xref: /linux/drivers/cpufreq/intel_pstate.c (revision 3339b99ef6fe38dac43b534cba3a8a0e29fb2eff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <linux/bitfield.h>
29 #include <trace/events/power.h>
30 
31 #include <asm/cpu.h>
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36 #include <asm/intel-family.h>
37 #include "../drivers/thermal/intel/thermal_interrupt.h"
38 
39 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40 
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49 
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53 
54 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
55 
56 #define EXT_BITS 6
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60 
61 static inline int32_t mul_fp(int32_t x, int32_t y)
62 {
63 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64 }
65 
66 static inline int32_t div_fp(s64 x, s64 y)
67 {
68 	return div64_s64((int64_t)x << FRAC_BITS, y);
69 }
70 
71 static inline int ceiling_fp(int32_t x)
72 {
73 	int mask, ret;
74 
75 	ret = fp_toint(x);
76 	mask = (1 << FRAC_BITS) - 1;
77 	if (x & mask)
78 		ret += 1;
79 	return ret;
80 }
81 
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84 	return (x * y) >> EXT_FRAC_BITS;
85 }
86 
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89 	return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91 
92 /**
93  * struct sample -	Store performance sample
94  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95  *			performance during last sample period
96  * @busy_scaled:	Scaled busy value which is used to calculate next
97  *			P state. This can be different than core_avg_perf
98  *			to account for cpu idle period
99  * @aperf:		Difference of actual performance frequency clock count
100  *			read from APERF MSR between last and current sample
101  * @mperf:		Difference of maximum performance frequency clock count
102  *			read from MPERF MSR between last and current sample
103  * @tsc:		Difference of time stamp counter between last and
104  *			current sample
105  * @time:		Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111 	int32_t core_avg_perf;
112 	int32_t busy_scaled;
113 	u64 aperf;
114 	u64 mperf;
115 	u64 tsc;
116 	u64 time;
117 };
118 
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:	Current requested P state
122  * @min_pstate:		Min P state possible for this platform
123  * @max_pstate:		Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *			This can be higher than the max_pstate which can
126  *			be limited by platform thermal design power limits
127  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
128  * @scaling:		Scaling factor between performance and frequency
129  * @turbo_pstate:	Max Turbo P state possible for this platform
130  * @min_freq:		@min_pstate frequency in cpufreq units
131  * @max_freq:		@max_pstate frequency in cpufreq units
132  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
133  *
134  * Stores the per cpu model P state limits and current P state.
135  */
136 struct pstate_data {
137 	int	current_pstate;
138 	int	min_pstate;
139 	int	max_pstate;
140 	int	max_pstate_physical;
141 	int	perf_ctl_scaling;
142 	int	scaling;
143 	int	turbo_pstate;
144 	unsigned int min_freq;
145 	unsigned int max_freq;
146 	unsigned int turbo_freq;
147 };
148 
149 /**
150  * struct vid_data -	Stores voltage information data
151  * @min:		VID data for this platform corresponding to
152  *			the lowest P state
153  * @max:		VID data corresponding to the highest P State.
154  * @turbo:		VID data for turbo P state
155  * @ratio:		Ratio of (vid max - vid min) /
156  *			(max P state - Min P State)
157  *
158  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
159  * This data is used in Atom platforms, where in addition to target P state,
160  * the voltage data needs to be specified to select next P State.
161  */
162 struct vid_data {
163 	int min;
164 	int max;
165 	int turbo;
166 	int32_t ratio;
167 };
168 
169 /**
170  * struct global_params - Global parameters, mostly tunable via sysfs.
171  * @no_turbo:		Whether or not to use turbo P-states.
172  * @turbo_disabled:	Whether or not turbo P-states are available at all,
173  *			based on the MSR_IA32_MISC_ENABLE value and whether or
174  *			not the maximum reported turbo P-state is different from
175  *			the maximum reported non-turbo one.
176  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
177  *			P-state capacity.
178  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
179  *			P-state capacity.
180  */
181 struct global_params {
182 	bool no_turbo;
183 	bool turbo_disabled;
184 	int max_perf_pct;
185 	int min_perf_pct;
186 };
187 
188 /**
189  * struct cpudata -	Per CPU instance data storage
190  * @cpu:		CPU number for this instance data
191  * @policy:		CPUFreq policy value
192  * @update_util:	CPUFreq utility callback information
193  * @update_util_set:	CPUFreq utility callback is set
194  * @iowait_boost:	iowait-related boost fraction
195  * @last_update:	Time of the last update.
196  * @pstate:		Stores P state limits for this CPU
197  * @vid:		Stores VID limits for this CPU
198  * @last_sample_time:	Last Sample time
199  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
200  * @prev_aperf:		Last APERF value read from APERF MSR
201  * @prev_mperf:		Last MPERF value read from MPERF MSR
202  * @prev_tsc:		Last timestamp counter (TSC) value
203  * @sample:		Storage for storing last Sample data
204  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
205  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
206  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
207  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
208  * @epp_powersave:	Last saved HWP energy performance preference
209  *			(EPP) or energy performance bias (EPB),
210  *			when policy switched to performance
211  * @epp_policy:		Last saved policy used to set EPP/EPB
212  * @epp_default:	Power on default HWP energy performance
213  *			preference/bias
214  * @epp_cached:		Cached HWP energy-performance preference value
215  * @hwp_req_cached:	Cached value of the last HWP Request MSR
216  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
217  * @last_io_update:	Last time when IO wake flag was set
218  * @sched_flags:	Store scheduler flags for possible cross CPU update
219  * @hwp_boost_min:	Last HWP boosted min performance
220  * @suspended:		Whether or not the driver has been suspended.
221  * @hwp_notify_work:	workqueue for HWP notifications.
222  *
223  * This structure stores per CPU instance data for all CPUs.
224  */
225 struct cpudata {
226 	int cpu;
227 
228 	unsigned int policy;
229 	struct update_util_data update_util;
230 	bool   update_util_set;
231 
232 	struct pstate_data pstate;
233 	struct vid_data vid;
234 
235 	u64	last_update;
236 	u64	last_sample_time;
237 	u64	aperf_mperf_shift;
238 	u64	prev_aperf;
239 	u64	prev_mperf;
240 	u64	prev_tsc;
241 	struct sample sample;
242 	int32_t	min_perf_ratio;
243 	int32_t	max_perf_ratio;
244 #ifdef CONFIG_ACPI
245 	struct acpi_processor_performance acpi_perf_data;
246 	bool valid_pss_table;
247 #endif
248 	unsigned int iowait_boost;
249 	s16 epp_powersave;
250 	s16 epp_policy;
251 	s16 epp_default;
252 	s16 epp_cached;
253 	u64 hwp_req_cached;
254 	u64 hwp_cap_cached;
255 	u64 last_io_update;
256 	unsigned int sched_flags;
257 	u32 hwp_boost_min;
258 	bool suspended;
259 	struct delayed_work hwp_notify_work;
260 };
261 
262 static struct cpudata **all_cpu_data;
263 
264 /**
265  * struct pstate_funcs - Per CPU model specific callbacks
266  * @get_max:		Callback to get maximum non turbo effective P state
267  * @get_max_physical:	Callback to get maximum non turbo physical P state
268  * @get_min:		Callback to get minimum P state
269  * @get_turbo:		Callback to get turbo P state
270  * @get_scaling:	Callback to get frequency scaling factor
271  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
272  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
273  * @get_val:		Callback to convert P state to actual MSR write value
274  * @get_vid:		Callback to get VID data for Atom platforms
275  *
276  * Core and Atom CPU models have different way to get P State limits. This
277  * structure is used to store those callbacks.
278  */
279 struct pstate_funcs {
280 	int (*get_max)(int cpu);
281 	int (*get_max_physical)(int cpu);
282 	int (*get_min)(int cpu);
283 	int (*get_turbo)(int cpu);
284 	int (*get_scaling)(void);
285 	int (*get_cpu_scaling)(int cpu);
286 	int (*get_aperf_mperf_shift)(void);
287 	u64 (*get_val)(struct cpudata*, int pstate);
288 	void (*get_vid)(struct cpudata *);
289 };
290 
291 static struct pstate_funcs pstate_funcs __read_mostly;
292 
293 static bool hwp_active __ro_after_init;
294 static int hwp_mode_bdw __ro_after_init;
295 static bool per_cpu_limits __ro_after_init;
296 static bool hwp_forced __ro_after_init;
297 static bool hwp_boost __read_mostly;
298 
299 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
300 
301 #define HYBRID_SCALING_FACTOR		78741
302 #define HYBRID_SCALING_FACTOR_MTL	80000
303 
304 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
305 
306 static inline int core_get_scaling(void)
307 {
308 	return 100000;
309 }
310 
311 #ifdef CONFIG_ACPI
312 static bool acpi_ppc;
313 #endif
314 
315 static struct global_params global;
316 
317 static DEFINE_MUTEX(intel_pstate_driver_lock);
318 static DEFINE_MUTEX(intel_pstate_limits_lock);
319 
320 #ifdef CONFIG_ACPI
321 
322 static bool intel_pstate_acpi_pm_profile_server(void)
323 {
324 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
325 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
326 		return true;
327 
328 	return false;
329 }
330 
331 static bool intel_pstate_get_ppc_enable_status(void)
332 {
333 	if (intel_pstate_acpi_pm_profile_server())
334 		return true;
335 
336 	return acpi_ppc;
337 }
338 
339 #ifdef CONFIG_ACPI_CPPC_LIB
340 
341 /* The work item is needed to avoid CPU hotplug locking issues */
342 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
343 {
344 	sched_set_itmt_support();
345 }
346 
347 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
348 
349 #define CPPC_MAX_PERF	U8_MAX
350 
351 static void intel_pstate_set_itmt_prio(int cpu)
352 {
353 	struct cppc_perf_caps cppc_perf;
354 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
355 	int ret;
356 
357 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
358 	if (ret)
359 		return;
360 
361 	/*
362 	 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
363 	 * In this case we can't use CPPC.highest_perf to enable ITMT.
364 	 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
365 	 */
366 	if (cppc_perf.highest_perf == CPPC_MAX_PERF)
367 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
368 
369 	/*
370 	 * The priorities can be set regardless of whether or not
371 	 * sched_set_itmt_support(true) has been called and it is valid to
372 	 * update them at any time after it has been called.
373 	 */
374 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
375 
376 	if (max_highest_perf <= min_highest_perf) {
377 		if (cppc_perf.highest_perf > max_highest_perf)
378 			max_highest_perf = cppc_perf.highest_perf;
379 
380 		if (cppc_perf.highest_perf < min_highest_perf)
381 			min_highest_perf = cppc_perf.highest_perf;
382 
383 		if (max_highest_perf > min_highest_perf) {
384 			/*
385 			 * This code can be run during CPU online under the
386 			 * CPU hotplug locks, so sched_set_itmt_support()
387 			 * cannot be called from here.  Queue up a work item
388 			 * to invoke it.
389 			 */
390 			schedule_work(&sched_itmt_work);
391 		}
392 	}
393 }
394 
395 static int intel_pstate_get_cppc_guaranteed(int cpu)
396 {
397 	struct cppc_perf_caps cppc_perf;
398 	int ret;
399 
400 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
401 	if (ret)
402 		return ret;
403 
404 	if (cppc_perf.guaranteed_perf)
405 		return cppc_perf.guaranteed_perf;
406 
407 	return cppc_perf.nominal_perf;
408 }
409 
410 static int intel_pstate_cppc_get_scaling(int cpu)
411 {
412 	struct cppc_perf_caps cppc_perf;
413 	int ret;
414 
415 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
416 
417 	/*
418 	 * If the nominal frequency and the nominal performance are not
419 	 * zero and the ratio between them is not 100, return the hybrid
420 	 * scaling factor.
421 	 */
422 	if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
423 	    cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
424 		return hybrid_scaling_factor;
425 
426 	return core_get_scaling();
427 }
428 
429 #else /* CONFIG_ACPI_CPPC_LIB */
430 static inline void intel_pstate_set_itmt_prio(int cpu)
431 {
432 }
433 #endif /* CONFIG_ACPI_CPPC_LIB */
434 
435 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
436 {
437 	struct cpudata *cpu;
438 	int ret;
439 	int i;
440 
441 	if (hwp_active) {
442 		intel_pstate_set_itmt_prio(policy->cpu);
443 		return;
444 	}
445 
446 	if (!intel_pstate_get_ppc_enable_status())
447 		return;
448 
449 	cpu = all_cpu_data[policy->cpu];
450 
451 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
452 						  policy->cpu);
453 	if (ret)
454 		return;
455 
456 	/*
457 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
458 	 * guarantee that the states returned by it map to the states in our
459 	 * list directly.
