xref: /linux/drivers/cpufreq/intel_pstate.c (revision 1947b92464c3268381604bbe2ac977a3fd78192f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37 
38 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
39 
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54 
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59 
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64 
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 	return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69 
70 static inline int ceiling_fp(int32_t x)
71 {
72 	int mask, ret;
73 
74 	ret = fp_toint(x);
75 	mask = (1 << FRAC_BITS) - 1;
76 	if (x & mask)
77 		ret += 1;
78 	return ret;
79 }
80 
81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83 	return (x * y) >> EXT_FRAC_BITS;
84 }
85 
86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88 	return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90 
91 /**
92  * struct sample -	Store performance sample
93  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
94  *			performance during last sample period
95  * @busy_scaled:	Scaled busy value which is used to calculate next
96  *			P state. This can be different than core_avg_perf
97  *			to account for cpu idle period
98  * @aperf:		Difference of actual performance frequency clock count
99  *			read from APERF MSR between last and current sample
100  * @mperf:		Difference of maximum performance frequency clock count
101  *			read from MPERF MSR between last and current sample
102  * @tsc:		Difference of time stamp counter between last and
103  *			current sample
104  * @time:		Current time from scheduler
105  *
106  * This structure is used in the cpudata structure to store performance sample
107  * data for choosing next P State.
108  */
109 struct sample {
110 	int32_t core_avg_perf;
111 	int32_t busy_scaled;
112 	u64 aperf;
113 	u64 mperf;
114 	u64 tsc;
115 	u64 time;
116 };
117 
118 /**
119  * struct pstate_data - Store P state data
120  * @current_pstate:	Current requested P state
121  * @min_pstate:		Min P state possible for this platform
122  * @max_pstate:		Max P state possible for this platform
123  * @max_pstate_physical:This is physical Max P state for a processor
124  *			This can be higher than the max_pstate which can
125  *			be limited by platform thermal design power limits
126  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
127  * @scaling:		Scaling factor between performance and frequency
128  * @turbo_pstate:	Max Turbo P state possible for this platform
129  * @min_freq:		@min_pstate frequency in cpufreq units
130  * @max_freq:		@max_pstate frequency in cpufreq units
131  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136 	int	current_pstate;
137 	int	min_pstate;
138 	int	max_pstate;
139 	int	max_pstate_physical;
140 	int	perf_ctl_scaling;
141 	int	scaling;
142 	int	turbo_pstate;
143 	unsigned int min_freq;
144 	unsigned int max_freq;
145 	unsigned int turbo_freq;
146 };
147 
148 /**
149  * struct vid_data -	Stores voltage information data
150  * @min:		VID data for this platform corresponding to
151  *			the lowest P state
152  * @max:		VID data corresponding to the highest P State.
153  * @turbo:		VID data for turbo P state
154  * @ratio:		Ratio of (vid max - vid min) /
155  *			(max P state - Min P State)
156  *
157  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158  * This data is used in Atom platforms, where in addition to target P state,
159  * the voltage data needs to be specified to select next P State.
160  */
161 struct vid_data {
162 	int min;
163 	int max;
164 	int turbo;
165 	int32_t ratio;
166 };
167 
168 /**
169  * struct global_params - Global parameters, mostly tunable via sysfs.
170  * @no_turbo:		Whether or not to use turbo P-states.
171  * @turbo_disabled:	Whether or not turbo P-states are available at all,
172  *			based on the MSR_IA32_MISC_ENABLE value and whether or
173  *			not the maximum reported turbo P-state is different from
174  *			the maximum reported non-turbo one.
175  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
176  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
177  *			P-state capacity.
178  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
179  *			P-state capacity.
180  */
181 struct global_params {
182 	bool no_turbo;
183 	bool turbo_disabled;
184 	bool turbo_disabled_mf;
185 	int max_perf_pct;
186 	int min_perf_pct;
187 };
188 
189 /**
190  * struct cpudata -	Per CPU instance data storage
191  * @cpu:		CPU number for this instance data
192  * @policy:		CPUFreq policy value
193  * @update_util:	CPUFreq utility callback information
194  * @update_util_set:	CPUFreq utility callback is set
195  * @iowait_boost:	iowait-related boost fraction
196  * @last_update:	Time of the last update.
