enabled\n");
3788 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3789 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3790 	}
3791 
3792 	return 0;
3793 }
3794 device_initcall(intel_pstate_init);
3795 
3796 static int __init intel_pstate_setup(char *str)
3797 {
3798 	if (!str)
3799 		return -EINVAL;
3800 
3801 	if (!strcmp(str, "disable"))
3802 		no_load = 1;
3803 	else if (!strcmp(str, "active"))
3804 		default_driver = &intel_pstate;
3805 	else if (!strcmp(str, "passive"))
3806 		default_driver = &intel_cpufreq;
3807 
3808 	if (!strcmp(str, "no_hwp"))
3809 		no_hwp = 1;
3810 
3811 	if (!strcmp(str, "force"))
3812 		force_load = 1;
3813 	if (!strcmp(str, "hwp_only"))
3814 		hwp_only = 1;
3815 	if (!strcmp(str, "per_cpu_perf_limits"))
3816 		per_cpu_limits = true;
3817 
3818 #ifdef CONFIG_ACPI
3819 	if (!strcmp(str, "support_acpi_ppc"))
3820 		acpi_ppc = true;
3821 #endif
3822 
3823 	return 0;
3824 }
3825 early_param("intel_pstate", intel_pstate_setup);
3826 
3827 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3828 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3829