460 	 */
461 	if (cpu->acpi_perf_data.control_register.space_id !=
462 						ACPI_ADR_SPACE_FIXED_HARDWARE)
463 		goto err;
464 
465 	/*
466 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
467 	 * usual without taking _PSS into account
468 	 */
469 	if (cpu->acpi_perf_data.state_count < 2)
470 		goto err;
471 
472 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
473 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
474 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
475 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
476 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
477 			 (u32) cpu->acpi_perf_data.states[i].power,
478 			 (u32) cpu->acpi_perf_data.states[i].control);
479 	}
480 
481 	cpu->valid_pss_table = true;
482 	pr_debug("_PPC limits will be enforced\n");
483 
484 	return;
485 
486  err:
487 	cpu->valid_pss_table = false;
488 	acpi_processor_unregister_performance(policy->cpu);
489 }
490 
491 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
492 {
493 	struct cpudata *cpu;
494 
495 	cpu = all_cpu_data[policy->cpu];
496 	if (!cpu->valid_pss_table)
497 		return;
498 
499 	acpi_processor_unregister_performance(policy->cpu);
500 }
501 #else /* CONFIG_ACPI */
502 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505 
506 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
507 {
508 }
509 
510 static inline bool intel_pstate_acpi_pm_profile_server(void)
511 {
512 	return false;
513 }
514 #endif /* CONFIG_ACPI */
515 
516 #ifndef CONFIG_ACPI_CPPC_LIB
517 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
518 {
519 	return -ENOTSUPP;
520 }
521 
522 static int intel_pstate_cppc_get_scaling(int cpu)
523 {
524 	return core_get_scaling();
525 }
526 #endif /* CONFIG_ACPI_CPPC_LIB */
527 
528 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
529 					unsigned int relation)
530 {
531 	if (freq == cpu->pstate.turbo_freq)
532 		return cpu->pstate.turbo_pstate;
533 
534 	if (freq == cpu->pstate.max_freq)
535 		return cpu->pstate.max_pstate;
536 
537 	switch (relation) {
538 	case CPUFREQ_RELATION_H:
539 		return freq / cpu->pstate.scaling;
540 	case CPUFREQ_RELATION_C:
541 		return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
542 	}
543 
544 	return DIV_ROUND_UP(freq, cpu->pstate.scaling);
545 }
546 
547 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
548 {
549 	return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
550 }
551 
552 /**
553  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
554  * @cpu: Target CPU.
555  *
556  * On hybrid processors, HWP may expose more performance levels than there are
557  * P-states accessible through the PERF_CTL interface.  If that happens, the
558  * scaling factor between HWP performance levels and CPU frequency will be less
559  * than the scaling factor between P-state values and CPU frequency.
560  *
561  * In that case, adjust the CPU parameters used in computations accordingly.
562  */
563 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
564 {
565 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
566 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
567 	int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
568 	int scaling = cpu->pstate.scaling;
569 	int freq;
570 
571 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
572 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
573 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
574 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
575 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
576 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
577 
578 	cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
579 					   perf_ctl_scaling);
580 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
581 					 perf_ctl_scaling);
582 
583 	freq = perf_ctl_max_phys * perf_ctl_scaling;
584 	cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
585 
586 	freq = cpu->pstate.min_pstate * perf_ctl_scaling;
587 	cpu->pstate.min_freq = freq;
588 	/*
589 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
590 	 * the effective range of HWP performance levels.
591 	 */
592 	cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
593 }
594 
595 static bool turbo_is_disabled(void)
596 {
597 	u64 misc_en;
598 
599 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
600 
601 	return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
602 }
603 
604 static int min_perf_pct_min(void)
605 {
606 	struct cpudata *cpu = all_cpu_data[0];
607 	int turbo_pstate = cpu->pstate.turbo_pstate;
608 
609 	return turbo_pstate ?
610 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
611 }
612 
613 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
614 {
615 	u64 epb;
616 	int ret;
617 
618 	if (!boot_cpu_has(X86_FEATURE_EPB))
619 		return -ENXIO;
620 
621 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
622 	if (ret)
623 		return (s16)ret;
624 
625 	return (s16)(epb & 0x0f);
626 }
627 
628 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
629 {
630 	s16 epp;
631 
632 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
633 		/*
634 		 * When hwp_req_data is 0, means that caller didn't read
635 		 * MSR_HWP_REQUEST, so need to read and get EPP.
636 		 */
637 		if (!hwp_req_data) {
638 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
639 					    &hwp_req_data);
640 			if (epp)
641 				return epp;
642 		}
643 		epp = (hwp_req_data >> 24) & 0xff;
644 	} else {
645 		/* When there is no EPP present, HWP uses EPB settings */
646 		epp = intel_pstate_get_epb(cpu_data);
647 	}
648 
649 	return epp;
650 }
651 
652 static int intel_pstate_set_epb(int cpu, s16 pref)
653 {
654 	u64 epb;
655 	int ret;
656 
657 	if (!boot_cpu_has(X86_FEATURE_EPB))
658 		return -ENXIO;
659 
660 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
661 	if (ret)
662 		return ret;
663 
664 	epb = (epb & ~0x0f) | pref;
665 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
666 
667 	return 0;
668 }
669 
670 /*
671  * EPP/EPB display strings corresponding to EPP index in the
672  * energy_perf_strings[]
673  *	index		String
674  *-------------------------------------
675  *	0		default
676  *	1		performance
677  *	2		balance_performance
678  *	3		balance_power
679  *	4		power
680  */
681 
682 enum energy_perf_value_index {
683 	EPP_INDEX_DEFAULT = 0,
684 	EPP_INDEX_PERFORMANCE,
685 	EPP_INDEX_BALANCE_PERFORMANCE,
686 	EPP_INDEX_BALANCE_POWERSAVE,
687 	EPP_INDEX_POWERSAVE,
688 };
689 
690 static const char * const energy_perf_strings[] = {
691 	[EPP_INDEX_DEFAULT] = "default",
692 	[EPP_INDEX_PERFORMANCE] = "performance",
693 	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
694 	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
695 	[EPP_INDEX_POWERSAVE] = "power",
696 	NULL
697 };
698 static unsigned int epp_values[] = {
699 	[EPP_INDEX_DEFAULT] = 0, /* Unused index */
700 	[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
701 	[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
702 	[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
703 	[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
704 };
705 
706 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
707 {
708 	s16 epp;
709 	int index = -EINVAL;
710 
711 	*raw_epp = 0;
712 	epp = intel_pstate_get_epp(cpu_data, 0);
713 	if (epp < 0)
714 		return epp;
715 
716 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
717 		if (epp == epp_values[EPP_INDEX_PERFORMANCE])
718 			return EPP_INDEX_PERFORMANCE;
719 		if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
720 			return EPP_INDEX_BALANCE_PERFORMANCE;
721 		if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
722 			return EPP_INDEX_BALANCE_POWERSAVE;
723 		if (epp == epp_values[EPP_INDEX_POWERSAVE])
724 			return EPP_INDEX_POWERSAVE;
725 		*raw_epp = epp;
726 		return 0;
727 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
728 		/*
729 		 * Range:
730 		 *	0x00-0x03	:	Performance
731 		 *	0x04-0x07	:	Balance performance
732 		 *	0x08-0x0B	:	Balance power
733 		 *	0x0C-0x0F	:	Power
734 		 * The EPB is a 4 bit value, but our ranges restrict the
735 		 * value which can be set. Here only using top two bits
736 		 * effectively.
737 		 */
738 		index = (epp >> 2) + 1;
739 	}
740 
741 	return index;
742 }
743 
744 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
745 {
746 	int ret;
747 
748 	/*
749 	 * Use the cached HWP Request MSR value, because in the active mode the
750 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
751 	 * intel_pstate_hwp_boost_down() at any time.
752 	 */
753 	u64 value = READ_ONCE(cpu->hwp_req_cached);
754 
755 	value &= ~GENMASK_ULL(31, 24);
756 	value |= (u64)epp << 24;
757 	/*
758 	 * The only other updater of hwp_req_cached in the active mode,
759 	 * intel_pstate_hwp_set(), is called under the same lock as this
760 	 * function, so it cannot run in parallel with the update below.
761 	 */
762 	WRITE_ONCE(cpu->hwp_req_cached, value);
763 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
764 	if (!ret)
765 		cpu->epp_cached = epp;
766 
767 	return ret;
768 }
769 
770 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
771 					      int pref_index, bool use_raw,
772 					      u32 raw_epp)
773 {
774 	int epp = -EINVAL;
775 	int ret;
776 
777 	if (!pref_index)
778 		epp = cpu_data->epp_default;
779 
780 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
781 		if (use_raw)
782 			epp = raw_epp;
783 		else if (epp == -EINVAL)
784 			epp = epp_values[pref_index];
785 
786 		/*
787 		 * To avoid confusion, refuse to set EPP to any values different
788 		 * from 0 (performance) if the current policy is "performance",
789 		 * because those values would be overridden.
790 		 */
791 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
792 			return -EBUSY;
793 
794 		ret = intel_pstate_set_epp(cpu_data, epp);
795 	} else {
796 		if (epp == -EINVAL)
797 			epp = (pref_index - 1) << 2;
798 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
799 	}
800 
801 	return ret;
802 }
803 
804 static ssize_t show_energy_performance_available_preferences(
805 				struct cpufreq_policy *policy, char *buf)
806 {
807 	int i = 0;
808 	int ret = 0;
809 
810 	while (energy_perf_strings[i] != NULL)
811 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
812 
813 	ret += sprintf(&buf[ret], "\n");
814 
815 	return ret;
816 }
817 
818 cpufreq_freq_attr_ro(energy_performance_available_preferences);
819 
820 static struct cpufreq_driver intel_pstate;
821 
822 static ssize_t store_energy_performance_preference(
823 		struct cpufreq_policy *policy, const char *buf, size_t count)
824 {
825 	struct cpudata *cpu = all_cpu_data[policy->cpu];
826 	char str_preference[21];
827 	bool raw = false;
828 	ssize_t ret;
829 	u32 epp = 0;
830 
831 	ret = sscanf(buf, "%20s", str_preference);
832 	if (ret != 1)
833 		return -EINVAL;
834 
835 	ret = match_string(energy_perf_strings, -1, str_preference);
836 	if (ret < 0) {
837 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
838 			return ret;
839 
840 		ret = kstrtouint(buf, 10, &epp);
841 		if (ret)
842 			return ret;
843 
844 		if (epp > 255)
845 			return -EINVAL;
846 
847 		raw = true;
848 	}
849 
850 	/*
851 	 * This function runs with the policy R/W semaphore held, which
852 	 * guarantees that the driver pointer will not change while it is
853 	 * running.
854 	 */
855 	if (!intel_pstate_driver)
856 		return -EAGAIN;
857 
858 	mutex_lock(&intel_pstate_limits_lock);
859 
860 	if (intel_pstate_driver == &intel_pstate) {
861 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
862 	} else {
863 		/*
864 		 * In the passive mode the governor needs to be stopped on the
865 		 * target CPU before the EPP update and restarted after it,
866 		 * which is super-heavy-weight, so make sure it is worth doing
867 		 * upfront.
