xref: /linux/drivers/cpufreq/intel_pstate.c (revision 31368ce83c59a5422ee621a38aeea98142d0ecf7)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)
42 
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
45 
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50 
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54 
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59 
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64 
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 	return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69 
70 static inline int ceiling_fp(int32_t x)
71 {
72 	int mask, ret;
73 
74 	ret = fp_toint(x);
75 	mask = (1 << FRAC_BITS) - 1;
76 	if (x & mask)
77 		ret += 1;
78 	return ret;
79 }
80 
81 static inline int32_t percent_fp(int percent)
82 {
83 	return div_fp(percent, 100);
84 }
85 
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88 	return (x * y) >> EXT_FRAC_BITS;
89 }
90 
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93 	return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95 
96 static inline int32_t percent_ext_fp(int percent)
97 {
98 	return div_ext_fp(percent, 100);
99 }
100 
101 /**
102  * struct sample -	Store performance sample
103  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104  *			performance during last sample period
105  * @busy_scaled:	Scaled busy value which is used to calculate next
106  *			P state. This can be different than core_avg_perf
107  *			to account for cpu idle period
108  * @aperf:		Difference of actual performance frequency clock count
109  *			read from APERF MSR between last and current sample
110  * @mperf:		Difference of maximum performance frequency clock count
111  *			read from MPERF MSR between last and current sample
112  * @tsc:		Difference of time stamp counter between last and
113  *			current sample
114  * @time:		Current time from scheduler
115  *
116  * This structure is used in the cpudata structure to store performance sample
117  * data for choosing next P State.
118  */
119 struct sample {
120 	int32_t core_avg_perf;
121 	int32_t busy_scaled;
122 	u64 aperf;
123 	u64 mperf;
124 	u64 tsc;
125 	u64 time;
126 };
127 
128 /**
129  * struct pstate_data - Store P state data
130  * @current_pstate:	Current requested P state
131  * @min_pstate:		Min P state possible for this platform
132  * @max_pstate:		Max P state possible for this platform
133  * @max_pstate_physical:This is physical Max P state for a processor
134  *			This can be higher than the max_pstate which can
135  *			be limited by platform thermal design power limits
136  * @scaling:		Scaling factor to  convert frequency to cpufreq
137  *			frequency units
138  * @turbo_pstate:	Max Turbo P state possible for this platform
139  * @max_freq:		@max_pstate frequency in cpufreq units
140  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141  *
142  * Stores the per cpu model P state limits and current P state.
143  */
144 struct pstate_data {
145 	int	current_pstate;
146 	int	min_pstate;
147 	int	max_pstate;
148 	int	max_pstate_physical;
149 	int	scaling;
150 	int	turbo_pstate;
151 	unsigned int max_freq;
152 	unsigned int turbo_freq;
153 };
154 
155 /**
156  * struct vid_data -	Stores voltage information data
157  * @min:		VID data for this platform corresponding to
158  *			the lowest P state
159  * @max:		VID data corresponding to the highest P State.
160  * @turbo:		VID data for turbo P state
161  * @ratio:		Ratio of (vid max - vid min) /
162  *			(max P state - Min P State)
163  *
164  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165  * This data is used in Atom platforms, where in addition to target P state,
166  * the voltage data needs to be specified to select next P State.
167  */
168 struct vid_data {
169 	int min;
170 	int max;
171 	int turbo;
172 	int32_t ratio;
173 };
174 
175 /**
176  * struct _pid -	Stores PID data
177  * @setpoint:		Target set point for busyness or performance
178  * @integral:		Storage for accumulated error values
179  * @p_gain:		PID proportional gain
180  * @i_gain:		PID integral gain
181  * @d_gain:		PID derivative gain
182  * @deadband:		PID deadband
183  * @last_err:		Last error storage for integral part of PID calculation
184  *
185  * Stores PID coefficients and last error for PID controller.
186  */
187 struct _pid {
188 	int setpoint;
189 	int32_t integral;
190 	int32_t p_gain;
191 	int32_t i_gain;
192 	int32_t d_gain;
193 	int deadband;
194 	int32_t last_err;
195 };
196 
197 /**
198  * struct global_params - Global parameters, mostly tunable via sysfs.
199  * @no_turbo:		Whether or not to use turbo P-states.
200  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
201  *			based on the MSR_IA32_MISC_ENABLE value and whether or
202  *			not the maximum reported turbo P-state is different from
203  *			the maximum reported non-turbo one.
204  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
205  *			P-state capacity.
206  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
207  *			P-state capacity.
208  */
209 struct global_params {
210 	bool no_turbo;
211 	bool turbo_disabled;
212 	int max_perf_pct;
213 	int min_perf_pct;
214 };
215 
216 /**
217  * struct cpudata -	Per CPU instance data storage
218  * @cpu:		CPU number for this instance data
219  * @policy:		CPUFreq policy value
220  * @update_util:	CPUFreq utility callback information
221  * @update_util_set:	CPUFreq utility callback is set
222  * @iowait_boost:	iowait-related boost fraction
223  * @last_update:	Time of the last update.
224  * @pstate:		Stores P state limits for this CPU
225  * @vid:		Stores VID limits for this CPU
226  * @pid:		Stores PID parameters for this CPU
227  * @last_sample_time:	Last Sample time
228  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
229  *			This shift is a multiplier to mperf delta to
230  *			calculate CPU busy.
231  * @prev_aperf:		Last APERF value read from APERF MSR
232  * @prev_mperf:		Last MPERF value read from MPERF MSR
233  * @prev_tsc:		Last timestamp counter (TSC) value
234  * @prev_cummulative_iowait: IO Wait time difference from last and
235  *			current sample
236  * @sample:		Storage for storing last Sample data
237  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
238  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
239  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
240  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
241  * @epp_powersave:	Last saved HWP energy performance preference
242  *			(EPP) or energy performance bias (EPB),
243  *			when policy switched to performance
244  * @epp_policy:		Last saved policy used to set EPP/EPB
245  * @epp_default:	Power on default HWP energy performance
246  *			preference/bias
247  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
248  *			operation
249  *
250  * This structure stores per CPU instance data for all CPUs.
251  */
252 struct cpudata {
253 	int cpu;
254 
255 	unsigned int policy;
256 	struct update_util_data update_util;
257 	bool   update_util_set;
258 
259 	struct pstate_data pstate;
260 	struct vid_data vid;
261 	struct _pid pid;
262 
263 	u64	last_update;
264 	u64	last_sample_time;
265 	u64	aperf_mperf_shift;
266 	u64	prev_aperf;
267 	u64	prev_mperf;
268 	u64	prev_tsc;
269 	u64	prev_cummulative_iowait;
270 	struct sample sample;
271 	int32_t	min_perf_ratio;
272 	int32_t	max_perf_ratio;
273 #ifdef CONFIG_ACPI
274 	struct acpi_processor_performance acpi_perf_data;
275 	bool valid_pss_table;
276 #endif
277 	unsigned int iowait_boost;
278 	s16 epp_powersave;
279 	s16 epp_policy;
280 	s16 epp_default;
281 	s16 epp_saved;
282 };
283 
284 static struct cpudata **all_cpu_data;
285 
286 /**
287  * struct pstate_adjust_policy - Stores static PID configuration data
288  * @sample_rate_ms:	PID calculation sample rate in ms
289  * @sample_rate_ns:	Sample rate calculation in ns
290  * @deadband:		PID deadband
291  * @setpoint:		PID Setpoint
292  * @p_gain_pct:		PID proportional gain
293  * @i_gain_pct:		PID integral gain
294  * @d_gain_pct:		PID derivative gain
295  *
296  * Stores per CPU model static PID configuration data.
297  */
298 struct pstate_adjust_policy {
299 	int sample_rate_ms;
300 	s64 sample_rate_ns;
301 	int deadband;
302 	int setpoint;
303 	int p_gain_pct;
304 	int d_gain_pct;
305 	int i_gain_pct;
306 };
307 
308 /**
309  * struct pstate_funcs - Per CPU model specific callbacks
310  * @get_max:		Callback to get maximum non turbo effective P state
311  * @get_max_physical:	Callback to get maximum non turbo physical P state
312  * @get_min:		Callback to get minimum P state
313  * @get_turbo:		Callback to get turbo P state
314  * @get_scaling:	Callback to get frequency scaling factor
315  * @get_val:		Callback to convert P state to actual MSR write value
316  * @get_vid:		Callback to get VID data for Atom platforms
317  * @update_util:	Active mode utilization update callback.
318  *
319  * Core and Atom CPU models have different way to get P State limits. This
320  * structure is used to store those callbacks.