868 		 */
869 		if (!raw)
870 			epp = ret ? epp_values[ret] : cpu->epp_default;
871 
872 		if (cpu->epp_cached != epp) {
873 			int err;
874 
875 			cpufreq_stop_governor(policy);
876 			ret = intel_pstate_set_epp(cpu, epp);
877 			err = cpufreq_start_governor(policy);
878 			if (!ret)
879 				ret = err;
880 		} else {
881 			ret = 0;
882 		}
883 	}
884 
885 	mutex_unlock(&intel_pstate_limits_lock);
886 
887 	return ret ?: count;
888 }
889 
890 static ssize_t show_energy_performance_preference(
891 				struct cpufreq_policy *policy, char *buf)
892 {
893 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
894 	int preference, raw_epp;
895 
896 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
897 	if (preference < 0)
898 		return preference;
899 
900 	if (raw_epp)
901 		return  sprintf(buf, "%d\n", raw_epp);
902 	else
903 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
904 }
905 
906 cpufreq_freq_attr_rw(energy_performance_preference);
907 
908 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
909 {
910 	struct cpudata *cpu = all_cpu_data[policy->cpu];
911 	int ratio, freq;
912 
913 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
914 	if (ratio <= 0) {
915 		u64 cap;
916 
917 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
918 		ratio = HWP_GUARANTEED_PERF(cap);
919 	}
920 
921 	freq = ratio * cpu->pstate.scaling;
922 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
923 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
924 
925 	return sprintf(buf, "%d\n", freq);
926 }
927 
928 cpufreq_freq_attr_ro(base_frequency);
929 
930 static struct freq_attr *hwp_cpufreq_attrs[] = {
931 	&energy_performance_preference,
932 	&energy_performance_available_preferences,
933 	&base_frequency,
934 	NULL,
935 };
936 
937 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
938 {
939 	u64 cap;
940 
941 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
942 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
943 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
944 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
945 }
946 
947 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
948 {
949 	int scaling = cpu->pstate.scaling;
950 
951 	__intel_pstate_get_hwp_cap(cpu);
952 
953 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
954 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
955 	if (scaling != cpu->pstate.perf_ctl_scaling) {
956 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
957 
958 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
959 						 perf_ctl_scaling);
960 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
961 						   perf_ctl_scaling);
962 	}
963 }
964 
965 static void intel_pstate_hwp_set(unsigned int cpu)
966 {
967 	struct cpudata *cpu_data = all_cpu_data[cpu];
968 	int max, min;
969 	u64 value;
970 	s16 epp;
971 
972 	max = cpu_data->max_perf_ratio;
973 	min = cpu_data->min_perf_ratio;
974 
975 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
976 		min = max;
977 
978 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
979 
980 	value &= ~HWP_MIN_PERF(~0L);
981 	value |= HWP_MIN_PERF(min);
982 
983 	value &= ~HWP_MAX_PERF(~0L);
984 	value |= HWP_MAX_PERF(max);
985 
986 	if (cpu_data->epp_policy == cpu_data->policy)
987 		goto skip_epp;
988 
989 	cpu_data->epp_policy = cpu_data->policy;
990 
991 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
992 		epp = intel_pstate_get_epp(cpu_data, value);
993 		cpu_data->epp_powersave = epp;
994 		/* If EPP read was failed, then don't try to write */
995 		if (epp < 0)
996 			goto skip_epp;
997 
998 		epp = 0;
999 	} else {
1000 		/* skip setting EPP, when saved value is invalid */
1001 		if (cpu_data->epp_powersave < 0)
1002 			goto skip_epp;
1003 
1004 		/*
1005 		 * No need to restore EPP when it is not zero. This
1006 		 * means:
1007 		 *  - Policy is not changed
1008 		 *  - user has manually changed
1009 		 *  - Error reading EPB
1010 		 */
1011 		epp = intel_pstate_get_epp(cpu_data, value);
1012 		if (epp)
1013 			goto skip_epp;
1014 
1015 		epp = cpu_data->epp_powersave;
1016 	}
1017 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1018 		value &= ~GENMASK_ULL(31, 24);
1019 		value |= (u64)epp << 24;
1020 	} else {
1021 		intel_pstate_set_epb(cpu, epp);
1022 	}
1023 skip_epp:
1024 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1025 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1026 }
1027 
1028 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1029 
1030 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1031 {
1032 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1033 	int min_perf;
1034 
1035 	intel_pstate_disable_hwp_interrupt(cpu);
1036 
1037 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1038 		/*
1039 		 * In case the EPP has been set to "performance" by the
1040 		 * active mode "performance" scaling algorithm, replace that
1041 		 * temporary value with the cached EPP one.
1042 		 */
1043 		value &= ~GENMASK_ULL(31, 24);
1044 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1045 		/*
1046 		 * However, make sure that EPP will be set to "performance" when
1047 		 * the CPU is brought back online again and the "performance"
1048 		 * scaling algorithm is still in effect.
1049 		 */
1050 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1051 	}
1052 
1053 	/*
1054 	 * Clear the desired perf field in the cached HWP request value to
1055 	 * prevent nonzero desired values from being leaked into the active
1056 	 * mode.
1057 	 */
1058 	value &= ~HWP_DESIRED_PERF(~0L);
1059 	WRITE_ONCE(cpu->hwp_req_cached, value);
1060 
1061 	value &= ~GENMASK_ULL(31, 0);
1062 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1063 
1064 	/* Set hwp_max = hwp_min */
1065 	value |= HWP_MAX_PERF(min_perf);
1066 	value |= HWP_MIN_PERF(min_perf);
1067 
1068 	/* Set EPP to min */
1069 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1070 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1071 
1072 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1073 }
1074 
1075 #define POWER_CTL_EE_ENABLE	1
1076 #define POWER_CTL_EE_DISABLE	2
1077 
1078 static int power_ctl_ee_state;
1079 
1080 static void set_power_ctl_ee_state(bool input)
1081 {
1082 	u64 power_ctl;
1083 
1084 	mutex_lock(&intel_pstate_driver_lock);
1085 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1086 	if (input) {
1087 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1088 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1089 	} else {
1090 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1091 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1092 	}
1093 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1094 	mutex_unlock(&intel_pstate_driver_lock);
1095 }
1096 
1097 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1098 
1099 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1100 {
1101 	intel_pstate_hwp_enable(cpu);
1102 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1103 }
1104 
1105 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1106 {
1107 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1108 
1109 	pr_debug("CPU %d suspending\n", cpu->cpu);
1110 
1111 	cpu->suspended = true;
1112 
1113 	/* disable HWP interrupt and cancel any pending work */
1114 	intel_pstate_disable_hwp_interrupt(cpu);
1115 
1116 	return 0;
1117 }
1118 
1119 static int intel_pstate_resume(struct cpufreq_policy *policy)
1120 {
1121 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1122 
1123 	pr_debug("CPU %d resuming\n", cpu->cpu);
1124 
1125 	/* Only restore if the system default is changed */
1126 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1127 		set_power_ctl_ee_state(true);
1128 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1129 		set_power_ctl_ee_state(false);
1130 
1131 	if (cpu->suspended && hwp_active) {
1132 		mutex_lock(&intel_pstate_limits_lock);
1133 
1134 		/* Re-enable HWP, because "online" has not done that. */
1135 		intel_pstate_hwp_reenable(cpu);
1136 
1137 		mutex_unlock(&intel_pstate_limits_lock);
1138 	}
1139 
1140 	cpu->suspended = false;
1141 
1142 	return 0;
1143 }
1144 
1145 static void intel_pstate_update_policies(void)
1146 {
1147 	int cpu;
1148 
1149 	for_each_possible_cpu(cpu)
1150 		cpufreq_update_policy(cpu);
1151 }
1152 
1153 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1154 					   struct cpufreq_policy *policy)
1155 {
1156 	if (hwp_active)
1157 		intel_pstate_get_hwp_cap(cpudata);
1158 
1159 	policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1160 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1161 
1162 	refresh_frequency_limits(policy);
1163 }
1164 
1165 static void intel_pstate_update_limits(unsigned int cpu)
1166 {
1167 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1168 
1169 	if (!policy)
1170 		return;
1171 
1172 	__intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1173 
1174 	cpufreq_cpu_release(policy);
1175 }
1176 
1177 static void intel_pstate_update_limits_for_all(void)
1178 {
1179 	int cpu;
1180 
1181 	for_each_possible_cpu(cpu)
1182 		intel_pstate_update_limits(cpu);
1183 }
1184 
1185 /************************** sysfs begin ************************/
1186 #define show_one(file_name, object)					\
1187 	static ssize_t show_##file_name					\
1188 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1189 	{								\
1190 		return sprintf(buf, "%u\n", global.object);		\
1191 	}
1192 
1193 static ssize_t intel_pstate_show_status(char *buf);
1194 static int intel_pstate_update_status(const char *buf, size_t size);
1195 
1196 static ssize_t show_status(struct kobject *kobj,
1197 			   struct kobj_attribute *attr, char *buf)
1198 {
1199 	ssize_t ret;
1200 
1201 	mutex_lock(&intel_pstate_driver_lock);
1202 	ret = intel_pstate_show_status(buf);
1203 	mutex_unlock(&intel_pstate_driver_lock);
1204 
1205 	return ret;
1206 }
1207 
1208 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1209 			    const char *buf, size_t count)
1210 {
1211 	char *p = memchr(buf, '\n', count);
1212 	int ret;
1213 
1214 	mutex_lock(&intel_pstate_driver_lock);
1215 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1216 	mutex_unlock(&intel_pstate_driver_lock);
1217 
1218 	return ret < 0 ? ret : count;
1219 }
1220 
1221 static ssize_t show_turbo_pct(struct kobject *kobj,
1222 				struct kobj_attribute *attr, char *buf)
1223 {
1224 	struct cpudata *cpu;
1225 	int total, no_turbo, turbo_pct;
1226 	uint32_t turbo_fp;
1227 
1228 	mutex_lock(&intel_pstate_driver_lock);
1229 
1230 	if (!intel_pstate_driver) {
1231 		mutex_unlock(&intel_pstate_driver_lock);
1232 		return -EAGAIN;
1233 	}
1234 
1235 	cpu = all_cpu_data[0];
1236 
1237 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1238 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1239 	turbo_fp = div_fp(no_turbo, total);
1240 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1241 
1242 	mutex_unlock(&intel_pstate_driver_lock);
1243 
1244 	return sprintf(buf, "%u\n", turbo_pct);
1245 }
1246 
1247 static ssize_t show_num_pstates(struct kobject *kobj,
1248 				struct kobj_attribute *attr, char *buf)
1249 {
1250 	struct cpudata *cpu;
1251 	int total;
1252 
1253 	mutex_lock(&intel_pstate_driver_lock);
1254 
1255 	if (!intel_pstate_driver) {
1256 		mutex_unlock(&intel_pstate_driver_lock);
1257 		return -EAGAIN;
1258 	}
1259 
1260 	cpu = all_cpu_data[0];
1261 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1262 
1263 	mutex_unlock(&intel_pstate_driver_lock);
1264 
1265 	return sprintf(buf, "%u\n", total);
1266 }
1267 
1268 static ssize_t show_no_turbo(struct kobject *kobj,
1269 			     struct kobj_attribute *attr, char *buf)
1270 {
1271 	ssize_t ret;
1272 
1273 	mutex_lock(&intel_pstate_driver_lock);
1274 
1275 	if (!intel_pstate_driver) {
1276 		mutex_unlock(&intel_pstate_driver_lock);
1277 		return -EAGAIN;
1278 	}
1279 
1280 	ret = sprintf(buf, "%u\n", global.no_turbo);
1281 
1282 	mutex_unlock(&intel_pstate_driver_lock);
1283 
1284 	return ret;
1285 }
1286 
1287 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1288 			      const char *buf, size_t count)
1289 {
1290 	unsigned int input;
1291 	bool no_turbo;
1292 
1293 	if (sscanf(buf, "%u", &input) != 1)
1294 		return -EINVAL;
1295 
1296 	mutex_lock(&intel_pstate_driver_lock);
1297 
1298 	if (!intel_pstate_driver) {
1299 		count = -EAGAIN;
1300 		goto unlock_driver;
1301 	}
1302 
1303 	no_turbo = !!clamp_t(int, input, 0, 1);
1304 
1305 	WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1306 	if (global.turbo_disabled && !no_turbo) {
1307 		pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1308 		count = -EPERM;
1309 		if (global.no_turbo)
1310 			goto unlock_driver;
1311 		else
1312 			no_turbo = 1;
1313 	}
1314 
1315 	if (no_turbo == global.no_turbo) {
1316 		goto unlock_driver;
1317 	}
1318 
1319 	WRITE_ONCE(global.no_turbo, no_turbo);
1320 
1321 	mutex_lock(&intel_pstate_limits_lock);
1322 
1323 	if (no_turbo) {
1324 		struct cpudata *cpu = all_cpu_data[0];
1325 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1326 
1327 		/* Squash the global minimum into the permitted range. */
1328 		if (global.min_perf_pct > pct)
1329 			global.min_perf_pct = pct;
1330 	}
1331 
1332 	mutex_unlock(&intel_pstate_limits_lock);
1333 
1334 	intel_pstate_update_limits_for_all();
1335 	arch_set_max_freq_ratio(no_turbo);
1336 
1337 unlock_driver:
1338 	mutex_unlock(&intel_pstate_driver_lock);
1339 
1340 	return count;
1341 }
1342 
1343 static void update_qos_request(enum freq_qos_req_type type)
1344 {
1345 	struct freq_qos_request *req;
1346 	struct cpufreq_policy *policy;
1347 	int i;
1348 
1349 	for_each_possible_cpu(i) {
1350 		struct cpudata *cpu = all_cpu_data[i];
1351 		unsigned int freq, perf_pct;
1352 
1353 		policy = cpufreq_cpu_get(i);
1354 		if (!policy)
1355 			continue;
1356 
1357 		req = policy->driver_data;
1358 		cpufreq_cpu_put(policy);
1359 
1360 		if (!req)
1361 			continue;
1362 
1363 		if (hwp_active)
1364 			intel_pstate_get_hwp_cap(cpu);
1365 
1366 		if (type == FREQ_QOS_MIN) {
1367 			perf_pct = global.min_perf_pct;
1368 		} else {
1369 			req++;
1370 			perf_pct = global.max_perf_pct;
1371 		}
1372 
1373 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1374 
1375 		if (freq_qos_update_request(req, freq) < 0)
1376 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1377 	}
1378 }
1379 
1380 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1381 				  const char *buf, size_t count)
1382 {
1383 	unsigned int input;
1384 	int ret;
1385 
1386 	ret = sscanf(buf, "%u", &input);
1387 	if (ret != 1)
1388 		return -EINVAL;
1389 
1390 	mutex_lock(&intel_pstate_driver_lock);
1391 
1392 	if (!intel_pstate_driver) {
1393 		mutex_unlock(&intel_pstate_driver_lock);
1394 		return -EAGAIN;
1395 	}
1396 
1397 	mutex_lock(&intel_pstate_limits_lock);
1398 
1399 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1400 
1401 	mutex_unlock(&intel_pstate_limits_lock);
1402 
1403 	if (intel_pstate_driver == &intel_pstate)
1404 		intel_pstate_update_policies();
1405 	else
1406 		update_qos_request(FREQ_QOS_MAX);
1407 
1408 	mutex_unlock(&intel_pstate_driver_lock);
1409 
1410 	return count;
1411 }
1412 
1413 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1414 				  const char *buf, size_t count)
1415 {
1416 	unsigned int input;
1417 	int ret;
1418 
1419 	ret = sscanf(buf, "%u", &input);
1420 	if (ret != 1)
1421 		return -EINVAL;
1422 
1423 	mutex_lock(&intel_pstate_driver_lock);
1424 
1425 	if (!intel_pstate_driver) {
1426 		mutex_unlock(&intel_pstate_driver_lock);
1427 		return -EAGAIN;
1428 	}
1429 
1430 	mutex_lock(&intel_pstate_limits_lock);
1431 
1432 	global.min_perf_pct = clamp_t(int, input,
1433 				      min_perf_pct_min(), global.max_perf_pct);
1434 
1435 	mutex_unlock(&intel_pstate_limits_lock);
1436 
1437 	if (intel_pstate_driver == &intel_pstate)
1438 		intel_pstate_update_policies();
1439 	else
1440 		update_qos_request(FREQ_QOS_MIN);
1441 
1442 	mutex_unlock(&intel_pstate_driver_lock);
1443 
1444 	return count;
1445 }
1446 
1447 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1448 				struct kobj_attribute *attr, char *buf)
1449 {
1450 	return sprintf(buf, "%u\n", hwp_boost);
1451 }
1452 
1453 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1454 				       struct kobj_attribute *b,
1455 				       const char *buf, size_t count)
1456 {
1457 	unsigned int input;
1458 	int ret;
1459 
1460 	ret = kstrtouint(buf, 10, &input);
1461 	if (ret)
1462 		return ret;
1463 
1464 	mutex_lock(&intel_pstate_driver_lock);
1465 	hwp_boost = !!input;
1466 	intel_pstate_update_policies();
1467 	mutex_unlock(&intel_pstate_driver_lock);
1468 
1469 	return count;
1470 }
1471 
1472 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1473 				      char *buf)
1474 {
1475 	u64 power_ctl;
1476 	int enable;
1477 
1478 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1479 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1480 	return sprintf(buf, "%d\n", !enable);
1481 }
1482 
1483 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1484 				       const char *buf, size_t count)
1485 {
1486 	bool input;
1487 	int ret;
1488 
1489 	ret = kstrtobool(buf, &input);
1490 	if (ret)
1491 		return ret;
1492 
1493 	set_power_ctl_ee_state(input);
1494 
1495 	return count;
1496 }
1497 
1498 show_one(max_perf_pct, max_perf_pct);
1499 show_one(min_perf_pct, min_perf_pct);
1500 
1501 define_one_global_rw(status);
1502 define_one_global_rw(no_turbo);
1503 define_one_global_rw(max_perf_pct);
1504 define_one_global_rw(min_perf_pct);
1505 define_one_global_ro(turbo_pct);
1506 define_one_global_ro(num_pstates);
1507 define_one_global_rw(hwp_dynamic_boost);
1508 define_one_global_rw(energy_efficiency);
1509 
1510 static struct attribute *intel_pstate_attributes[] = {
1511 	&status.attr,
1512 	&no_turbo.attr,
1513 	NULL
1514 };
1515 
1516 static const struct attribute_group intel_pstate_attr_group = {
1517 	.attrs = intel_pstate_attributes,
1518 };
1519 
1520 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1521 
1522 static struct kobject *intel_pstate_kobject;
1523 
1524 static void __init intel_pstate_sysfs_expose_params(void)
1525 {
1526 	struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1527 	int rc;
1528 
1529 	if (dev_root) {
1530 		intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1531 		put_device(dev_root);
1532 	}
1533 	if (WARN_ON(!intel_pstate_kobject))
1534 		return;
1535 
1536 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1537 	if (WARN_ON(rc))
1538 		return;
1539 
1540 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1541 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1542 		WARN_ON(rc);
1543 
1544 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1545 		WARN_ON(rc);
1546 	}
1547 
1548 	/*
1549 	 * If per cpu limits are enforced there are no global limits, so
1550 	 * return without creating max/min_perf_pct attributes
1551 	 */
1552 	if (per_cpu_limits)
1553 		return;
1554 
1555 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1556 	WARN_ON(rc);
1557 
1558 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1559 	WARN_ON(rc);
1560 
1561 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1562 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1563 		WARN_ON(rc);
1564 	}
1565 }
1566 
1567 static void __init intel_pstate_sysfs_remove(void)
1568 {
1569 	if (!intel_pstate_kobject)
1570 		return;
1571 
1572 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1573 
1574 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1575 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1576 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1577 	}
1578 
1579 	if (!per_cpu_limits) {
1580 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1581 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1582 
1583 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1584 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1585 	}
1586 
1587 	kobject_put(intel_pstate_kobject);
1588 }
1589 
1590 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1591 {
1592 	int rc;
1593 
1594 	if (!hwp_active)
1595 		return;
1596 
1597 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1598 	WARN_ON_ONCE(rc);
1599 }
1600 
1601 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1602 {
1603 	if (!hwp_active)
1604 		return;
1605 
1606 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1607 }
1608 
1609 /************************** sysfs end ************************/
1610 
1611 static void intel_pstate_notify_work(struct work_struct *work)
1612 {
1613 	struct cpudata *cpudata =
1614 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1615 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1616 
1617 	if (policy) {
1618 		__intel_pstate_update_max_freq(cpudata, policy);
1619 
1620 		cpufreq_cpu_release(policy);
1621 	}
1622 
1623 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1624 }
1625 
1626 static DEFINE_SPINLOCK(hwp_notify_lock);
1627 static cpumask_t hwp_intr_enable_mask;
1628 
1629 void notify_hwp_interrupt(void)
1630 {
1631 	unsigned int this_cpu = smp_processor_id();
1632 	unsigned long flags;
1633 	u64 value;
1634 
1635 	if (!hwp_active || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1636 		return;
1637 
1638 	rdmsrl_safe(MSR_HWP_STATUS, &value);
1639 	if (!(value & 0x01))
1640 		return;
1641 
1642 	spin_lock_irqsave(&hwp_notify_lock, flags);
1643 
1644 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1645 		goto ack_intr;
1646 
1647 	schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1648 			      msecs_to_jiffies(10));
1649 
1650 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1651 
1652 	return;
1653 
1654 ack_intr:
1655 	wrmsrl_safe(MSR_HWP_STATUS, 0);
1656 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1657 }
1658 
1659 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1660 {
1661 	bool cancel_work;
1662 
1663 	if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1664 		return;
1665 
1666 	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1667 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1668 
1669 	spin_lock_irq(&hwp_notify_lock);
1670 	cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1671 	spin_unlock_irq(&hwp_notify_lock);
1672 
1673 	if (cancel_work)
1674 		cancel_delayed_work_sync(&cpudata->hwp_notify_work);
1675 }
1676 
1677 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1678 {
1679 	/* Enable HWP notification interrupt for guaranteed performance change */
1680 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1681 		spin_lock_irq(&hwp_notify_lock);
1682 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1683 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1684 		spin_unlock_irq(&hwp_notify_lock);
1685 
1686 		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1687 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1688 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1689 	}
1690 }
1691 
1692 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1693 {
1694 	cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1695 
1696 	/*
1697 	 * If the EPP is set by firmware, which means that firmware enabled HWP
1698 	 * - Is equal or less than 0x80 (default balance_perf EPP)
1699 	 * - But less performance oriented than performance EPP
1700 	 *   then use this as new balance_perf EPP.
1701 	 */
1702 	if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1703 	    cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1704 		epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1705 		return;
1706 	}
1707 
1708 	/*
1709 	 * If this CPU gen doesn't call for change in balance_perf
1710 	 * EPP return.
1711 	 */
1712 	if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1713 		return;
1714 
1715 	/*
1716 	 * Use hard coded value per gen to update the balance_perf
1717 	 * and default EPP.
1718 	 */
1719 	cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1720 	intel_pstate_set_epp(cpudata, cpudata->epp_default);
1721 }
1722 
1723 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1724 {
1725 	/* First disable HWP notification interrupt till we activate again */
1726 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1727 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1728 
1729 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1730 
1731 	intel_pstate_enable_hwp_interrupt(cpudata);
1732 
1733 	if (cpudata->epp_default >= 0)
1734 		return;
1735 
1736 	intel_pstate_update_epp_defaults(cpudata);
1737 }
1738 
1739 static int atom_get_min_pstate(int not_used)
1740 {
1741 	u64 value;
1742 
1743 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1744 	return (value >> 8) & 0x7F;
1745 }
1746 
1747 static int atom_get_max_pstate(int not_used)
1748 {
1749 	u64 value;
1750 
1751 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1752 	return (value >> 16) & 0x7F;
1753 }
1754 
1755 static int atom_get_turbo_pstate(int not_used)
1756 {
1757 	u64 value;
1758 
1759 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1760 	return value & 0x7F;
1761 }
1762 
1763 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1764 {
1765 	u64 val;
1766 	int32_t vid_fp;
1767 	u32 vid;
1768 
1769 	val = (u64)pstate << 8;
1770 	if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
1771 		val |= (u64)1 << 32;
1772 
1773 	vid_fp = cpudata->vid.min + mul_fp(
1774 		int_tofp(pstate - cpudata->pstate.min_pstate),
1775 		cpudata->vid.ratio);
1776 
1777 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1778 	vid = ceiling_fp(vid_fp);
1779 
1780 	if (pstate > cpudata->pstate.max_pstate)
1781 		vid = cpudata->vid.turbo;
1782 
1783 	return val | vid;
1784 }
1785 
1786 static int silvermont_get_scaling(void)
1787 {
1788 	u64 value;
1789 	int i;
1790 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1791 	static int silvermont_freq_table[] = {
1792 		83300, 100000, 133300, 116700, 80000};
1793 
1794 	rdmsrl(MSR_FSB_FREQ, value);
1795 	i = value & 0x7;
1796 	WARN_ON(i > 4);
1797 
1798 	return silvermont_freq_table[i];
1799 }
1800 
1801 static int airmont_get_scaling(void)
1802 {
1803 	u64 value;
1804 	int i;
1805 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1806 	static int airmont_freq_table[] = {
1807 		83300, 100000, 133300, 116700, 80000,
1808 		93300, 90000, 88900, 87500};
1809 
1810 	rdmsrl(MSR_FSB_FREQ, value);
1811 	i = value & 0xF;
1812 	WARN_ON(i > 8);
1813 
1814 	return airmont_freq_table[i];
1815 }
1816 
1817 static void atom_get_vid(struct cpudata *cpudata)
1818 {
1819 	u64 value;
1820 
1821 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1822 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1823 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1824 	cpudata->vid.ratio = div_fp(
1825 		cpudata->vid.max - cpudata->vid.min,
1826 		int_tofp(cpudata->pstate.max_pstate -
1827 			cpudata->pstate.min_pstate));
1828 
1829 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1830 	cpudata->vid.turbo = value & 0x7f;
1831 }
1832 
1833 static int core_get_min_pstate(int cpu)
1834 {
1835 	u64 value;
1836 
1837 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1838 	return (value >> 40) & 0xFF;
1839 }
1840 
1841 static int core_get_max_pstate_physical(int cpu)
1842 {
1843 	u64 value;
1844 
1845 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1846 	return (value >> 8) & 0xFF;
1847 }
1848 
1849 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1850 {
1851 	/* Check how many TDP levels present */
1852 	if (plat_info & 0x600000000) {
1853 		u64 tdp_ctrl;
1854 		u64 tdp_ratio;
1855 		int tdp_msr;
1856 		int err;
1857 
1858 		/* Get the TDP level (0, 1, 2) to get ratios */
1859 		err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1860 		if (err)
1861 			return err;
1862 
1863 		/* TDP MSR are continuous starting at 0x648 */
1864 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1865 		err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1866 		if (err)
1867 			return err;
1868 
1869 		/* For level 1 and 2, bits[23:16] contain the ratio */
1870 		if (tdp_ctrl & 0x03)
1871 			tdp_ratio >>= 16;
1872 
1873 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1874 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1875 
1876 		return (int)tdp_ratio;
1877 	}
1878 
1879 	return -ENXIO;
1880 }
1881 
1882 static int core_get_max_pstate(int cpu)
1883 {
1884 	u64 tar;
1885 	u64 plat_info;
1886 	int max_pstate;
1887 	int tdp_ratio;
1888 	int err;
1889 
1890 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1891 	max_pstate = (plat_info >> 8) & 0xFF;
1892 
1893 	tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1894 	if (tdp_ratio <= 0)
1895 		return max_pstate;
1896 
1897 	if (hwp_active) {
1898 		/* Turbo activation ratio is not used on HWP platforms */
1899 		return tdp_ratio;
1900 	}
1901 
1902 	err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1903 	if (!err) {
1904 		int tar_levels;
1905 
1906 		/* Do some sanity checking for safety */
1907 		tar_levels = tar & 0xff;
1908 		if (tdp_ratio - 1 == tar_levels) {
1909 			max_pstate = tar_levels;
1910 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1911 		}
1912 	}
1913 
1914 	return max_pstate;
1915 }
1916 
1917 static int core_get_turbo_pstate(int cpu)
1918 {
1919 	u64 value;
1920 	int nont, ret;
1921 
1922 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1923 	nont = core_get_max_pstate(cpu);
1924 	ret = (value) & 255;
1925 	if (ret <= nont)
1926 		ret = nont;
1927 	return ret;
1928 }
1929 
1930 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1931 {
1932 	u64 val;
1933 
1934 	val = (u64)pstate << 8;
1935 	if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
1936 		val |= (u64)1 << 32;
1937 
1938 	return val;
1939 }
1940 
1941 static int knl_get_aperf_mperf_shift(void)
1942 {
1943 	return 10;
1944 }
1945 
1946 static int knl_get_turbo_pstate(int cpu)
1947 {
1948 	u64 value;
1949 	int nont, ret;
1950 
1951 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1952 	nont = core_get_max_pstate(cpu);
1953 	ret = (((value) >> 8) & 0xFF);
1954 	if (ret <= nont)
1955 		ret = nont;
1956 	return ret;
1957 }
1958 
1959 static void hybrid_get_type(void *data)
1960 {
1961 	u8 *cpu_type = data;
1962 
1963 	*cpu_type = get_this_hybrid_cpu_type();
1964 }
1965 
1966 static int hwp_get_cpu_scaling(int cpu)
1967 {
1968 	u8 cpu_type = 0;
1969 
1970 	smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1971 	/* P-cores have a smaller perf level-to-freqency scaling factor. */
1972 	if (cpu_type == 0x40)
1973 		return hybrid_scaling_factor;
1974 
1975 	/* Use default core scaling for E-cores */
1976 	if (cpu_type == 0x20)
1977 		return core_get_scaling();
1978 
1979 	/*
1980 	 * If reached here, this system is either non-hybrid (like Tiger
1981 	 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
1982 	 * no E cores (in which case CPUID for hybrid support is 0).