321  */
322 struct pstate_funcs {
323 	int (*get_max)(void);
324 	int (*get_max_physical)(void);
325 	int (*get_min)(void);
326 	int (*get_turbo)(void);
327 	int (*get_scaling)(void);
328 	int (*get_aperf_mperf_shift)(void);
329 	u64 (*get_val)(struct cpudata*, int pstate);
330 	void (*get_vid)(struct cpudata *);
331 	void (*update_util)(struct update_util_data *data, u64 time,
332 			    unsigned int flags);
333 };
334 
335 static struct pstate_funcs pstate_funcs __read_mostly;
336 static struct pstate_adjust_policy pid_params __read_mostly = {
337 	.sample_rate_ms = 10,
338 	.sample_rate_ns = 10 * NSEC_PER_MSEC,
339 	.deadband = 0,
340 	.setpoint = 97,
341 	.p_gain_pct = 20,
342 	.d_gain_pct = 0,
343 	.i_gain_pct = 0,
344 };
345 
346 static int hwp_active __read_mostly;
347 static bool per_cpu_limits __read_mostly;
348 
349 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
350 
351 #ifdef CONFIG_ACPI
352 static bool acpi_ppc;
353 #endif
354 
355 static struct global_params global;
356 
357 static DEFINE_MUTEX(intel_pstate_driver_lock);
358 static DEFINE_MUTEX(intel_pstate_limits_lock);
359 
360 #ifdef CONFIG_ACPI
361 
362 static bool intel_pstate_get_ppc_enable_status(void)
363 {
364 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
365 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
366 		return true;
367 
368 	return acpi_ppc;
369 }
370 
371 #ifdef CONFIG_ACPI_CPPC_LIB
372 
373 /* The work item is needed to avoid CPU hotplug locking issues */
374 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
375 {
376 	sched_set_itmt_support();
377 }
378 
379 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
380 
381 static void intel_pstate_set_itmt_prio(int cpu)
382 {
383 	struct cppc_perf_caps cppc_perf;
384 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
385 	int ret;
386 
387 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
388 	if (ret)
389 		return;
390 
391 	/*
392 	 * The priorities can be set regardless of whether or not
393 	 * sched_set_itmt_support(true) has been called and it is valid to
394 	 * update them at any time after it has been called.
395 	 */
396 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
397 
398 	if (max_highest_perf <= min_highest_perf) {
399 		if (cppc_perf.highest_perf > max_highest_perf)
400 			max_highest_perf = cppc_perf.highest_perf;
401 
402 		if (cppc_perf.highest_perf < min_highest_perf)
403 			min_highest_perf = cppc_perf.highest_perf;
404 
405 		if (max_highest_perf > min_highest_perf) {
406 			/*
407 			 * This code can be run during CPU online under the
408 			 * CPU hotplug locks, so sched_set_itmt_support()
409 			 * cannot be called from here.  Queue up a work item
410 			 * to invoke it.
411 			 */
412 			schedule_work(&sched_itmt_work);
413 		}
414 	}
415 }
416 #else
417 static void intel_pstate_set_itmt_prio(int cpu)
418 {
419 }
420 #endif
421 
422 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
423 {
424 	struct cpudata *cpu;
425 	int ret;
426 	int i;
427 
428 	if (hwp_active) {
429 		intel_pstate_set_itmt_prio(policy->cpu);
430 		return;
431 	}
432 
433 	if (!intel_pstate_get_ppc_enable_status())
434 		return;
435 
436 	cpu = all_cpu_data[policy->cpu];
437 
438 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
439 						  policy->cpu);
440 	if (ret)
441 		return;
442 
443 	/*
444 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
445 	 * guarantee that the states returned by it map to the states in our
446 	 * list directly.
447 	 */
448 	if (cpu->acpi_perf_data.control_register.space_id !=
449 						ACPI_ADR_SPACE_FIXED_HARDWARE)
450 		goto err;
451 
452 	/*
453 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
454 	 * usual without taking _PSS into account
455 	 */
456 	if (cpu->acpi_perf_data.state_count < 2)
457 		goto err;
458 
459 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
460 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
461 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
462 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
463 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
464 			 (u32) cpu->acpi_perf_data.states[i].power,
465 			 (u32) cpu->acpi_perf_data.states[i].control);
466 	}
467 
468 	/*
469 	 * The _PSS table doesn't contain whole turbo frequency range.
470 	 * This just contains +1 MHZ above the max non turbo frequency,
471 	 * with control value corresponding to max turbo ratio. But
472 	 * when cpufreq set policy is called, it will call with this
473 	 * max frequency, which will cause a reduced performance as
474 	 * this driver uses real max turbo frequency as the max
475 	 * frequency. So correct this frequency in _PSS table to
476 	 * correct max turbo frequency based on the turbo state.
477 	 * Also need to convert to MHz as _PSS freq is in MHz.
478 	 */
479 	if (!global.turbo_disabled)
480 		cpu->acpi_perf_data.states[0].core_frequency =
481 					policy->cpuinfo.max_freq / 1000;
482 	cpu->valid_pss_table = true;
483 	pr_debug("_PPC limits will be enforced\n");
484 
485 	return;
486 
487  err:
488 	cpu->valid_pss_table = false;
489 	acpi_processor_unregister_performance(policy->cpu);
490 }
491 
492 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494 	struct cpudata *cpu;
495 
496 	cpu = all_cpu_data[policy->cpu];
497 	if (!cpu->valid_pss_table)
498 		return;
499 
500 	acpi_processor_unregister_performance(policy->cpu);
501 }
502 #else
503 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
504 {
505 }
506 
507 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
508 {
509 }
510 #endif
511 
512 static signed int pid_calc(struct _pid *pid, int32_t busy)
513 {
514 	signed int result;
515 	int32_t pterm, dterm, fp_error;
516 	int32_t integral_limit;
517 
518 	fp_error = pid->setpoint - busy;
519 
520 	if (abs(fp_error) <= pid->deadband)
521 		return 0;
522 
523 	pterm = mul_fp(pid->p_gain, fp_error);
524 
525 	pid->integral += fp_error;
526 
527 	/*
528 	 * We limit the integral here so that it will never
529 	 * get higher than 30.  This prevents it from becoming
530 	 * too large an input over long periods of time and allows
531 	 * it to get factored out sooner.
532 	 *
533 	 * The value of 30 was chosen through experimentation.
534 	 */
535 	integral_limit = int_tofp(30);
536 	if (pid->integral > integral_limit)
537 		pid->integral = integral_limit;
538 	if (pid->integral < -integral_limit)
539 		pid->integral = -integral_limit;
540 
541 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
542 	pid->last_err = fp_error;
543 
544 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
545 	result = result + (1 << (FRAC_BITS-1));
546 	return (signed int)fp_toint(result);
547 }
548 
549 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
550 {
551 	struct _pid *pid = &cpu->pid;
552 
553 	pid->p_gain = percent_fp(pid_params.p_gain_pct);
554 	pid->d_gain = percent_fp(pid_params.d_gain_pct);
555 	pid->i_gain = percent_fp(pid_params.i_gain_pct);
556 	pid->setpoint = int_tofp(pid_params.setpoint);
557 	pid->last_err  = pid->setpoint - int_tofp(100);
558 	pid->deadband  = int_tofp(pid_params.deadband);
559 	pid->integral  = 0;
560 }
561 
562 static inline void update_turbo_state(void)
563 {
564 	u64 misc_en;
565 	struct cpudata *cpu;
566 
567 	cpu = all_cpu_data[0];
568 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
569 	global.turbo_disabled =
570 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
571 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
572 }
573 
574 static int min_perf_pct_min(void)
575 {
576 	struct cpudata *cpu = all_cpu_data[0];
577 	int turbo_pstate = cpu->pstate.turbo_pstate;
578 
579 	return turbo_pstate ?
580 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
581 }
582 
583 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
584 {
585 	u64 epb;
586 	int ret;
587 
588 	if (!static_cpu_has(X86_FEATURE_EPB))
589 		return -ENXIO;
590 
591 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
592 	if (ret)
593 		return (s16)ret;
594 
595 	return (s16)(epb & 0x0f);
596 }
597 
598 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
599 {
600 	s16 epp;
601 
602 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
603 		/*
604 		 * When hwp_req_data is 0, means that caller didn't read
605 		 * MSR_HWP_REQUEST, so need to read and get EPP.
606 		 */
607 		if (!hwp_req_data) {
608 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
609 					    &hwp_req_data);
610 			if (epp)
611 				return epp;
612 		}
613 		epp = (hwp_req_data >> 24) & 0xff;
614 	} else {
615 		/* When there is no EPP present, HWP uses EPB settings */
616 		epp = intel_pstate_get_epb(cpu_data);
617 	}
618 
619 	return epp;
620 }
621 
622 static int intel_pstate_set_epb(int cpu, s16 pref)
623 {
624 	u64 epb;
625 	int ret;
626 
627 	if (!static_cpu_has(X86_FEATURE_EPB))
628 		return -ENXIO;
629 
630 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
631 	if (ret)
632 		return ret;
633 
634 	epb = (epb & ~0x0f) | pref;
635 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
636 
637 	return 0;
638 }
639 
640 /*
641  * EPP/EPB display strings corresponding to EPP index in the
642  * energy_perf_strings[]
643  *	index		String
644  *-------------------------------------
645  *	0		default
646  *	1		performance
647  *	2		balance_performance
648  *	3		balance_power
649  *	4		power
650  */
651 static const char * const energy_perf_strings[] = {
652 	"default",
653 	"performance",
654 	"balance_performance",
655 	"balance_power",
656 	"power",
657 	NULL
658 };
659 static const unsigned int epp_values[] = {
660 	HWP_EPP_PERFORMANCE,
661 	HWP_EPP_BALANCE_PERFORMANCE,
662 	HWP_EPP_BALANCE_POWERSAVE,
663 	HWP_EPP_POWERSAVE
664 };
665 
666 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
667 {
668 	s16 epp;
669 	int index = -EINVAL;
670 
671 	epp = intel_pstate_get_epp(cpu_data, 0);
672 	if (epp < 0)
673 		return epp;
674 
675 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
676 		if (epp == HWP_EPP_PERFORMANCE)
677 			return 1;
678 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
679 			return 2;
680 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
681 			return 3;
682 		else
683 			return 4;
684 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
685 		/*
686 		 * Range:
687 		 *	0x00-0x03	:	Performance
688 		 *	0x04-0x07	:	Balance performance
689 		 *	0x08-0x0B	:	Balance power
690 		 *	0x0C-0x0F	:	Power
691 		 * The EPB is a 4 bit value, but our ranges restrict the
692 		 * value which can be set. Here only using top two bits
693 		 * effectively.
694 		 */
695 		index = (epp >> 2) + 1;
696 	}
697 
698 	return index;
699 }
700 
701 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
702 					      int pref_index)
703 {
704 	int epp = -EINVAL;
705 	int ret;
706 
707 	if (!pref_index)
708 		epp = cpu_data->epp_default;
709 
710 	mutex_lock(&intel_pstate_limits_lock);
711 
712 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
713 		u64 value;
714 
715 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
716 		if (ret)
717 			goto return_pref;
718 
719 		value &= ~GENMASK_ULL(31, 24);
720 
721 		if (epp == -EINVAL)
722 			epp = epp_values[pref_index - 1];
723 
724 		value |= (u64)epp << 24;
725 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
726 	} else {
727 		if (epp == -EINVAL)
728 			epp = (pref_index - 1) << 2;
729 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
730 	}
731 return_pref:
732 	mutex_unlock(&intel_pstate_limits_lock);
733 
734 	return ret;
735 }
736 
737 static ssize_t show_energy_performance_available_preferences(
738 				struct cpufreq_policy *policy, char *buf)
739 {
740 	int i = 0;
741 	int ret = 0;
742 
743 	while (energy_perf_strings[i] != NULL)
744 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
745 
746 	ret += sprintf(&buf[ret], "\n");
747 
748 	return ret;
749 }
750 
751 cpufreq_freq_attr_ro(energy_performance_available_preferences);
752 
753 static ssize_t store_energy_performance_preference(
754 		struct cpufreq_policy *policy, const char *buf, size_t count)
755 {
756 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
757 	char str_preference[21];
758 	int ret, i = 0;
759 
760 	ret = sscanf(buf, "%20s", str_preference);
761 	if (ret != 1)
762 		return -EINVAL;
763 
764 	while (energy_perf_strings[i] != NULL) {
765 		if (!strcmp(str_preference, energy_perf_strings[i])) {
766 			intel_pstate_set_energy_pref_index(cpu_data, i);
767 			return count;
768 		}
769 		++i;
770 	}
771 
772 	return -EINVAL;
773 }
774 
775 static ssize_t show_energy_performance_preference(
776 				struct cpufreq_policy *policy, char *buf)
777 {
778 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
779 	int preference;
780 
781 	preference = intel_pstate_get_energy_pref_index(cpu_data);
782 	if (preference < 0)
783 		return preference;
784 
785 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
786 }
787 
788 cpufreq_freq_attr_rw(energy_performance_preference);
789 
790 static struct freq_attr *hwp_cpufreq_attrs[] = {
791 	&energy_performance_preference,
792 	&energy_performance_available_preferences,
793 	NULL,
794 };
795 
796 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
797 				     int *current_max)
798 {
799 	u64 cap;
800 
801 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
802 	if (global.no_turbo)
803 		*current_max = HWP_GUARANTEED_PERF(cap);
804 	else
805 		*current_max = HWP_HIGHEST_PERF(cap);
806 
807 	*phy_max = HWP_HIGHEST_PERF(cap);
808 }
809 
810 static void intel_pstate_hwp_set(unsigned int cpu)
811 {
812 	struct cpudata *cpu_data = all_cpu_data[cpu];
813 	int max, min;
814 	u64 value;
815 	s16 epp;
816 
817 	max = cpu_data->max_perf_ratio;
818 	min = cpu_data->min_perf_ratio;
819 
820 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
821 		min = max;
822 
823 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
824 
825 	value &= ~HWP_MIN_PERF(~0L);
826 	value |= HWP_MIN_PERF(min);
827 
828 	value &= ~HWP_MAX_PERF(~0L);
829 	value |= HWP_MAX_PERF(max);
830 
831 	if (cpu_data->epp_policy == cpu_data->policy)
832 		goto skip_epp;
833 
834 	cpu_data->epp_policy = cpu_data->policy;
835 
836 	if (cpu_data->epp_saved >= 0) {
837 		epp = cpu_data->epp_saved;
838 		cpu_data->epp_saved = -EINVAL;
839 		goto update_epp;
840 	}
841 
842 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
843 		epp = intel_pstate_get_epp(cpu_data, value);
844 		cpu_data->epp_powersave = epp;
845 		/* If EPP read was failed, then don't try to write */
846 		if (epp < 0)
847 			goto skip_epp;
848 
849 		epp = 0;
850 	} else {
851 		/* skip setting EPP, when saved value is invalid */
852 		if (cpu_data->epp_powersave < 0)
853 			goto skip_epp;
854 
855 		/*
856 		 * No need to restore EPP when it is not zero. This
857 		 * means:
858 		 *  - Policy is not changed
859 		 *  - user has manually changed
860 		 *  - Error reading EPB
861 		 */
862 		epp = intel_pstate_get_epp(cpu_data, value);
863 		if (epp)
864 			goto skip_epp;
865 
866 		epp = cpu_data->epp_powersave;
867 	}
868 update_epp:
869 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
870 		value &= ~GENMASK_ULL(31, 24);
871 		value |= (u64)epp << 24;
872 	} else {
873 		intel_pstate_set_epb(cpu, epp);
874 	}
875 skip_epp:
876 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
877 }
878 
879 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
880 {
881 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
882 
883 	if (!hwp_active)
884 		return 0;
885 
886 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
887 
888 	return 0;
889 }
890 
891 static int intel_pstate_resume(struct cpufreq_policy *policy)
892 {
893 	if (!hwp_active)
894 		return 0;
895 
896 	mutex_lock(&intel_pstate_limits_lock);
897 
898 	all_cpu_data[policy->cpu]->epp_policy = 0;
899 	intel_pstate_hwp_set(policy->cpu);
900 
901 	mutex_unlock(&intel_pstate_limits_lock);
902 
903 	return 0;
904 }
905 
906 static void intel_pstate_update_policies(void)
907 {
908 	int cpu;
909 
910 	for_each_possible_cpu(cpu)
911 		cpufreq_update_policy(cpu);
912 }
913 
914 /************************** debugfs begin ************************/
915 static int pid_param_set(void *data, u64 val)
916 {
917 	unsigned int cpu;
918 
919 	*(u32 *)data = val;
920 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
921 	for_each_possible_cpu(cpu)
922 		if (all_cpu_data[cpu])
923 			intel_pstate_pid_reset(all_cpu_data[cpu]);
924 
925 	return 0;
926 }
927 
928 static int pid_param_get(void *data, u64 *val)
929 {
930 	*val = *(u32 *)data;
931 	return 0;
932 }
933 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
934 
935 static struct dentry *debugfs_parent;
936 
937 struct pid_param {
938 	char *name;
939 	void *value;
940 	struct dentry *dentry;
941 };
942 
943 static struct pid_param pid_files[] = {
944 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
945 	{"d_gain_pct", &pid_params.d_gain_pct, },
946 	{"i_gain_pct", &pid_params.i_gain_pct, },
947 	{"deadband", &pid_params.deadband, },
948 	{"setpoint", &pid_params.setpoint, },
949 	{"p_gain_pct", &pid_params.p_gain_pct, },
950 	{NULL, NULL, }
951 };
952 
953 static void intel_pstate_debug_expose_params(void)
954 {
955 	int i;
956 
957 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
958 	if (IS_ERR_OR_NULL(debugfs_parent))
959 		return;
960 
961 	for (i = 0; pid_files[i].name; i++) {
962 		struct dentry *dentry;
963 
964 		dentry = debugfs_create_file(pid_files[i].name, 0660,
965 					     debugfs_parent, pid_files[i].value,
966 					     &fops_pid_param);
967 		if (!IS_ERR(dentry))
968 			pid_files[i].dentry = dentry;
969 	}
970 }
971 
972 static void intel_pstate_debug_hide_params(void)
973 {
974 	int i;
975 
976 	if (IS_ERR_OR_NULL(debugfs_parent))
977 		return;
978 
979 	for (i = 0; pid_files[i].name; i++) {
980 		debugfs_remove(pid_files[i].dentry);
981 		pid_files[i].dentry = NULL;
982 	}
983 
984 	debugfs_remove(debugfs_parent);
985 	debugfs_parent = NULL;
986 }
987 
988 /************************** debugfs end ************************/
989 
990 /************************** sysfs begin ************************/
991 #define show_one(file_name, object)					\
992 	static ssize_t show_##file_name					\
993 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
994 	{								\
995 		return sprintf(buf, "%u\n", global.object);		\
996 	}
997 
998 static ssize_t intel_pstate_show_status(char *buf);
999 static int intel_pstate_update_status(const char *buf, size_t size);
1000 
1001 static ssize_t show_status(struct kobject *kobj,
1002 			   struct attribute *attr, char *buf)
1003 {
1004 	ssize_t ret;
1005 
1006 	mutex_lock(&intel_pstate_driver_lock);
1007 	ret = intel_pstate_show_status(buf);
1008 	mutex_unlock(&intel_pstate_driver_lock);
1009 
1010 	return ret;
1011 }
1012 
1013 static ssize_t store_status(struct kobject *a, struct attribute *b,
1014 			    const char *buf, size_t count)
1015 {
1016 	char *p = memchr(buf, '\n', count);
1017 	int ret;
1018 
1019 	mutex_lock(&intel_pstate_driver_lock);
1020 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1021 	mutex_unlock(&intel_pstate_driver_lock);
1022 
1023 	return ret < 0 ? ret : count;
1024 }
1025 
1026 static ssize_t show_turbo_pct(struct kobject *kobj,
1027 				struct attribute *attr, char *buf)
1028 {
1029 	struct cpudata *cpu;
1030 	int total, no_turbo, turbo_pct;
1031 	uint32_t turbo_fp;
1032 
1033 	mutex_lock(&intel_pstate_driver_lock);
1034 
1035 	if (!intel_pstate_driver) {
1036 		mutex_unlock(&intel_pstate_driver_lock);
1037 		return -EAGAIN;
1038 	}
1039 
1040 	cpu = all_cpu_data[0];
1041 