1983 	 *
1984 	 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
1985 	 * so the default core scaling will be used for them.
1986 	 */
1987 	return intel_pstate_cppc_get_scaling(cpu);
1988 }
1989 
1990 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1991 {
1992 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1993 	cpu->pstate.current_pstate = pstate;
1994 	/*
1995 	 * Generally, there is no guarantee that this code will always run on
1996 	 * the CPU being updated, so force the register update to run on the
1997 	 * right CPU.
1998 	 */
1999 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2000 		      pstate_funcs.get_val(cpu, pstate));
2001 }
2002 
2003 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2004 {
2005 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2006 }
2007 
2008 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2009 {
2010 	int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2011 	int perf_ctl_scaling = pstate_funcs.get_scaling();
2012 
2013 	cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2014 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2015 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2016 
2017 	if (hwp_active && !hwp_mode_bdw) {
2018 		__intel_pstate_get_hwp_cap(cpu);
2019 
2020 		if (pstate_funcs.get_cpu_scaling) {
2021 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2022 			if (cpu->pstate.scaling != perf_ctl_scaling)
2023 				intel_pstate_hybrid_hwp_adjust(cpu);
2024 		} else {
2025 			cpu->pstate.scaling = perf_ctl_scaling;
2026 		}
2027 	} else {
2028 		cpu->pstate.scaling = perf_ctl_scaling;
2029 		cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2030 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2031 	}
2032 
2033 	if (cpu->pstate.scaling == perf_ctl_scaling) {
2034 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2035 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2036 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2037 	}
2038 
2039 	if (pstate_funcs.get_aperf_mperf_shift)
2040 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2041 
2042 	if (pstate_funcs.get_vid)
2043 		pstate_funcs.get_vid(cpu);
2044 
2045 	intel_pstate_set_min_pstate(cpu);
2046 }
2047 
2048 /*
2049  * Long hold time will keep high perf limits for long time,
2050  * which negatively impacts perf/watt for some workloads,
2051  * like specpower. 3ms is based on experiements on some
2052  * workoads.
2053  */
2054 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2055 
2056 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2057 {
2058 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2059 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2060 	u32 max_limit = (hwp_req & 0xff00) >> 8;
2061 	u32 min_limit = (hwp_req & 0xff);
2062 	u32 boost_level1;
2063 
2064 	/*
2065 	 * Cases to consider (User changes via sysfs or boot time):
2066 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2067 	 *	No boost, return.
2068 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2069 	 *     Should result in one level boost only for P0.
2070 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2071 	 *     Should result in two level boost:
2072 	 *         (min + p1)/2 and P1.
2073 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2074 	 *     Should result in three level boost:
2075 	 *        (min + p1)/2, P1 and P0.
2076 	 */
2077 
2078 	/* If max and min are equal or already at max, nothing to boost */
2079 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2080 		return;
2081 
2082 	if (!cpu->hwp_boost_min)
2083 		cpu->hwp_boost_min = min_limit;
2084 
2085 	/* level at half way mark between min and guranteed */
2086 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2087 
2088 	if (cpu->hwp_boost_min < boost_level1)
2089 		cpu->hwp_boost_min = boost_level1;
2090 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2091 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2092 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2093 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2094 		cpu->hwp_boost_min = max_limit;
2095 	else
2096 		return;
2097 
2098 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2099 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2100 	cpu->last_update = cpu->sample.time;
2101 }
2102 
2103 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2104 {
2105 	if (cpu->hwp_boost_min) {
2106 		bool expired;
2107 
2108 		/* Check if we are idle for hold time to boost down */
2109 		expired = time_after64(cpu->sample.time, cpu->last_update +
2110 				       hwp_boost_hold_time_ns);
2111 		if (expired) {
2112 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2113 			cpu->hwp_boost_min = 0;
2114 		}
2115 	}
2116 	cpu->last_update = cpu->sample.time;
2117 }
2118 
2119 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2120 						      u64 time)
2121 {
2122 	cpu->sample.time = time;
2123 
2124 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2125 		bool do_io = false;
2126 
2127 		cpu->sched_flags = 0;
2128 		/*
2129 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2130 		 * is set all the time, we can't just conclude that there is
2131 		 * some IO bound activity is scheduled on this CPU with just
2132 		 * one occurrence. If we receive at least two in two
2133 		 * consecutive ticks, then we treat as boost candidate.
2134 		 */
2135 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2136 			do_io = true;
2137 
2138 		cpu->last_io_update = time;
2139 
2140 		if (do_io)
2141 			intel_pstate_hwp_boost_up(cpu);
2142 
2143 	} else {
2144 		intel_pstate_hwp_boost_down(cpu);
2145 	}
2146 }
2147 
2148 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2149 						u64 time, unsigned int flags)
2150 {
2151 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2152 
2153 	cpu->sched_flags |= flags;
2154 
2155 	if (smp_processor_id() == cpu->cpu)
2156 		intel_pstate_update_util_hwp_local(cpu, time);
2157 }
2158 
2159 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2160 {
2161 	struct sample *sample = &cpu->sample;
2162 
2163 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2164 }
2165 
2166 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2167 {
2168 	u64 aperf, mperf;
2169 	unsigned long flags;
2170 	u64 tsc;
2171 
2172 	local_irq_save(flags);
2173 	rdmsrl(MSR_IA32_APERF, aperf);
2174 	rdmsrl(MSR_IA32_MPERF, mperf);
2175 	tsc = rdtsc();
2176 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2177 		local_irq_restore(flags);
2178 		return false;
2179 	}
2180 	local_irq_restore(flags);
2181 
2182 	cpu->last_sample_time = cpu->sample.time;
2183 	cpu->sample.time = time;
2184 	cpu->sample.aperf = aperf;
2185 	cpu->sample.mperf = mperf;
2186 	cpu->sample.tsc =  tsc;
2187 	cpu->sample.aperf -= cpu->prev_aperf;
2188 	cpu->sample.mperf -= cpu->prev_mperf;
2189 	cpu->sample.tsc -= cpu->prev_tsc;
2190 
2191 	cpu->prev_aperf = aperf;
2192 	cpu->prev_mperf = mperf;
2193 	cpu->prev_tsc = tsc;
2194 	/*
2195 	 * First time this function is invoked in a given cycle, all of the
2196 	 * previous sample data fields are equal to zero or stale and they must
2197 	 * be populated with meaningful numbers for things to work, so assume
2198 	 * that sample.time will always be reset before setting the utilization
2199 	 * update hook and make the caller skip the sample then.
2200 	 */
2201 	if (cpu->last_sample_time) {
2202 		intel_pstate_calc_avg_perf(cpu);
2203 		return true;
2204 	}
2205 	return false;
2206 }
2207 
2208 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2209 {
2210 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2211 }
2212 
2213 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2214 {
2215 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2216 			  cpu->sample.core_avg_perf);
2217 }
2218 
2219 static inline int32_t get_target_pstate(struct cpudata *cpu)
2220 {
2221 	struct sample *sample = &cpu->sample;
2222 	int32_t busy_frac;
2223 	int target, avg_pstate;
2224 
2225 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2226 			   sample->tsc);
2227 
2228 	if (busy_frac < cpu->iowait_boost)
2229 		busy_frac = cpu->iowait_boost;
2230 
2231 	sample->busy_scaled = busy_frac * 100;
2232 
2233 	target = READ_ONCE(global.no_turbo) ?
2234 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2235 	target += target >> 2;
2236 	target = mul_fp(target, busy_frac);
2237 	if (target < cpu->pstate.min_pstate)
2238 		target = cpu->pstate.min_pstate;
2239 
2240 	/*
2241 	 * If the average P-state during the previous cycle was higher than the
2242 	 * current target, add 50% of the difference to the target to reduce
2243 	 * possible performance oscillations and offset possible performance
2244 	 * loss related to moving the workload from one CPU to another within
2245 	 * a package/module.