1042 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1043 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1044 	turbo_fp = div_fp(no_turbo, total);
1045 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1046 
1047 	mutex_unlock(&intel_pstate_driver_lock);
1048 
1049 	return sprintf(buf, "%u\n", turbo_pct);
1050 }
1051 
1052 static ssize_t show_num_pstates(struct kobject *kobj,
1053 				struct attribute *attr, char *buf)
1054 {
1055 	struct cpudata *cpu;
1056 	int total;
1057 
1058 	mutex_lock(&intel_pstate_driver_lock);
1059 
1060 	if (!intel_pstate_driver) {
1061 		mutex_unlock(&intel_pstate_driver_lock);
1062 		return -EAGAIN;
1063 	}
1064 
1065 	cpu = all_cpu_data[0];
1066 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1067 
1068 	mutex_unlock(&intel_pstate_driver_lock);
1069 
1070 	return sprintf(buf, "%u\n", total);
1071 }
1072 
1073 static ssize_t show_no_turbo(struct kobject *kobj,
1074 			     struct attribute *attr, char *buf)
1075 {
1076 	ssize_t ret;
1077 
1078 	mutex_lock(&intel_pstate_driver_lock);
1079 
1080 	if (!intel_pstate_driver) {
1081 		mutex_unlock(&intel_pstate_driver_lock);
1082 		return -EAGAIN;
1083 	}
1084 
1085 	update_turbo_state();
1086 	if (global.turbo_disabled)
1087 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1088 	else
1089 		ret = sprintf(buf, "%u\n", global.no_turbo);
1090 
1091 	mutex_unlock(&intel_pstate_driver_lock);
1092 
1093 	return ret;
1094 }
1095 
1096 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1097 			      const char *buf, size_t count)
1098 {
1099 	unsigned int input;
1100 	int ret;
1101 
1102 	ret = sscanf(buf, "%u", &input);
1103 	if (ret != 1)
1104 		return -EINVAL;
1105 
1106 	mutex_lock(&intel_pstate_driver_lock);
1107 
1108 	if (!intel_pstate_driver) {
1109 		mutex_unlock(&intel_pstate_driver_lock);
1110 		return -EAGAIN;
1111 	}
1112 
1113 	mutex_lock(&intel_pstate_limits_lock);
1114 
1115 	update_turbo_state();
1116 	if (global.turbo_disabled) {
1117 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1118 		mutex_unlock(&intel_pstate_limits_lock);
1119 		mutex_unlock(&intel_pstate_driver_lock);
1120 		return -EPERM;
1121 	}
1122 
1123 	global.no_turbo = clamp_t(int, input, 0, 1);
1124 
1125 	if (global.no_turbo) {
1126 		struct cpudata *cpu = all_cpu_data[0];
1127 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1128 
1129 		/* Squash the global minimum into the permitted range. */
1130 		if (global.min_perf_pct > pct)
1131 			global.min_perf_pct = pct;
1132 	}
1133 
1134 	mutex_unlock(&intel_pstate_limits_lock);
1135 
1136 	intel_pstate_update_policies();
1137 
1138 	mutex_unlock(&intel_pstate_driver_lock);
1139 
1140 	return count;
1141 }
1142 
1143 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1144 				  const char *buf, size_t count)
1145 {
1146 	unsigned int input;
1147 	int ret;
1148 
1149 	ret = sscanf(buf, "%u", &input);
1150 	if (ret != 1)
1151 		return -EINVAL;
1152 
1153 	mutex_lock(&intel_pstate_driver_lock);
1154 
1155 	if (!intel_pstate_driver) {
1156 		mutex_unlock(&intel_pstate_driver_lock);
1157 		return -EAGAIN;
1158 	}
1159 
1160 	mutex_lock(&intel_pstate_limits_lock);
1161 
1162 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1163 
1164 	mutex_unlock(&intel_pstate_limits_lock);
1165 
1166 	intel_pstate_update_policies();
1167 
1168 	mutex_unlock(&intel_pstate_driver_lock);
1169 
1170 	return count;
1171 }
1172 
1173 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1174 				  const char *buf, size_t count)
1175 {
1176 	unsigned int input;
1177 	int ret;
1178 
1179 	ret = sscanf(buf, "%u", &input);
1180 	if (ret != 1)
1181 		return -EINVAL;
1182 
1183 	mutex_lock(&intel_pstate_driver_lock);
1184 
1185 	if (!intel_pstate_driver) {
1186 		mutex_unlock(&intel_pstate_driver_lock);
1187 		return -EAGAIN;
1188 	}
1189 
1190 	mutex_lock(&intel_pstate_limits_lock);
1191 
1192 	global.min_perf_pct = clamp_t(int, input,
1193 				      min_perf_pct_min(), global.max_perf_pct);
1194 
1195 	mutex_unlock(&intel_pstate_limits_lock);
1196 
1197 	intel_pstate_update_policies();
1198 
1199 	mutex_unlock(&intel_pstate_driver_lock);
1200 
1201 	return count;
1202 }
1203 
1204 show_one(max_perf_pct, max_perf_pct);
1205 show_one(min_perf_pct, min_perf_pct);
1206 
1207 define_one_global_rw(status);
1208 define_one_global_rw(no_turbo);
1209 define_one_global_rw(max_perf_pct);
1210 define_one_global_rw(min_perf_pct);
1211 define_one_global_ro(turbo_pct);
1212 define_one_global_ro(num_pstates);
1213 
1214 static struct attribute *intel_pstate_attributes[] = {
1215 	&status.attr,
1216 	&no_turbo.attr,
1217 	&turbo_pct.attr,
1218 	&num_pstates.attr,
1219 	NULL
1220 };
1221 
1222 static const struct attribute_group intel_pstate_attr_group = {
1223 	.attrs = intel_pstate_attributes,
1224 };
1225 
1226 static void __init intel_pstate_sysfs_expose_params(void)
1227 {
1228 	struct kobject *intel_pstate_kobject;
1229 	int rc;
1230 
1231 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1232 						&cpu_subsys.dev_root->kobj);
1233 	if (WARN_ON(!intel_pstate_kobject))
1234 		return;
1235 
1236 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1237 	if (WARN_ON(rc))
1238 		return;
1239 
1240 	/*
1241 	 * If per cpu limits are enforced there are no global limits, so
1242 	 * return without creating max/min_perf_pct attributes
1243 	 */
1244 	if (per_cpu_limits)
1245 		return;
1246 
1247 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1248 	WARN_ON(rc);
1249 
1250 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1251 	WARN_ON(rc);
1252 
1253 }
1254 /************************** sysfs end ************************/
1255 
1256 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1257 {
1258 	/* First disable HWP notification interrupt as we don't process them */
1259 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1260 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1261 
1262 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1263 	cpudata->epp_policy = 0;
1264 	if (cpudata->epp_default == -EINVAL)
1265 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1266 }
1267 
1268 #define MSR_IA32_POWER_CTL_BIT_EE	19
1269 
1270 /* Disable energy efficiency optimization */
1271 static void intel_pstate_disable_ee(int cpu)
1272 {
1273 	u64 power_ctl;
1274 	int ret;
1275 
1276 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1277 	if (ret)
1278 		return;
1279 
1280 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1281 		pr_info("Disabling energy efficiency optimization\n");
1282 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1283 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1284 	}
1285 }
1286 
1287 static int atom_get_min_pstate(void)
1288 {
1289 	u64 value;
1290 
1291 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1292 	return (value >> 8) & 0x7F;
1293 }
1294 
1295 static int atom_get_max_pstate(void)
1296 {
1297 	u64 value;
1298 
1299 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1300 	return (value >> 16) & 0x7F;
1301 }
1302 
1303 static int atom_get_turbo_pstate(void)
1304 {
1305 	u64 value;
1306 
1307 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1308 	return value & 0x7F;
1309 }
1310 
1311 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1312 {
1313 	u64 val;
1314 	int32_t vid_fp;
1315 	u32 vid;
1316 
1317 	val = (u64)pstate << 8;
1318 	if (global.no_turbo && !global.turbo_disabled)
1319 		val |= (u64)1 << 32;
1320 
1321 	vid_fp = cpudata->vid.min + mul_fp(
1322 		int_tofp(pstate - cpudata->pstate.min_pstate),
1323 		cpudata->vid.ratio);
1324 
1325 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1326 	vid = ceiling_fp(vid_fp);
1327 
1328 	if (pstate > cpudata->pstate.max_pstate)
1329 		vid = cpudata->vid.turbo;
1330 
1331 	return val | vid;
1332 }
1333 
1334 static int silvermont_get_scaling(void)
1335 {
1336 	u64 value;
1337 	int i;
1338 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1339 	static int silvermont_freq_table[] = {
1340 		83300, 100000, 133300, 116700, 80000};
1341 
1342 	rdmsrl(MSR_FSB_FREQ, value);
1343 	i = value & 0x7;
1344 	WARN_ON(i > 4);
1345 
1346 	return silvermont_freq_table[i];
1347 }
1348 
1349 static int airmont_get_scaling(void)
1350 {
1351 	u64 value;
1352 	int i;
1353 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1354 	static int airmont_freq_table[] = {
1355 		83300, 100000, 133300, 116700, 80000,
1356 		93300, 90000, 88900, 87500};
1357 
1358 	rdmsrl(MSR_FSB_FREQ, value);
1359 	i = value & 0xF;
1360 	WARN_ON(i > 8);
1361 
1362 	return airmont_freq_table[i];
1363 }
1364 
1365 static void atom_get_vid(struct cpudata *cpudata)
1366 {
1367 	u64 value;
1368 
1369 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1370 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1371 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1372 	cpudata->vid.ratio = div_fp(
1373 		cpudata->vid.max - cpudata->vid.min,
1374 		int_tofp(cpudata->pstate.max_pstate -
1375 			cpudata->pstate.min_pstate));
1376 
1377 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1378 	cpudata->vid.turbo = value & 0x7f;
1379 }
1380 
1381 static int core_get_min_pstate(void)
1382 {
1383 	u64 value;
1384 
1385 	rdmsrl(MSR_PLATFORM_INFO, value);
1386 	return (value >> 40) & 0xFF;
1387 }
1388 
1389 static int core_get_max_pstate_physical(void)
1390 {
1391 	u64 value;
1392 
1393 	rdmsrl(MSR_PLATFORM_INFO, value);
1394 	return (value >> 8) & 0xFF;
1395 }
1396 
1397 static int core_get_tdp_ratio(u64 plat_info)
1398 {
1399 	/* Check how many TDP levels present */
1400 	if (plat_info & 0x600000000) {
1401 		u64 tdp_ctrl;
1402 		u64 tdp_ratio;
1403 		int tdp_msr;
1404 		int err;
1405 
1406 		/* Get the TDP level (0, 1, 2) to get ratios */
1407 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1408 		if (err)
1409 			return err;
1410 
1411 		/* TDP MSR are continuous starting at 0x648 */
1412 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1413 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1414 		if (err)
1415 			return err;
1416 
1417 		/* For level 1 and 2, bits[23:16] contain the ratio */
1418 		if (tdp_ctrl & 0x03)
1419 			tdp_ratio >>= 16;
1420 
1421 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1422 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1423 
1424 		return (int)tdp_ratio;
1425 	}
1426 
1427 	return -ENXIO;
1428 }
1429 
1430 static int core_get_max_pstate(void)
1431 {
1432 	u64 tar;
1433 	u64 plat_info;
1434 	int max_pstate;
1435 	int tdp_ratio;
1436 	int err;
1437 
1438 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1439 	max_pstate = (plat_info >> 8) & 0xFF;
1440 
1441 	tdp_ratio = core_get_tdp_ratio(plat_info);
1442 	if (tdp_ratio <= 0)
1443 		return max_pstate;
1444 
1445 	if (hwp_active) {
1446 		/* Turbo activation ratio is not used on HWP platforms */
1447 		return tdp_ratio;
1448 	}
1449 
1450 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1451 	if (!err) {
1452 		int tar_levels;
1453 
1454 		/* Do some sanity checking for safety */
1455 		tar_levels = tar & 0xff;
1456 		if (tdp_ratio - 1 == tar_levels) {
1457 			max_pstate = tar_levels;
1458 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1459 		}
1460 	}
1461 
1462 	return max_pstate;
1463 }
1464 
1465 static int core_get_turbo_pstate(void)
1466 {
1467 	u64 value;
1468 	int nont, ret;
1469 
1470 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1471 	nont = core_get_max_pstate();
1472 	ret = (value) & 255;
1473 	if (ret <= nont)
1474 		ret = nont;
1475 	return ret;
1476 }
1477 
1478 static inline int core_get_scaling(void)
1479 {
1480 	return 100000;
1481 }
1482 
1483 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1484 {
1485 	u64 val;
1486 
1487 	val = (u64)pstate << 8;
1488 	if (global.no_turbo && !global.turbo_disabled)
1489 		val |= (u64)1 << 32;
1490 
1491 	return val;
1492 }
1493 
1494 static int knl_get_aperf_mperf_shift(void)
1495 {
1496 	return 10;
1497 }
1498 
1499 static int knl_get_turbo_pstate(void)
1500 {
1501 	u64 value;
1502 	int nont, ret;
1503 
1504 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1505 	nont = core_get_max_pstate();
1506 	ret = (((value) >> 8) & 0xFF);
1507 	if (ret <= nont)
1508 		ret = nont;
1509 	return ret;
1510 }
1511 
1512 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1513 {
1514 	return global.no_turbo || global.turbo_disabled ?
1515 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1516 }
1517 
1518 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1519 {
1520 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1521 	cpu->pstate.current_pstate = pstate;
1522 	/*
1523 	 * Generally, there is no guarantee that this code will always run on
1524 	 * the CPU being updated, so force the register update to run on the
1525 	 * right CPU.
1526 	 */
1527 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1528 		      pstate_funcs.get_val(cpu, pstate));
1529 }
1530 
1531 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1532 {
1533 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1534 }
1535 
1536 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1537 {
1538 	int pstate;
1539 
1540 	update_turbo_state();
1541 	pstate = intel_pstate_get_base_pstate(cpu);
1542 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1543 	intel_pstate_set_pstate(cpu, pstate);
1544 }
1545 
1546 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1547 {
1548 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1549 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1550 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1551 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1552 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1553 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1554 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1555 
1556 	if (pstate_funcs.get_aperf_mperf_shift)
1557 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1558 
1559 	if (pstate_funcs.get_vid)
1560 		pstate_funcs.get_vid(cpu);
1561 
1562 	intel_pstate_set_min_pstate(cpu);
1563 }
1564 
1565 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1566 {
1567 	struct sample *sample = &cpu->sample;
1568 
1569 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1570 }
1571 
1572 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1573 {
1574 	u64 aperf, mperf;
1575 	unsigned long flags;
1576 	u64 tsc;
1577 
1578 	local_irq_save(flags);
1579 	rdmsrl(MSR_IA32_APERF, aperf);
1580 	rdmsrl(MSR_IA32_MPERF, mperf);
1581 	tsc = rdtsc();
1582 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1583 		local_irq_restore(flags);
1584 		return false;
1585 	}
1586 	local_irq_restore(flags);
1587 
1588 	cpu->last_sample_time = cpu->sample.time;
1589 	cpu->sample.time = time;
1590 	cpu->sample.aperf = aperf;
1591 	cpu->sample.mperf = mperf;
1592 	cpu->sample.tsc =  tsc;
1593 	cpu->sample.aperf -= cpu->prev_aperf;
1594 	cpu->sample.mperf -= cpu->prev_mperf;
1595 	cpu->sample.tsc -= cpu->prev_tsc;
1596 
1597 	cpu->prev_aperf = aperf;
1598 	cpu->prev_mperf = mperf;
1599 	cpu->prev_tsc = tsc;
1600 	/*
1601 	 * First time this function is invoked in a given cycle, all of the
1602 	 * previous sample data fields are equal to zero or stale and they must
1603 	 * be populated with meaningful numbers for things to work, so assume
1604 	 * that sample.time will always be reset before setting the utilization
1605 	 * update hook and make the caller skip the sample then.
1606 	 */
1607 	if (cpu->last_sample_time) {
1608 		intel_pstate_calc_avg_perf(cpu);
1609 		return true;
1610 	}
1611 	return false;
1612 }
1613 
1614 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1615 {
1616 	return mul_ext_fp(cpu->sample.core_avg_perf,
1617 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1618 }
1619 
1620 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1621 {
1622 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1623 			  cpu->sample.core_avg_perf);
1624 }
1625 
1626 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1627 {
1628 	struct sample *sample = &cpu->sample;
1629 	int32_t busy_frac, boost;
1630 	int target, avg_pstate;
1631 
1632 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1633 			   sample->tsc);
1634 
1635 	boost = cpu->iowait_boost;
1636 	cpu->iowait_boost >>= 1;
1637 
1638 	if (busy_frac < boost)
1639 		busy_frac = boost;
1640 
1641 	sample->busy_scaled = busy_frac * 100;
1642 
1643 	target = global.no_turbo || global.turbo_disabled ?
1644 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1645 	target += target >> 2;
1646 	target = mul_fp(target, busy_frac);
1647 	if (target < cpu->pstate.min_pstate)
1648 		target = cpu->pstate.min_pstate;
1649 
1650 	/*
1651 	 * If the average P-state during the previous cycle was higher than the
1652 	 * current target, add 50% of the difference to the target to reduce
1653 	 * possible performance oscillations and offset possible performance
1654 	 * loss related to moving the workload from one CPU to another within
1655 	 * a package/module.
1656 	 */
1657 	avg_pstate = get_avg_pstate(cpu);
1658 	if (avg_pstate > target)
1659 		target += (avg_pstate - target) >> 1;
1660 
1661 	return target;
1662 }
1663 
1664 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1665 {
1666 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1667 	u64 duration_ns;
1668 
1669 	/*
1670 	 * perf_scaled is the ratio of the average P-state during the last
1671 	 * sampling period to the P-state requested last time (in percent).
1672 	 *
1673 	 * That measures the system's response to the previous P-state
1674 	 * selection.
1675 	 */
1676 	max_pstate = cpu->pstate.max_pstate_physical;
1677 	current_pstate = cpu->pstate.current_pstate;
1678 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1679 			       div_fp(100 * max_pstate, current_pstate));
1680 
1681 	/*
1682 	 * Since our utilization update callback will not run unless we are
1683 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1684 	 * than our sample interval.  If it is, then we were idle for a long
1685 	 * enough period of time to adjust our performance metric.