2246 	 */
2247 	avg_pstate = get_avg_pstate(cpu);
2248 	if (avg_pstate > target)
2249 		target += (avg_pstate - target) >> 1;
2250 
2251 	return target;
2252 }
2253 
2254 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2255 {
2256 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2257 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2258 
2259 	return clamp_t(int, pstate, min_pstate, max_pstate);
2260 }
2261 
2262 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2263 {
2264 	if (pstate == cpu->pstate.current_pstate)
2265 		return;
2266 
2267 	cpu->pstate.current_pstate = pstate;
2268 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2269 }
2270 
2271 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2272 {
2273 	int from = cpu->pstate.current_pstate;
2274 	struct sample *sample;
2275 	int target_pstate;
2276 
2277 	target_pstate = get_target_pstate(cpu);
2278 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2279 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2280 	intel_pstate_update_pstate(cpu, target_pstate);
2281 
2282 	sample = &cpu->sample;
2283 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2284 		fp_toint(sample->busy_scaled),
2285 		from,
2286 		cpu->pstate.current_pstate,
2287 		sample->mperf,
2288 		sample->aperf,
2289 		sample->tsc,
2290 		get_avg_frequency(cpu),
2291 		fp_toint(cpu->iowait_boost * 100));
2292 }
2293 
2294 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2295 				     unsigned int flags)
2296 {
2297 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2298 	u64 delta_ns;
2299 
2300 	/* Don't allow remote callbacks */
2301 	if (smp_processor_id() != cpu->cpu)
2302 		return;
2303 
2304 	delta_ns = time - cpu->last_update;
2305 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2306 		/* Start over if the CPU may have been idle. */
2307 		if (delta_ns > TICK_NSEC) {
2308 			cpu->iowait_boost = ONE_EIGHTH_FP;
2309 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2310 			cpu->iowait_boost <<= 1;
2311 			if (cpu->iowait_boost > int_tofp(1))
2312 				cpu->iowait_boost = int_tofp(1);
2313 		} else {
2314 			cpu->iowait_boost = ONE_EIGHTH_FP;
2315 		}
2316 	} else if (cpu->iowait_boost) {
2317 		/* Clear iowait_boost if the CPU may have been idle. */
2318 		if (delta_ns > TICK_NSEC)
2319 			cpu->iowait_boost = 0;
2320 		else
2321 			cpu->iowait_boost >>= 1;
2322 	}
2323 	cpu->last_update = time;
2324 	delta_ns = time - cpu->sample.time;
2325 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2326 		return;
2327 
2328 	if (intel_pstate_sample(cpu, time))
2329 		intel_pstate_adjust_pstate(cpu);
2330 }
2331 
2332 static struct pstate_funcs core_funcs = {
2333 	.get_max = core_get_max_pstate,
2334 	.get_max_physical = core_get_max_pstate_physical,
2335 	.get_min = core_get_min_pstate,
2336 	.get_turbo = core_get_turbo_pstate,
2337 	.get_scaling = core_get_scaling,
2338 	.get_val = core_get_val,
2339 };
2340 
2341 static const struct pstate_funcs silvermont_funcs = {
2342 	.get_max = atom_get_max_pstate,
2343 	.get_max_physical = atom_get_max_pstate,
2344 	.get_min = atom_get_min_pstate,
2345 	.get_turbo = atom_get_turbo_pstate,
2346 	.get_val = atom_get_val,
2347 	.get_scaling = silvermont_get_scaling,
2348 	.get_vid = atom_get_vid,
2349 };
2350 
2351 static const struct pstate_funcs airmont_funcs = {
2352 	.get_max = atom_get_max_pstate,
2353 	.get_max_physical = atom_get_max_pstate,
2354 	.get_min = atom_get_min_pstate,
2355 	.get_turbo = atom_get_turbo_pstate,
2356 	.get_val = atom_get_val,
2357 	.get_scaling = airmont_get_scaling,
2358 	.get_vid = atom_get_vid,
2359 };
2360 
2361 static const struct pstate_funcs knl_funcs = {
2362 	.get_max = core_get_max_pstate,
2363 	.get_max_physical = core_get_max_pstate_physical,
2364 	.get_min = core_get_min_pstate,
2365 	.get_turbo = knl_get_turbo_pstate,
2366 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2367 	.get_scaling = core_get_scaling,
2368 	.get_val = core_get_val,
2369 };
2370 
2371 #define X86_MATCH(model, policy)					 \
2372 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2373 					   X86_FEATURE_APERFMPERF, &policy)
2374 
2375 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2376 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2377 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2378 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2379 	X86_MATCH(IVYBRIDGE,		core_funcs),
2380 	X86_MATCH(HASWELL,		core_funcs),
2381 	X86_MATCH(BROADWELL,		core_funcs),
2382 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2383 	X86_MATCH(HASWELL_X,		core_funcs),
2384 	X86_MATCH(HASWELL_L,		core_funcs),
2385 	X86_MATCH(HASWELL_G,		core_funcs),
2386 	X86_MATCH(BROADWELL_G,		core_funcs),
2387 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2388 	X86_MATCH(SKYLAKE_L,		core_funcs),
2389 	X86_MATCH(BROADWELL_X,		core_funcs),
2390 	X86_MATCH(SKYLAKE,		core_funcs),
2391 	X86_MATCH(BROADWELL_D,		core_funcs),
2392 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2393 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2394 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2395 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2396 	X86_MATCH(SKYLAKE_X,		core_funcs),
2397 	X86_MATCH(COMETLAKE,		core_funcs),
2398 	X86_MATCH(ICELAKE_X,		core_funcs),
2399 	X86_MATCH(TIGERLAKE,		core_funcs),
2400 	X86_MATCH(SAPPHIRERAPIDS_X,	core_funcs),
2401 	X86_MATCH(EMERALDRAPIDS_X,      core_funcs),
2402 	{}
2403 };
2404 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2405 
2406 #ifdef CONFIG_ACPI
2407 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2408 	X86_MATCH(BROADWELL_D,		core_funcs),
2409 	X86_MATCH(BROADWELL_X,		core_funcs),
2410 	X86_MATCH(SKYLAKE_X,		core_funcs),
2411 	X86_MATCH(ICELAKE_X,		core_funcs),
2412 	X86_MATCH(SAPPHIRERAPIDS_X,	core_funcs),
2413 	{}
2414 };
2415 #endif
2416 
2417 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2418 	X86_MATCH(KABYLAKE,		core_funcs),
2419 	{}
2420 };
2421 
2422 static int intel_pstate_init_cpu(unsigned int cpunum)
2423 {
2424 	struct cpudata *cpu;
2425 
2426 	cpu = all_cpu_data[cpunum];
2427 
2428 	if (!cpu) {
2429 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2430 		if (!cpu)
2431 			return -ENOMEM;
2432 
2433 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2434 
2435 		cpu->cpu = cpunum;
2436 
2437 		cpu->epp_default = -EINVAL;
2438 
2439 		if (hwp_active) {
2440 			intel_pstate_hwp_enable(cpu);
2441 
2442 			if (intel_pstate_acpi_pm_profile_server())
2443 				hwp_boost = true;
2444 		}
2445 	} else if (hwp_active) {
2446 		/*
2447 		 * Re-enable HWP in case this happens after a resume from ACPI
2448 		 * S3 if the CPU was offline during the whole system/resume
2449 		 * cycle.
2450 		 */
2451 		intel_pstate_hwp_reenable(cpu);
2452 	}
2453 
2454 	cpu->epp_powersave = -EINVAL;
2455 	cpu->epp_policy = 0;
2456 
2457 	intel_pstate_get_cpu_pstates(cpu);
2458 
2459 	pr_debug("controlling: cpu %d\n", cpunum);
2460 
2461 	return 0;
2462 }
2463 
2464 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2465 {
2466 	struct cpudata *cpu = all_cpu_data[cpu_num];
2467 
2468 	if (hwp_active && !hwp_boost)
2469 		return;
2470 
2471 	if (cpu->update_util_set)
2472 		return;
2473 
2474 	/* Prevent intel_pstate_update_util() from using stale data. */
2475 	cpu->sample.time = 0;
2476 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2477 				     (hwp_active ?
2478 				      intel_pstate_update_util_hwp :
2479 				      intel_pstate_update_util));
2480 	cpu->update_util_set = true;
2481 }
2482 
2483 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2484 {
2485 	struct cpudata *cpu_data = all_cpu_data[cpu];
2486 
2487 	if (!cpu_data->update_util_set)
2488 		return;
2489 
2490 	cpufreq_remove_update_util_hook(cpu);
2491 	cpu_data->update_util_set = false;
2492 	synchronize_rcu();
2493 }
2494 
2495 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2496 {
2497 	return READ_ONCE(global.no_turbo) ?
2498 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2499 }
2500 
2501 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2502 					    unsigned int policy_min,
2503 					    unsigned int policy_max)
2504 {
2505 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2506 	int32_t max_policy_perf, min_policy_perf;
2507 
2508 	max_policy_perf = policy_max / perf_ctl_scaling;
2509 	if (policy_max == policy_min) {
2510 		min_policy_perf = max_policy_perf;
2511 	} else {
2512 		min_policy_perf = policy_min / perf_ctl_scaling;
2513 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2514 					  0, max_policy_perf);
2515 	}
2516 
2517 	/*
2518 	 * HWP needs some special consideration, because HWP_REQUEST uses
2519 	 * abstract values to represent performance rather than pure ratios.
2520 	 */
2521 	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2522 		int freq;
2523 
2524 		freq = max_policy_perf * perf_ctl_scaling;
2525 		max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2526 		freq = min_policy_perf * perf_ctl_scaling;
2527 		min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2528 	}
2529 
2530 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2531 		 cpu->cpu, min_policy_perf, max_policy_perf);
2532 
2533 	/* Normalize user input to [min_perf, max_perf] */
2534 	if (per_cpu_limits) {
2535 		cpu->min_perf_ratio = min_policy_perf;
2536 		cpu->max_perf_ratio = max_policy_perf;
2537 	} else {
2538 		int turbo_max = cpu->pstate.turbo_pstate;
2539 		int32_t global_min, global_max;
2540 
2541 		/* Global limits are in percent of the maximum turbo P-state. */
2542 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2543 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2544 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2545 
2546 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2547 			 global_min, global_max);
2548 
2549 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2550 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2551 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2552 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2553 
2554 		/* Make sure min_perf <= max_perf */
2555 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2556 					  cpu->max_perf_ratio);
2557 
2558 	}
2559 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2560 		 cpu->max_perf_ratio,
2561 		 cpu->min_perf_ratio);
2562 }
2563 
2564 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2565 {
2566 	struct cpudata *cpu;
2567 
2568 	if (!policy->cpuinfo.max_freq)
2569 		return -ENODEV;
2570 
2571 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2572 		 policy->cpuinfo.max_freq, policy->max);
2573 
2574 	cpu = all_cpu_data[policy->cpu];
2575 	cpu->policy = policy->policy;
2576 
2577 	mutex_lock(&intel_pstate_limits_lock);
2578 
2579 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2580 
2581 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2582 		int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2583 
2584 		/*
2585 		 * NOHZ_FULL CPUs need this as the governor callback may not
2586 		 * be invoked on them.
2587 		 */
2588 		intel_pstate_clear_update_util_hook(policy->cpu);
2589 		intel_pstate_set_pstate(cpu, pstate);
2590 	} else {
2591 		intel_pstate_set_update_util_hook(policy->cpu);
2592 	}
2593 
2594 	if (hwp_active) {
2595 		/*
2596 		 * When hwp_boost was active before and dynamically it
2597 		 * was turned off, in that case we need to clear the
2598 		 * update util hook.
2599 		 */
2600 		if (!hwp_boost)
2601 			intel_pstate_clear_update_util_hook(policy->cpu);
2602 		intel_pstate_hwp_set(policy->cpu);
2603 	}
2604 	/*
2605 	 * policy->cur is never updated with the intel_pstate driver, but it
2606 	 * is used as a stale frequency value. So, keep it within limits.
2607 	 */
2608 	policy->cur = policy->min;
2609 
2610 	mutex_unlock(&intel_pstate_limits_lock);
2611 
2612 	return 0;
2613 }
2614 
2615 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2616 					   struct cpufreq_policy_data *policy)
2617 {
2618 	if (!hwp_active &&
2619 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2620 	    policy->max < policy->cpuinfo.max_freq &&
2621 	    policy->max > cpu->pstate.max_freq) {
2622 		pr_debug("policy->max > max non turbo frequency\n");
2623 		policy->max = policy->cpuinfo.max_freq;
2624 	}
2625 }
2626 
2627 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2628 					   struct cpufreq_policy_data *policy)
2629 {
2630 	int max_freq;
2631 
2632 	if (hwp_active) {
2633 		intel_pstate_get_hwp_cap(cpu);
2634 		max_freq = READ_ONCE(global.no_turbo) ?
2635 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2636 	} else {
2637 		max_freq = intel_pstate_get_max_freq(cpu);
2638 	}
2639 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2640 
2641 	intel_pstate_adjust_policy_max(cpu, policy);
2642 }
2643 
2644 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2645 {
2646 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2647 
2648 	return 0;
2649 }
2650 
2651 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2652 {
2653 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2654 
2655 	pr_debug("CPU %d going offline\n", cpu->cpu);
2656 
2657 	if (cpu->suspended)
2658 		return 0;
2659 
2660 	/*
2661 	 * If the CPU is an SMT thread and it goes offline with the performance
2662 	 * settings different from the minimum, it will prevent its sibling
2663 	 * from getting to lower performance levels, so force the minimum
2664 	 * performance on CPU offline to prevent that from happening.
2665 	 */
2666 	if (hwp_active)
2667 		intel_pstate_hwp_offline(cpu);
2668 	else
2669 		intel_pstate_set_min_pstate(cpu);
2670 
2671 	intel_pstate_exit_perf_limits(policy);
2672 
2673 	return 0;
2674 }
2675 
2676 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2677 {
2678 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2679 
2680 	pr_debug("CPU %d going online\n", cpu->cpu);
2681 
2682 	intel_pstate_init_acpi_perf_limits(policy);
2683 
2684 	if (hwp_active) {
2685 		/*
2686 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2687 		 * know that it need not do that.
2688 		 */
2689 		intel_pstate_hwp_reenable(cpu);
2690 		cpu->suspended = false;
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2697 {
2698 	intel_pstate_clear_update_util_hook(policy->cpu);
2699 
2700 	return intel_cpufreq_cpu_offline(policy);
2701 }
2702 
2703 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2704 {
2705 	pr_debug("CPU %d exiting\n", policy->cpu);
2706 
2707 	policy->fast_switch_possible = false;
2708 
2709 	return 0;
2710 }
2711 
2712 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2713 {
2714 	struct cpudata *cpu;
2715 	int rc;
2716 
2717 	rc = intel_pstate_init_cpu(policy->cpu);
2718 	if (rc)
2719 		return rc;
2720 
2721 	cpu = all_cpu_data[policy->cpu];
2722 
2723 	cpu->max_perf_ratio = 0xFF;
2724 	cpu->min_perf_ratio = 0;
2725 
2726 	/* cpuinfo and default policy values */
2727 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2728 	policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
2729 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2730 
2731 	policy->min = policy->cpuinfo.min_freq;
2732 	policy->max = policy->cpuinfo.max_freq;
2733 
2734 	intel_pstate_init_acpi_perf_limits(policy);
2735 
2736 	policy->fast_switch_possible = true;
2737 
2738 	return 0;
2739 }
2740 
2741 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2742 {
2743 	int ret = __intel_pstate_cpu_init(policy);
2744 
2745 	if (ret)
2746 		return ret;
2747 
2748 	/*
2749 	 * Set the policy to powersave to provide a valid fallback value in case
2750 	 * the default cpufreq governor is neither powersave nor performance.
2751 	 */
2752 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2753 
2754 	if (hwp_active) {
2755 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2756 
2757 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2758 	}
2759 
2760 	return 0;
2761 }
2762 
2763 static struct cpufreq_driver intel_pstate = {
2764 	.flags		= CPUFREQ_CONST_LOOPS,
2765 	.verify		= intel_pstate_verify_policy,
2766 	.setpolicy	= intel_pstate_set_policy,
2767 	.suspend	= intel_pstate_suspend,
2768 	.resume		= intel_pstate_resume,
2769 	.init		= intel_pstate_cpu_init,
2770 	.exit		= intel_pstate_cpu_exit,
2771 	.offline	= intel_pstate_cpu_offline,
2772 	.online		= intel_pstate_cpu_online,
2773 	.update_limits	= intel_pstate_update_limits,
2774 	.name		= "intel_pstate",
2775 };
2776 
2777 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2778 {
2779 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2780 
2781 	intel_pstate_verify_cpu_policy(cpu, policy);
2782 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2783 
2784 	return 0;
2785 }
2786 
2787 /* Use of trace in passive mode:
2788  *
2789  * In passive mode the trace core_busy field (also known as the
2790  * performance field, and lablelled as such on the graphs; also known as
2791  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2792  * driver call was via the normal or fast switch path. Various graphs
2793  * output from the intel_pstate_tracer.py utility that include core_busy
2794  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2795  * so we use 10 to indicate the normal path through the driver, and
2796  * 90 to indicate the fast switch path through the driver.
2797  * The scaled_busy field is not used, and is set to 0.
2798  */
2799 
2800 #define	INTEL_PSTATE_TRACE_TARGET 10
2801 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2802 
2803 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2804 {
2805 	struct sample *sample;
2806 
2807 	if (!trace_pstate_sample_enabled())
2808 		return;
2809 
2810 	if (!intel_pstate_sample(cpu, ktime_get()))
2811 		return;
2812 
2813 	sample = &cpu->sample;
2814 	trace_pstate_sample(trace_type,
2815 		0,
2816 		old_pstate,
2817 		cpu->pstate.current_pstate,
2818 		sample->mperf,
2819 		sample->aperf,
2820 		sample->tsc,
2821 		get_avg_frequency(cpu),
2822 		fp_toint(cpu->iowait_boost * 100));
2823 }
2824 
2825 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2826 				     u32 desired, bool fast_switch)
2827 {
2828 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2829 
2830 	value &= ~HWP_MIN_PERF(~0L);
2831 	value |= HWP_MIN_PERF(min);
2832 
2833 	value &= ~HWP_MAX_PERF(~0L);
2834 	value |= HWP_MAX_PERF(max);
2835 
2836 	value &= ~HWP_DESIRED_PERF(~0L);
2837 	value |= HWP_DESIRED_PERF(desired);
2838 
2839 	if (value == prev)
2840 		return;
2841 
2842 	WRITE_ONCE(cpu->hwp_req_cached, value);
2843 	if (fast_switch)
2844 		wrmsrl(MSR_HWP_REQUEST, value);
2845 	else
2846 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2847 }
2848 
2849 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2850 					  u32 target_pstate, bool fast_switch)
2851 {
2852 	if (fast_switch)
2853 		wrmsrl(MSR_IA32_PERF_CTL,
2854 		       pstate_funcs.get_val(cpu, target_pstate));
2855 	else
2856 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2857 			      pstate_funcs.get_val(cpu, target_pstate));
2858 }
2859 
2860 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2861 				       int target_pstate, bool fast_switch)
2862 {
2863 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2864 	int old_pstate = cpu->pstate.current_pstate;
2865 
2866 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2867 	if (hwp_active) {
2868 		int max_pstate = policy->strict_target ?
2869 					target_pstate : cpu->max_perf_ratio;
2870 
2871 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2872 					 fast_switch);
2873 	} else if (target_pstate != old_pstate) {
2874 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2875 	}
2876 
2877 	cpu->pstate.current_pstate = target_pstate;
2878 
2879 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2880 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2881 
2882 	return target_pstate;
2883 }
2884 
2885 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2886 				unsigned int target_freq,
2887 				unsigned int relation)
2888 {
2889 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2890 	struct cpufreq_freqs freqs;
2891 	int target_pstate;
2892 
2893 	freqs.old = policy->cur;
2894 	freqs.new = target_freq;
2895 
2896 	cpufreq_freq_transition_begin(policy, &freqs);
2897 
2898 	target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
2899 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2900 
2901 	freqs.new = target_pstate * cpu->pstate.scaling;
2902 
2903 	cpufreq_freq_transition_end(policy, &freqs, false);
2904 
2905 	return 0;
2906 }
2907 
2908 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2909 					      unsigned int target_freq)
2910 {
2911 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2912 	int target_pstate;
2913 
2914 	target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
2915 
2916 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2917 
2918 	return target_pstate * cpu->pstate.scaling;
2919 }
2920 
2921 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2922 				      unsigned long min_perf,
2923 				      unsigned long target_perf,
2924 				      unsigned long capacity)
2925 {
2926 	struct cpudata *cpu = all_cpu_data[cpunum];
2927 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2928 	int old_pstate = cpu->pstate.current_pstate;
2929 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2930 
2931 	cap_pstate = READ_ONCE(global.no_turbo) ?
2932 					HWP_GUARANTEED_PERF(hwp_cap) :
2933 					HWP_HIGHEST_PERF(hwp_cap);
2934 
2935 	/* Optimization: Avoid unnecessary divisions. */
2936 
2937 	target_pstate = cap_pstate;
2938 	if (target_perf < capacity)
2939 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2940 
2941 	min_pstate = cap_pstate;
2942 	if (min_perf < capacity)
2943 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2944 
2945 	if (min_pstate < cpu->pstate.min_pstate)
2946 		min_pstate = cpu->pstate.min_pstate;
2947 
2948 	if (min_pstate < cpu->min_perf_ratio)
2949 		min_pstate = cpu->min_perf_ratio;
2950 
2951 	if (min_pstate > cpu->max_perf_ratio)
2952 		min_pstate = cpu->max_perf_ratio;
2953 
2954 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2955 	if (max_pstate < min_pstate)
2956 		max_pstate = min_pstate;
2957 
2958 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2959 
2960 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2961 
2962 	cpu->pstate.current_pstate = target_pstate;
2963 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2964 }
2965 
2966 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2967 {
2968 	struct freq_qos_request *req;
2969 	struct cpudata *cpu;
2970 	struct device *dev;
2971 	int ret, freq;
2972 
2973 	dev = get_cpu_device(policy->cpu);
2974 	if (!dev)
2975 		return -ENODEV;
2976 
2977 	ret = __intel_pstate_cpu_init(policy);
2978 	if (ret)
2979 		return ret;
2980 
2981 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2982 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2983 	policy->cur = policy->cpuinfo.min_freq;
2984 
2985 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2986 	if (!req) {
2987 		ret = -ENOMEM;
2988 		goto pstate_exit;
2989 	}
2990 
2991 	cpu = all_cpu_data[policy->cpu];
2992 
2993 	if (hwp_active) {
2994 		u64 value;
2995 
2996 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2997 
2998 		intel_pstate_get_hwp_cap(cpu);
2999 
3000 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3001 		WRITE_ONCE(cpu->hwp_req_cached, value);
3002 
3003 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3004 	} else {
3005 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3006 	}
3007 
3008 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3009 
3010 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3011 				   freq);
3012 	if (ret < 0) {
3013 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3014 		goto free_req;
3015 	}
3016 
3017 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3018 
3019 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3020 				   freq);
3021 	if (ret < 0) {
3022 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3023 		goto remove_min_req;
3024 	}
3025 
3026 	policy->driver_data = req;
3027 
3028 	return 0;
3029 
3030 remove_min_req:
3031 	freq_qos_remove_request(req);
3032 free_req:
3033 	kfree(req);
3034 pstate_exit:
3035 	intel_pstate_exit_perf_limits(policy);
3036 
3037 	return ret;
3038 }
3039 
3040 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3041 {
3042 	struct freq_qos_request *req;
3043 
3044 	req = policy->driver_data;
3045 
3046 	freq_qos_remove_request(req + 1);
3047 	freq_qos_remove_request(req);
3048 	kfree(req);
3049 
3050 	return intel_pstate_cpu_exit(policy);
3051 }
3052 
3053 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3054 {
3055 	intel_pstate_suspend(policy);
3056 
3057 	if (hwp_active) {
3058 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3059 		u64 value = READ_ONCE(cpu->hwp_req_cached);
3060 
3061 		/*
3062 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3063 		 * intel_cpufreq_adjust_perf() is in use and the last value
3064 		 * written by it may not be suitable.