1686 	 */
1687 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1688 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1689 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1690 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1691 	} else {
1692 		sample_ratio = div_fp(100 * (cpu->sample.mperf << cpu->aperf_mperf_shift),
1693 				      cpu->sample.tsc);
1694 		if (sample_ratio < int_tofp(1))
1695 			perf_scaled = 0;
1696 	}
1697 
1698 	cpu->sample.busy_scaled = perf_scaled;
1699 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1700 }
1701 
1702 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1703 {
1704 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1705 	int min_pstate;
1706 
1707 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1708 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1709 	return clamp_t(int, pstate, min_pstate, max_pstate);
1710 }
1711 
1712 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1713 {
1714 	if (pstate == cpu->pstate.current_pstate)
1715 		return;
1716 
1717 	cpu->pstate.current_pstate = pstate;
1718 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1719 }
1720 
1721 static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1722 {
1723 	int from = cpu->pstate.current_pstate;
1724 	struct sample *sample;
1725 
1726 	update_turbo_state();
1727 
1728 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1729 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1730 	intel_pstate_update_pstate(cpu, target_pstate);
1731 
1732 	sample = &cpu->sample;
1733 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1734 		fp_toint(sample->busy_scaled),
1735 		from,
1736 		cpu->pstate.current_pstate,
1737 		sample->mperf,
1738 		sample->aperf,
1739 		sample->tsc,
1740 		get_avg_frequency(cpu),
1741 		fp_toint(cpu->iowait_boost * 100));
1742 }
1743 
1744 static void intel_pstate_update_util_pid(struct update_util_data *data,
1745 					 u64 time, unsigned int flags)
1746 {
1747 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1748 	u64 delta_ns = time - cpu->sample.time;
1749 
1750 	if ((s64)delta_ns < pid_params.sample_rate_ns)
1751 		return;
1752 
1753 	if (intel_pstate_sample(cpu, time)) {
1754 		int target_pstate;
1755 
1756 		target_pstate = get_target_pstate_use_performance(cpu);
1757 		intel_pstate_adjust_pstate(cpu, target_pstate);
1758 	}
1759 }
1760 
1761 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1762 				     unsigned int flags)
1763 {
1764 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1765 	u64 delta_ns;
1766 
1767 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1768 		cpu->iowait_boost = int_tofp(1);
1769 	} else if (cpu->iowait_boost) {
1770 		/* Clear iowait_boost if the CPU may have been idle. */
1771 		delta_ns = time - cpu->last_update;
1772 		if (delta_ns > TICK_NSEC)
1773 			cpu->iowait_boost = 0;
1774 	}
1775 	cpu->last_update = time;
1776 	delta_ns = time - cpu->sample.time;
1777 	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1778 		return;
1779 
1780 	if (intel_pstate_sample(cpu, time)) {
1781 		int target_pstate;
1782 
1783 		target_pstate = get_target_pstate_use_cpu_load(cpu);
1784 		intel_pstate_adjust_pstate(cpu, target_pstate);
1785 	}
1786 }
1787 
1788 static struct pstate_funcs core_funcs = {
1789 	.get_max = core_get_max_pstate,
1790 	.get_max_physical = core_get_max_pstate_physical,
1791 	.get_min = core_get_min_pstate,
1792 	.get_turbo = core_get_turbo_pstate,
1793 	.get_scaling = core_get_scaling,
1794 	.get_val = core_get_val,
1795 	.update_util = intel_pstate_update_util_pid,
1796 };
1797 
1798 static const struct pstate_funcs silvermont_funcs = {
1799 	.get_max = atom_get_max_pstate,
1800 	.get_max_physical = atom_get_max_pstate,
1801 	.get_min = atom_get_min_pstate,
1802 	.get_turbo = atom_get_turbo_pstate,
1803 	.get_val = atom_get_val,
1804 	.get_scaling = silvermont_get_scaling,
1805 	.get_vid = atom_get_vid,
1806 	.update_util = intel_pstate_update_util,
1807 };
1808 
1809 static const struct pstate_funcs airmont_funcs = {
1810 	.get_max = atom_get_max_pstate,
1811 	.get_max_physical = atom_get_max_pstate,
1812 	.get_min = atom_get_min_pstate,
1813 	.get_turbo = atom_get_turbo_pstate,
1814 	.get_val = atom_get_val,
1815 	.get_scaling = airmont_get_scaling,
1816 	.get_vid = atom_get_vid,
1817 	.update_util = intel_pstate_update_util,
1818 };
1819 
1820 static const struct pstate_funcs knl_funcs = {
1821 	.get_max = core_get_max_pstate,
1822 	.get_max_physical = core_get_max_pstate_physical,
1823 	.get_min = core_get_min_pstate,
1824 	.get_turbo = knl_get_turbo_pstate,
1825 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1826 	.get_scaling = core_get_scaling,
1827 	.get_val = core_get_val,
1828 	.update_util = intel_pstate_update_util_pid,
1829 };
1830 
1831 static const struct pstate_funcs bxt_funcs = {
1832 	.get_max = core_get_max_pstate,
1833 	.get_max_physical = core_get_max_pstate_physical,
1834 	.get_min = core_get_min_pstate,
1835 	.get_turbo = core_get_turbo_pstate,
1836 	.get_scaling = core_get_scaling,
1837 	.get_val = core_get_val,
1838 	.update_util = intel_pstate_update_util,
1839 };
1840 
1841 #define ICPU(model, policy) \
1842 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1843 			(unsigned long)&policy }
1844 
1845 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1846 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1847 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1848 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1849 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1850 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1851 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1852 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1853 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1854 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1855 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1856 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1857 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1858 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1859 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1860 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1861 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1862 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1863 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1864 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1865 	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1866 	{}
1867 };
1868 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1869 
1870 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1871 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1872 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1873 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1874 	{}
1875 };
1876 
1877 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1878 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1879 	{}
1880 };
1881 
1882 static bool pid_in_use(void);
1883 
1884 static int intel_pstate_init_cpu(unsigned int cpunum)
1885 {
1886 	struct cpudata *cpu;
1887 
1888 	cpu = all_cpu_data[cpunum];
1889 
1890 	if (!cpu) {
1891 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1892 		if (!cpu)
1893 			return -ENOMEM;
1894 
1895 		all_cpu_data[cpunum] = cpu;
1896 
1897 		cpu->epp_default = -EINVAL;
1898 		cpu->epp_powersave = -EINVAL;
1899 		cpu->epp_saved = -EINVAL;
1900 	}
1901 
1902 	cpu = all_cpu_data[cpunum];
1903 
1904 	cpu->cpu = cpunum;
1905 
1906 	if (hwp_active) {
1907 		const struct x86_cpu_id *id;
1908 
1909 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1910 		if (id)
1911 			intel_pstate_disable_ee(cpunum);
1912 
1913 		intel_pstate_hwp_enable(cpu);
1914 	} else if (pid_in_use()) {
1915 		intel_pstate_pid_reset(cpu);
1916 	}
1917 
1918 	intel_pstate_get_cpu_pstates(cpu);
1919 
1920 	pr_debug("controlling: cpu %d\n", cpunum);
1921 
1922 	return 0;
1923 }
1924 
1925 static unsigned int intel_pstate_get(unsigned int cpu_num)
1926 {
1927 	struct cpudata *cpu = all_cpu_data[cpu_num];
1928 
1929 	return cpu ? get_avg_frequency(cpu) : 0;
1930 }
1931 
1932 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1933 {
1934 	struct cpudata *cpu = all_cpu_data[cpu_num];
1935 
1936 	if (hwp_active)
1937 		return;
1938 
1939 	if (cpu->update_util_set)
1940 		return;
1941 
1942 	/* Prevent intel_pstate_update_util() from using stale data. */
1943 	cpu->sample.time = 0;
1944 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1945 				     pstate_funcs.update_util);
1946 	cpu->update_util_set = true;
1947 }
1948 
1949 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1950 {
1951 	struct cpudata *cpu_data = all_cpu_data[cpu];
1952 
1953 	if (!cpu_data->update_util_set)
1954 		return;
1955 
1956 	cpufreq_remove_update_util_hook(cpu);
1957 	cpu_data->update_util_set = false;
1958 	synchronize_sched();
1959 }
1960 
1961 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1962 {
1963 	return global.turbo_disabled || global.no_turbo ?
1964 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1965 }
1966 
1967 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1968 					    struct cpudata *cpu)
1969 {
1970 	int max_freq = intel_pstate_get_max_freq(cpu);
1971 	int32_t max_policy_perf, min_policy_perf;
1972 	int max_state, turbo_max;
1973 
1974 	/*
1975 	 * HWP needs some special consideration, because on BDX the
1976 	 * HWP_REQUEST uses abstract value to represent performance
1977 	 * rather than pure ratios.
1978 	 */
1979 	if (hwp_active) {
1980 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1981 	} else {
1982 		max_state = intel_pstate_get_base_pstate(cpu);
1983 		turbo_max = cpu->pstate.turbo_pstate;
1984 	}
1985 
1986 	max_policy_perf = max_state * policy->max / max_freq;
1987 	if (policy->max == policy->min) {
1988 		min_policy_perf = max_policy_perf;
1989 	} else {
1990 		min_policy_perf = max_state * policy->min / max_freq;
1991 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1992 					  0, max_policy_perf);
1993 	}
1994 
1995 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1996 		 policy->cpu, max_state,
1997 		 min_policy_perf, max_policy_perf);
1998 
1999 	/* Normalize user input to [min_perf, max_perf] */
2000 	if (per_cpu_limits) {
2001 		cpu->min_perf_ratio = min_policy_perf;
2002 		cpu->max_perf_ratio = max_policy_perf;
2003 	} else {
2004 		int32_t global_min, global_max;
2005 
2006 		/* Global limits are in percent of the maximum turbo P-state. */
2007 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2008 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2009 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2010 
2011 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2012 			 global_min, global_max);
2013 
2014 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2015 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2016 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2017 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2018 
2019 		/* Make sure min_perf <= max_perf */
2020 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2021 					  cpu->max_perf_ratio);
2022 
2023 	}
2024 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2025 		 cpu->max_perf_ratio,
2026 		 cpu->min_perf_ratio);
2027 }
2028 
2029 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2030 {
2031 	struct cpudata *cpu;
2032 
2033 	if (!policy->cpuinfo.max_freq)
2034 		return -ENODEV;
2035 
2036 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2037 		 policy->cpuinfo.max_freq, policy->max);
2038 
2039 	cpu = all_cpu_data[policy->cpu];
2040 	cpu->policy = policy->policy;
2041 
2042 	mutex_lock(&intel_pstate_limits_lock);
2043 
2044 	intel_pstate_update_perf_limits(policy, cpu);
2045 
2046 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2047 		/*
2048 		 * NOHZ_FULL CPUs need this as the governor callback may not
2049 		 * be invoked on them.