3065 		 */
3066 		value &= ~HWP_DESIRED_PERF(~0L);
3067 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3068 		WRITE_ONCE(cpu->hwp_req_cached, value);
3069 	}
3070 
3071 	return 0;
3072 }
3073 
3074 static struct cpufreq_driver intel_cpufreq = {
3075 	.flags		= CPUFREQ_CONST_LOOPS,
3076 	.verify		= intel_cpufreq_verify_policy,
3077 	.target		= intel_cpufreq_target,
3078 	.fast_switch	= intel_cpufreq_fast_switch,
3079 	.init		= intel_cpufreq_cpu_init,
3080 	.exit		= intel_cpufreq_cpu_exit,
3081 	.offline	= intel_cpufreq_cpu_offline,
3082 	.online		= intel_pstate_cpu_online,
3083 	.suspend	= intel_cpufreq_suspend,
3084 	.resume		= intel_pstate_resume,
3085 	.update_limits	= intel_pstate_update_limits,
3086 	.name		= "intel_cpufreq",
3087 };
3088 
3089 static struct cpufreq_driver *default_driver;
3090 
3091 static void intel_pstate_driver_cleanup(void)
3092 {
3093 	unsigned int cpu;
3094 
3095 	cpus_read_lock();
3096 	for_each_online_cpu(cpu) {
3097 		if (all_cpu_data[cpu]) {
3098 			if (intel_pstate_driver == &intel_pstate)
3099 				intel_pstate_clear_update_util_hook(cpu);
3100 
3101 			kfree(all_cpu_data[cpu]);
3102 			WRITE_ONCE(all_cpu_data[cpu], NULL);
3103 		}
3104 	}
3105 	cpus_read_unlock();
3106 
3107 	intel_pstate_driver = NULL;
3108 }
3109 
3110 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3111 {
3112 	int ret;
3113 
3114 	if (driver == &intel_pstate)
3115 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3116 
3117 	memset(&global, 0, sizeof(global));
3118 	global.max_perf_pct = 100;
3119 	global.turbo_disabled = turbo_is_disabled();
3120 	global.no_turbo = global.turbo_disabled;
3121 
3122 	arch_set_max_freq_ratio(global.turbo_disabled);
3123 
3124 	intel_pstate_driver = driver;
3125 	ret = cpufreq_register_driver(intel_pstate_driver);
3126 	if (ret) {
3127 		intel_pstate_driver_cleanup();
3128 		return ret;
3129 	}
3130 
3131 	global.min_perf_pct = min_perf_pct_min();
3132 
3133 	return 0;
3134 }
3135 
3136 static ssize_t intel_pstate_show_status(char *buf)
3137 {
3138 	if (!intel_pstate_driver)
3139 		return sprintf(buf, "off\n");
3140 
3141 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3142 					"active" : "passive");
3143 }
3144 
3145 static int intel_pstate_update_status(const char *buf, size_t size)
3146 {
3147 	if (size == 3 && !strncmp(buf, "off", size)) {
3148 		if (!intel_pstate_driver)
3149 			return -EINVAL;
3150 
3151 		if (hwp_active)
3152 			return -EBUSY;
3153 
3154 		cpufreq_unregister_driver(intel_pstate_driver);
3155 		intel_pstate_driver_cleanup();
3156 		return 0;
3157 	}
3158 
3159 	if (size == 6 && !strncmp(buf, "active", size)) {
3160 		if (intel_pstate_driver) {
3161 			if (intel_pstate_driver == &intel_pstate)
3162 				return 0;
3163 
3164 			cpufreq_unregister_driver(intel_pstate_driver);
3165 		}
3166 
3167 		return intel_pstate_register_driver(&intel_pstate);
3168 	}
3169 
3170 	if (size == 7 && !strncmp(buf, "passive", size)) {
3171 		if (intel_pstate_driver) {
3172 			if (intel_pstate_driver == &intel_cpufreq)
3173 				return 0;
3174 
3175 			cpufreq_unregister_driver(intel_pstate_driver);
3176 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3177 		}
3178 
3179 		return intel_pstate_register_driver(&intel_cpufreq);
3180 	}
3181 
3182 	return -EINVAL;
3183 }
3184 
3185 static int no_load __initdata;
3186 static int no_hwp __initdata;
3187 static int hwp_only __initdata;
3188 static unsigned int force_load __initdata;
3189 
3190 static int __init intel_pstate_msrs_not_valid(void)
3191 {
3192 	if (!pstate_funcs.get_max(0) ||
3193 	    !pstate_funcs.get_min(0) ||
3194 	    !pstate_funcs.get_turbo(0))
3195 		return -ENODEV;
3196 
3197 	return 0;
3198 }
3199 
3200 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3201 {
3202 	pstate_funcs.get_max   = funcs->get_max;
3203 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3204 	pstate_funcs.get_min   = funcs->get_min;
3205 	pstate_funcs.get_turbo = funcs->get_turbo;
3206 	pstate_funcs.get_scaling = funcs->get_scaling;
3207 	pstate_funcs.get_val   = funcs->get_val;
3208 	pstate_funcs.get_vid   = funcs->get_vid;
3209 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3210 }
3211 
3212 #ifdef CONFIG_ACPI
3213 
3214 static bool __init intel_pstate_no_acpi_pss(void)
3215 {
3216 	int i;
3217 
3218 	for_each_possible_cpu(i) {
3219 		acpi_status status;
3220 		union acpi_object *pss;
3221 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3222 		struct acpi_processor *pr = per_cpu(processors, i);
3223 
3224 		if (!pr)
3225 			continue;
3226 
3227 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3228 		if (ACPI_FAILURE(status))
3229 			continue;
3230 
3231 		pss = buffer.pointer;
3232 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3233 			kfree(pss);
3234 			return false;
3235 		}
3236 
3237 		kfree(pss);
3238 	}
3239 
3240 	pr_debug("ACPI _PSS not found\n");
3241 	return true;
3242 }
3243 
3244 static bool __init intel_pstate_no_acpi_pcch(void)
3245 {
3246 	acpi_status status;
3247 	acpi_handle handle;
3248 
3249 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3250 	if (ACPI_FAILURE(status))
3251 		goto not_found;
3252 
3253 	if (acpi_has_method(handle, "PCCH"))
3254 		return false;
3255 
3256 not_found:
3257 	pr_debug("ACPI PCCH not found\n");
3258 	return true;
3259 }
3260 
3261 static bool __init intel_pstate_has_acpi_ppc(void)
3262 {
3263 	int i;
3264 
3265 	for_each_possible_cpu(i) {
3266 		struct acpi_processor *pr = per_cpu(processors, i);
3267 
3268 		if (!pr)
3269 			continue;
3270 		if (acpi_has_method(pr->handle, "_PPC"))
3271 			return true;
3272 	}
3273 	pr_debug("ACPI _PPC not found\n");
3274 	return false;
3275 }
3276 
3277 enum {
3278 	PSS,
3279 	PPC,
3280 };
3281 
3282 /* Hardware vendor-specific info that has its own power management modes */
3283 static struct acpi_platform_list plat_info[] __initdata = {
3284 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3285 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3286 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3287 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3288 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3289 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3290 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3291 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3292 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3293 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3294 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3295 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3296 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3297 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3298 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3299 	{ } /* End */
3300 };
3301 
3302 #define BITMASK_OOB	(BIT(8) | BIT(18))
3303 
3304 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3305 {
3306 	const struct x86_cpu_id *id;
3307 	u64 misc_pwr;
3308 	int idx;
3309 
3310 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3311 	if (id) {
3312 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3313 		if (misc_pwr & BITMASK_OOB) {
3314 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3315 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3316 			return true;
3317 		}
3318 	}
3319 
3320 	idx = acpi_match_platform_list(plat_info);
3321 	if (idx < 0)
3322 		return false;
3323 
3324 	switch (plat_info[idx].data) {
3325 	case PSS:
3326 		if (!intel_pstate_no_acpi_pss())
3327 			return false;
3328 
3329 		return intel_pstate_no_acpi_pcch();
3330 	case PPC:
3331 		return intel_pstate_has_acpi_ppc() && !force_load;
3332 	}
3333 
3334 	return false;
3335 }
3336 
3337 static void intel_pstate_request_control_from_smm(void)
3338 {
3339 	/*
3340 	 * It may be unsafe to request P-states control from SMM if _PPC support
3341 	 * has not been enabled.
3342 	 */
3343 	if (acpi_ppc)
3344 		acpi_processor_pstate_control();
3345 }
3346 #else /* CONFIG_ACPI not enabled */
3347 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3348 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3349 static inline void intel_pstate_request_control_from_smm(void) {}
3350 #endif /* CONFIG_ACPI */
3351 
3352 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3353 
3354 #define X86_MATCH_HWP(model, hwp_mode)					\
3355 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3356 					   X86_FEATURE_HWP, hwp_mode)
3357 
3358 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3359 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3360 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3361 	X86_MATCH_HWP(ANY,		0),
3362 	{}
3363 };
3364 
3365 static bool intel_pstate_hwp_is_enabled(void)
3366 {
3367 	u64 value;
3368 
3369 	rdmsrl(MSR_PM_ENABLE, value);
3370 	return !!(value & 0x1);
3371 }
3372 
3373 #define POWERSAVE_MASK			GENMASK(7, 0)
3374 #define BALANCE_POWER_MASK		GENMASK(15, 8)
3375 #define BALANCE_PERFORMANCE_MASK	GENMASK(23, 16)
3376 #define PERFORMANCE_MASK		GENMASK(31, 24)
3377 
3378 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3379 	(FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3380 	 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3381 	 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3382 	 FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3383 
3384 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3385 	(HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3386 	 balance_perf, HWP_EPP_PERFORMANCE))
3387 
3388 static const struct x86_cpu_id intel_epp_default[] = {
3389 	/*
3390 	 * Set EPP value as 102, this is the max suggested EPP
3391 	 * which can result in one core turbo frequency for
3392 	 * AlderLake Mobile CPUs.
3393 	 */
3394 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3395 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3396 	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3397 							HWP_EPP_BALANCE_POWERSAVE, 115, 16)),
3398 	{}
3399 };
3400 
3401 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3402 	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3403 	{}
3404 };
3405 
3406 static int __init intel_pstate_init(void)
3407 {
3408 	static struct cpudata **_all_cpu_data;
3409 	const struct x86_cpu_id *id;
3410 	int rc;
3411 
3412 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3413 		return -ENODEV;
3414 
3415 	id = x86_match_cpu(hwp_support_ids);
3416 	if (id) {
3417 		hwp_forced = intel_pstate_hwp_is_enabled();
3418 
3419 		if (hwp_forced)
3420 			pr_info("HWP enabled by BIOS\n");
3421 		else if (no_load)
3422 			return -ENODEV;
3423 
3424 		copy_cpu_funcs(&core_funcs);
3425 		/*
3426 		 * Avoid enabling HWP for processors without EPP support,
3427 		 * because that means incomplete HWP implementation which is a
3428 		 * corner case and supporting it is generally problematic.
3429 		 *
3430 		 * If HWP is enabled already, though, there is no choice but to
3431 		 * deal with it.
3432 		 */
3433 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3434 			hwp_active = true;
3435 			hwp_mode_bdw = id->driver_data;
3436 			intel_pstate.attr = hwp_cpufreq_attrs;
3437 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3438 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3439 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3440 			if (!default_driver)
3441 				default_driver = &intel_pstate;
3442 
3443 			pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3444 
3445 			goto hwp_cpu_matched;
3446 		}
3447 		pr_info("HWP not enabled\n");
3448 	} else {
3449 		if (no_load)
3450 			return -ENODEV;
3451 
3452 		id = x86_match_cpu(intel_pstate_cpu_ids);
3453 		if (!id) {
3454 			pr_info("CPU model not supported\n");
3455 			return -ENODEV;
3456 		}
3457 
3458 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3459 	}
3460 
3461 	if (intel_pstate_msrs_not_valid()) {
3462 		pr_info("Invalid MSRs\n");
3463 		return -ENODEV;
3464 	}
3465 	/* Without HWP start in the passive mode. */
3466 	if (!default_driver)
3467 		default_driver = &intel_cpufreq;
3468 
3469 hwp_cpu_matched:
3470 	/*
3471 	 * The Intel pstate driver will be ignored if the platform
3472 	 * firmware has its own power management modes.
3473 	 */
3474 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3475 		pr_info("P-states controlled by the platform\n");
3476 		return -ENODEV;
3477 	}
3478 
3479 	if (!hwp_active && hwp_only)
3480 		return -ENOTSUPP;
3481 
3482 	pr_info("Intel P-state driver initializing\n");
3483 
3484 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3485 	if (!_all_cpu_data)
3486 		return -ENOMEM;
3487 
3488 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
3489 
3490 	intel_pstate_request_control_from_smm();
3491 
3492 	intel_pstate_sysfs_expose_params();
3493 
3494 	if (hwp_active) {
3495 		const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3496 		const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3497 
3498 		if (id) {
3499 			epp_values[EPP_INDEX_POWERSAVE] =
3500 					FIELD_GET(POWERSAVE_MASK, id->driver_data);
3501 			epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3502 					FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3503 			epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3504 					FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3505 			epp_values[EPP_INDEX_PERFORMANCE] =
3506 					FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3507 			pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3508 				 epp_values[EPP_INDEX_POWERSAVE],
3509 				 epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3510 				 epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3511 				 epp_values[EPP_INDEX_PERFORMANCE]);
3512 		}
3513 
3514 		if (hybrid_id) {
3515 			hybrid_scaling_factor = hybrid_id->driver_data;
3516 			pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3517 		}
3518 
3519 	}
3520 
3521 	mutex_lock(&intel_pstate_driver_lock);
3522 	rc = intel_pstate_register_driver(default_driver);
3523 	mutex_unlock(&intel_pstate_driver_lock);
3524 	if (rc) {
3525 		intel_pstate_sysfs_remove();
3526 		return rc;
3527 	}
3528 
3529 	if (hwp_active) {
3530 		const struct x86_cpu_id *id;
3531 
3532 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3533 		if (id) {
3534 			set_power_ctl_ee_state(false);
3535 			pr_info("Disabling energy efficiency optimization\n");
3536 		}
3537 
3538 		pr_info("HWP enabled\n");
3539 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3540 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3541 	}
3542 
3543 	return 0;
3544 }
3545 device_initcall(intel_pstate_init);
3546 
3547 static int __init intel_pstate_setup(char *str)
3548 {
3549 	if (!str)
3550 		return -EINVAL;
3551 
3552 	if (!strcmp(str, "disable"))
3553 		no_load = 1;
3554 	else if (!strcmp(str, "active"))
3555 		default_driver = &intel_pstate;
3556 	else if (!strcmp(str, "passive"))
3557 		default_driver = &intel_cpufreq;
3558 
3559 	if (!strcmp(str, "no_hwp"))
3560 		no_hwp = 1;
3561 
3562 	if (!strcmp(str, "force"))
3563 		force_load = 1;
3564 	if (!strcmp(str, "hwp_only"))
3565 		hwp_only = 1;
3566 	if (!strcmp(str, "per_cpu_perf_limits"))
3567 		per_cpu_limits = true;
3568 
3569 #ifdef CONFIG_ACPI
3570 	if (!strcmp(str, "support_acpi_ppc"))
3571 		acpi_ppc = true;
3572 #endif
3573 
3574 	return 0;
3575 }
3576 early_param("intel_pstate", intel_pstate_setup);
3577 
3578 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3579 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3580