2050 		 */
2051 		intel_pstate_clear_update_util_hook(policy->cpu);
2052 		intel_pstate_max_within_limits(cpu);
2053 	} else {
2054 		intel_pstate_set_update_util_hook(policy->cpu);
2055 	}
2056 
2057 	if (hwp_active)
2058 		intel_pstate_hwp_set(policy->cpu);
2059 
2060 	mutex_unlock(&intel_pstate_limits_lock);
2061 
2062 	return 0;
2063 }
2064 
2065 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2066 					 struct cpudata *cpu)
2067 {
2068 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2069 	    policy->max < policy->cpuinfo.max_freq &&
2070 	    policy->max > cpu->pstate.max_freq) {
2071 		pr_debug("policy->max > max non turbo frequency\n");
2072 		policy->max = policy->cpuinfo.max_freq;
2073 	}
2074 }
2075 
2076 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2077 {
2078 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2079 
2080 	update_turbo_state();
2081 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2082 				     intel_pstate_get_max_freq(cpu));
2083 
2084 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2085 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2086 		return -EINVAL;
2087 
2088 	intel_pstate_adjust_policy_max(policy, cpu);
2089 
2090 	return 0;
2091 }
2092 
2093 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2094 {
2095 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2096 }
2097 
2098 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2099 {
2100 	pr_debug("CPU %d exiting\n", policy->cpu);
2101 
2102 	intel_pstate_clear_update_util_hook(policy->cpu);
2103 	if (hwp_active)
2104 		intel_pstate_hwp_save_state(policy);
2105 	else
2106 		intel_cpufreq_stop_cpu(policy);
2107 }
2108 
2109 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2110 {
2111 	intel_pstate_exit_perf_limits(policy);
2112 
2113 	policy->fast_switch_possible = false;
2114 
2115 	return 0;
2116 }
2117 
2118 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2119 {
2120 	struct cpudata *cpu;
2121 	int rc;
2122 
2123 	rc = intel_pstate_init_cpu(policy->cpu);
2124 	if (rc)
2125 		return rc;
2126 
2127 	cpu = all_cpu_data[policy->cpu];
2128 
2129 	cpu->max_perf_ratio = 0xFF;
2130 	cpu->min_perf_ratio = 0;
2131 
2132 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2133 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2134 
2135 	/* cpuinfo and default policy values */
2136 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2137 	update_turbo_state();
2138 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2139 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2140 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2141 
2142 	intel_pstate_init_acpi_perf_limits(policy);
2143 	cpumask_set_cpu(policy->cpu, policy->cpus);
2144 
2145 	policy->fast_switch_possible = true;
2146 
2147 	return 0;
2148 }
2149 
2150 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2151 {
2152 	int ret = __intel_pstate_cpu_init(policy);
2153 
2154 	if (ret)
2155 		return ret;
2156 
2157 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2158 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2159 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2160 	else
2161 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2162 
2163 	return 0;
2164 }
2165 
2166 static struct cpufreq_driver intel_pstate = {
2167 	.flags		= CPUFREQ_CONST_LOOPS,
2168 	.verify		= intel_pstate_verify_policy,
2169 	.setpolicy	= intel_pstate_set_policy,
2170 	.suspend	= intel_pstate_hwp_save_state,
2171 	.resume		= intel_pstate_resume,
2172 	.get		= intel_pstate_get,
2173 	.init		= intel_pstate_cpu_init,
2174 	.exit		= intel_pstate_cpu_exit,
2175 	.stop_cpu	= intel_pstate_stop_cpu,
2176 	.name		= "intel_pstate",
2177 };
2178 
2179 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2180 {
2181 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2182 
2183 	update_turbo_state();
2184 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2185 				     intel_pstate_get_max_freq(cpu));
2186 
2187 	intel_pstate_adjust_policy_max(policy, cpu);
2188 
2189 	intel_pstate_update_perf_limits(policy, cpu);
2190 
2191 	return 0;
2192 }
2193 
2194 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2195 				unsigned int target_freq,
2196 				unsigned int relation)
2197 {
2198 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2199 	struct cpufreq_freqs freqs;
2200 	int target_pstate;
2201 
2202 	update_turbo_state();
2203 
2204 	freqs.old = policy->cur;
2205 	freqs.new = target_freq;
2206 
2207 	cpufreq_freq_transition_begin(policy, &freqs);
2208 	switch (relation) {
2209 	case CPUFREQ_RELATION_L:
2210 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2211 		break;
2212 	case CPUFREQ_RELATION_H:
2213 		target_pstate = freqs.new / cpu->pstate.scaling;
2214 		break;
2215 	default:
2216 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2217 		break;
2218 	}
2219 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2220 	if (target_pstate != cpu->pstate.current_pstate) {
2221 		cpu->pstate.current_pstate = target_pstate;
2222 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2223 			      pstate_funcs.get_val(cpu, target_pstate));
2224 	}
2225 	freqs.new = target_pstate * cpu->pstate.scaling;
2226 	cpufreq_freq_transition_end(policy, &freqs, false);
2227 
2228 	return 0;
2229 }
2230 
2231 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2232 					      unsigned int target_freq)
2233 {
2234 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2235 	int target_pstate;
2236 
2237 	update_turbo_state();
2238 
2239 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2240 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2241 	intel_pstate_update_pstate(cpu, target_pstate);
2242 	return target_pstate * cpu->pstate.scaling;
2243 }
2244 
2245 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2246 {
2247 	int ret = __intel_pstate_cpu_init(policy);
2248 
2249 	if (ret)
2250 		return ret;
2251 
2252 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2253 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2254 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2255 	policy->cur = policy->cpuinfo.min_freq;
2256 
2257 	return 0;
2258 }
2259 
2260 static struct cpufreq_driver intel_cpufreq = {
2261 	.flags		= CPUFREQ_CONST_LOOPS,
2262 	.verify		= intel_cpufreq_verify_policy,
2263 	.target		= intel_cpufreq_target,
2264 	.fast_switch	= intel_cpufreq_fast_switch,
2265 	.init		= intel_cpufreq_cpu_init,
2266 	.exit		= intel_pstate_cpu_exit,
2267 	.stop_cpu	= intel_cpufreq_stop_cpu,
2268 	.name		= "intel_cpufreq",
2269 };
2270 
2271 static struct cpufreq_driver *default_driver = &intel_pstate;
2272 
2273 static bool pid_in_use(void)
2274 {
2275 	return intel_pstate_driver == &intel_pstate &&
2276 		pstate_funcs.update_util == intel_pstate_update_util_pid;
2277 }
2278 
2279 static void intel_pstate_driver_cleanup(void)
2280 {
2281 	unsigned int cpu;
2282 
2283 	get_online_cpus();
2284 	for_each_online_cpu(cpu) {
2285 		if (all_cpu_data[cpu]) {
2286 			if (intel_pstate_driver == &intel_pstate)
2287 				intel_pstate_clear_update_util_hook(cpu);
2288 
2289 			kfree(all_cpu_data[cpu]);
2290 			all_cpu_data[cpu] = NULL;
2291 		}
2292 	}
2293 	put_online_cpus();
2294 	intel_pstate_driver = NULL;
2295 }
2296 
2297 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2298 {
2299 	int ret;
2300 
2301 	memset(&global, 0, sizeof(global));
2302 	global.max_perf_pct = 100;
2303 
2304 	intel_pstate_driver = driver;
2305 	ret = cpufreq_register_driver(intel_pstate_driver);
2306 	if (ret) {
2307 		intel_pstate_driver_cleanup();
2308 		return ret;
2309 	}
2310 
2311 	global.min_perf_pct = min_perf_pct_min();
2312 
2313 	if (pid_in_use())
2314 		intel_pstate_debug_expose_params();
2315 
2316 	return 0;
2317 }
2318 
2319 static int intel_pstate_unregister_driver(void)
2320 {
2321 	if (hwp_active)
2322 		return -EBUSY;
2323 
2324 	if (pid_in_use())
2325 		intel_pstate_debug_hide_params();
2326 
2327 	cpufreq_unregister_driver(intel_pstate_driver);
2328 	intel_pstate_driver_cleanup();
2329 
2330 	return 0;
2331 }
2332 
2333 static ssize_t intel_pstate_show_status(char *buf)
2334 {
2335 	if (!intel_pstate_driver)
2336 		return sprintf(buf, "off\n");
2337 
2338 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2339 					"active" : "passive");
2340 }
2341 
2342 static int intel_pstate_update_status(const char *buf, size_t size)
2343 {
2344 	int ret;
2345 
2346 	if (size == 3 && !strncmp(buf, "off", size))
2347 		return intel_pstate_driver ?
2348 			intel_pstate_unregister_driver() : -EINVAL;
2349 
2350 	if (size == 6 && !strncmp(buf, "active", size)) {
2351 		if (intel_pstate_driver) {
2352 			if (intel_pstate_driver == &intel_pstate)
2353 				return 0;
2354 
2355 			ret = intel_pstate_unregister_driver();
2356 			if (ret)
2357 				return ret;
2358 		}
2359 
2360 		return intel_pstate_register_driver(&intel_pstate);
2361 	}
2362 
2363 	if (size == 7 && !strncmp(buf, "passive", size)) {
2364 		if (intel_pstate_driver) {
2365 			if (intel_pstate_driver == &intel_cpufreq)
2366 				return 0;
2367 
2368 			ret = intel_pstate_unregister_driver();
2369 			if (ret)
2370 				return ret;
2371 		}
2372 
2373 		return intel_pstate_register_driver(&intel_cpufreq);
2374 	}
2375 
2376 	return -EINVAL;
2377 }
2378 
2379 static int no_load __initdata;
2380 static int no_hwp __initdata;
2381 static int hwp_only __initdata;
2382 static unsigned int force_load __initdata;
2383 
2384 static int __init intel_pstate_msrs_not_valid(void)
2385 {
2386 	if (!pstate_funcs.get_max() ||
2387 	    !pstate_funcs.get_min() ||
2388 	    !pstate_funcs.get_turbo())
2389 		return -ENODEV;
2390 
2391 	return 0;
2392 }
2393 
2394 #ifdef CONFIG_ACPI
2395 static void intel_pstate_use_acpi_profile(void)
2396 {
2397 	switch (acpi_gbl_FADT.preferred_profile) {
2398 	case PM_MOBILE:
2399 	case PM_TABLET:
2400 	case PM_APPLIANCE_PC:
2401 	case PM_DESKTOP:
2402 	case PM_WORKSTATION:
2403 		pstate_funcs.update_util = intel_pstate_update_util;
2404 	}
2405 }
2406 #else
2407 static void intel_pstate_use_acpi_profile(void)
2408 {
2409 }
2410 #endif
2411 
2412 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2413 {
2414 	pstate_funcs.get_max   = funcs->get_max;
2415 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2416 	pstate_funcs.get_min   = funcs->get_min;
2417 	pstate_funcs.get_turbo = funcs->get_turbo;
2418 	pstate_funcs.get_scaling = funcs->get_scaling;
2419 	pstate_funcs.get_val   = funcs->get_val;
2420 	pstate_funcs.get_vid   = funcs->get_vid;
2421 	pstate_funcs.update_util = funcs->update_util;
2422 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2423 
2424 	intel_pstate_use_acpi_profile();
2425 }
2426 
2427 #ifdef CONFIG_ACPI
2428 
2429 static bool __init intel_pstate_no_acpi_pss(void)
2430 {
2431 	int i;
2432 
2433 	for_each_possible_cpu(i) {
2434 		acpi_status status;
2435 		union acpi_object *pss;
2436 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2437 		struct acpi_processor *pr = per_cpu(processors, i);
2438 
2439 		if (!pr)
2440 			continue;
2441 
2442 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2443 		if (ACPI_FAILURE(status))
2444 			continue;
2445 
2446 		pss = buffer.pointer;
2447 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2448 			kfree(pss);
2449 			return false;
2450 		}
2451 
2452 		kfree(pss);
2453 	}
2454 
2455 	return true;
2456 }
2457 
2458 static bool __init intel_pstate_has_acpi_ppc(void)
2459 {
2460 	int i;
2461 
2462 	for_each_possible_cpu(i) {
2463 		struct acpi_processor *pr = per_cpu(processors, i);
2464 
2465 		if (!pr)
2466 			continue;
2467 		if (acpi_has_method(pr->handle, "_PPC"))
2468 			return true;
2469 	}
2470 	return false;
2471 }
2472 
2473 enum {
2474 	PSS,
2475 	PPC,
2476 };
2477 
2478 struct hw_vendor_info {
2479 	u16  valid;
2480 	char oem_id[ACPI_OEM_ID_SIZE];
2481 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2482 	int  oem_pwr_table;
2483 };
2484 
2485 /* Hardware vendor-specific info that has its own power management modes */
2486 static struct hw_vendor_info vendor_info[] __initdata = {
2487 	{1, "HP    ", "ProLiant", PSS},
2488 	{1, "ORACLE", "X4-2    ", PPC},
2489 	{1, "ORACLE", "X4-2L   ", PPC},
2490 	{1, "ORACLE", "X4-2B   ", PPC},
2491 	{1, "ORACLE", "X3-2    ", PPC},
2492 	{1, "ORACLE", "X3-2L   ", PPC},
2493 	{1, "ORACLE", "X3-2B   ", PPC},
2494 	{1, "ORACLE", "X4470M2 ", PPC},
2495 	{1, "ORACLE", "X4270M3 ", PPC},
2496 	{1, "ORACLE", "X4270M2 ", PPC},
2497 	{1, "ORACLE", "X4170M2 ", PPC},
2498 	{1, "ORACLE", "X4170 M3", PPC},
2499 	{1, "ORACLE", "X4275 M3", PPC},
2500 	{1, "ORACLE", "X6-2    ", PPC},
2501 	{1, "ORACLE", "Sudbury ", PPC},
2502 	{0, "", ""},
2503 };
2504 
2505 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2506 {
2507 	struct acpi_table_header hdr;
2508 	struct hw_vendor_info *v_info;
2509 	const struct x86_cpu_id *id;
2510 	u64 misc_pwr;
2511 
2512 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2513 	if (id) {
2514 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2515 		if ( misc_pwr & (1 << 8))
2516 			return true;
2517 	}
2518 
2519 	if (acpi_disabled ||
2520 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2521 		return false;
2522 
2523 	for (v_info = vendor_info; v_info->valid; v_info++) {
2524 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2525 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2526 						ACPI_OEM_TABLE_ID_SIZE))
2527 			switch (v_info->oem_pwr_table) {
2528 			case PSS:
2529 				return intel_pstate_no_acpi_pss();
2530 			case PPC:
2531 				return intel_pstate_has_acpi_ppc() &&
2532 					(!force_load);
2533 			}
2534 	}
2535 
2536 	return false;
2537 }
2538 
2539 static void intel_pstate_request_control_from_smm(void)
2540 {
2541 	/*
2542 	 * It may be unsafe to request P-states control from SMM if _PPC support
2543 	 * has not been enabled.
2544 	 */
2545 	if (acpi_ppc)
2546 		acpi_processor_pstate_control();
2547 }
2548 #else /* CONFIG_ACPI not enabled */
2549 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2550 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2551 static inline void intel_pstate_request_control_from_smm(void) {}
2552 #endif /* CONFIG_ACPI */
2553 
2554 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2555 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2556 	{}
2557 };
2558 
2559 static int __init intel_pstate_init(void)
2560 {
2561 	int rc;
2562 
2563 	if (no_load)
2564 		return -ENODEV;
2565 
2566 	if (x86_match_cpu(hwp_support_ids)) {
2567 		copy_cpu_funcs(&core_funcs);
2568 		if (no_hwp) {
2569 			pstate_funcs.update_util = intel_pstate_update_util;
2570 		} else {
2571 			hwp_active++;
2572 			intel_pstate.attr = hwp_cpufreq_attrs;
2573 			goto hwp_cpu_matched;
2574 		}
2575 	} else {
2576 		const struct x86_cpu_id *id;
2577 
2578 		id = x86_match_cpu(intel_pstate_cpu_ids);
2579 		if (!id)
2580 			return -ENODEV;
2581 
2582 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2583 	}
2584 
2585 	if (intel_pstate_msrs_not_valid())
2586 		return -ENODEV;
2587 
2588 hwp_cpu_matched:
2589 	/*
2590 	 * The Intel pstate driver will be ignored if the platform
2591 	 * firmware has its own power management modes.
2592 	 */
2593 	if (intel_pstate_platform_pwr_mgmt_exists())
2594 		return -ENODEV;
2595 
2596 	if (!hwp_active && hwp_only)
2597 		return -ENOTSUPP;
2598 
2599 	pr_info("Intel P-state driver initializing\n");
2600 
2601 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2602 	if (!all_cpu_data)
2603 		return -ENOMEM;
2604 
2605 	intel_pstate_request_control_from_smm();
2606 
2607 	intel_pstate_sysfs_expose_params();
2608 
2609 	mutex_lock(&intel_pstate_driver_lock);
2610 	rc = intel_pstate_register_driver(default_driver);
2611 	mutex_unlock(&intel_pstate_driver_lock);
2612 	if (rc)
2613 		return rc;
2614 
2615 	if (hwp_active)
2616 		pr_info("HWP enabled\n");
2617 
2618 	return 0;
2619 }
2620 device_initcall(intel_pstate_init);
2621 
2622 static int __init intel_pstate_setup(char *str)
2623 {
2624 	if (!str)
2625 		return -EINVAL;
2626 
2627 	if (!strcmp(str, "disable")) {
2628 		no_load = 1;
2629 	} else if (!strcmp(str, "passive")) {
2630 		pr_info("Passive mode enabled\n");
2631 		default_driver = &intel_cpufreq;
2632 		no_hwp = 1;
2633 	}
2634 	if (!strcmp(str, "no_hwp")) {
2635 		pr_info("HWP disabled\n");
2636 		no_hwp = 1;
2637 	}
2638 	if (!strcmp(str, "force"))
2639 		force_load = 1;
2640 	if (!strcmp(str, "hwp_only"))
2641 		hwp_only = 1;
2642 	if (!strcmp(str, "per_cpu_perf_limits"))
2643 		per_cpu_limits = true;
2644 
2645 #ifdef CONFIG_ACPI
2646 	if (!strcmp(str, "support_acpi_ppc"))
2647 		acpi_ppc = true;
2648 #endif
2649 
2650 	return 0;
2651 }
2652 early_param("intel_pstate", intel_pstate_setup);
2653 
2654 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2655 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2656 MODULE_LICENSE("GPL");
2657