197  * @pstate:		Stores P state limits for this CPU
198  * @vid:		Stores VID limits for this CPU
199  * @last_sample_time:	Last Sample time
200  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
201  * @prev_aperf:		Last APERF value read from APERF MSR
202  * @prev_mperf:		Last MPERF value read from MPERF MSR
203  * @prev_tsc:		Last timestamp counter (TSC) value
204  * @prev_cummulative_iowait: IO Wait time difference from last and
205  *			current sample
206  * @sample:		Storage for storing last Sample data
207  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
208  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
209  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
210  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
211  * @epp_powersave:	Last saved HWP energy performance preference
212  *			(EPP) or energy performance bias (EPB),
213  *			when policy switched to performance
214  * @epp_policy:		Last saved policy used to set EPP/EPB
215  * @epp_default:	Power on default HWP energy performance
216  *			preference/bias
217  * @epp_cached		Cached HWP energy-performance preference value
218  * @hwp_req_cached:	Cached value of the last HWP Request MSR
219  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
220  * @last_io_update:	Last time when IO wake flag was set
221  * @sched_flags:	Store scheduler flags for possible cross CPU update
222  * @hwp_boost_min:	Last HWP boosted min performance
223  * @suspended:		Whether or not the driver has been suspended.
224  * @hwp_notify_work:	workqueue for HWP notifications.
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229 	int cpu;
230 
231 	unsigned int policy;
232 	struct update_util_data update_util;
233 	bool   update_util_set;
234 
235 	struct pstate_data pstate;
236 	struct vid_data vid;
237 
238 	u64	last_update;
239 	u64	last_sample_time;
240 	u64	aperf_mperf_shift;
241 	u64	prev_aperf;
242 	u64	prev_mperf;
243 	u64	prev_tsc;
244 	u64	prev_cummulative_iowait;
245 	struct sample sample;
246 	int32_t	min_perf_ratio;
247 	int32_t	max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 	struct acpi_processor_performance acpi_perf_data;
250 	bool valid_pss_table;
251 #endif
252 	unsigned int iowait_boost;
253 	s16 epp_powersave;
254 	s16 epp_policy;
255 	s16 epp_default;
256 	s16 epp_cached;
257 	u64 hwp_req_cached;
258 	u64 hwp_cap_cached;
259 	u64 last_io_update;
260 	unsigned int sched_flags;
261 	u32 hwp_boost_min;
262 	bool suspended;
263 	struct delayed_work hwp_notify_work;
264 };
265 
266 static struct cpudata **all_cpu_data;
267 
268 /**
269  * struct pstate_funcs - Per CPU model specific callbacks
270  * @get_max:		Callback to get maximum non turbo effective P state
271  * @get_max_physical:	Callback to get maximum non turbo physical P state
272  * @get_min:		Callback to get minimum P state
273  * @get_turbo:		Callback to get turbo P state
274  * @get_scaling:	Callback to get frequency scaling factor
275  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
276  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277  * @get_val:		Callback to convert P state to actual MSR write value
278  * @get_vid:		Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284 	int (*get_max)(int cpu);
285 	int (*get_max_physical)(int cpu);
286 	int (*get_min)(int cpu);
287 	int (*get_turbo)(int cpu);
288 	int (*get_scaling)(void);
289 	int (*get_cpu_scaling)(int cpu);
290 	int (*get_aperf_mperf_shift)(void);
291 	u64 (*get_val)(struct cpudata*, int pstate);
292 	void (*get_vid)(struct cpudata *);
293 };
294 
295 static struct pstate_funcs pstate_funcs __read_mostly;
296 
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_forced __read_mostly;
302 
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304 
305 #define HYBRID_SCALING_FACTOR		78741
306 #define HYBRID_SCALING_FACTOR_MTL	80000
307 
308 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
309 
310 static inline int core_get_scaling(void)
311 {
312 	return 100000;
313 }
314 
315 #ifdef CONFIG_ACPI
316 static bool acpi_ppc;
317 #endif
318 
319 static struct global_params global;
320 
321 static DEFINE_MUTEX(intel_pstate_driver_lock);
322 static DEFINE_MUTEX(intel_pstate_limits_lock);
323 
324 #ifdef CONFIG_ACPI
325 
326 static bool intel_pstate_acpi_pm_profile_server(void)
327 {
328 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
329 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
330 		return true;
331 
332 	return false;
333 }
334 
335 static bool intel_pstate_get_ppc_enable_status(void)
336 {
337 	if (intel_pstate_acpi_pm_profile_server())
338 		return true;
339 
340 	return acpi_ppc;
341 }
342 
343 #ifdef CONFIG_ACPI_CPPC_LIB
344 
345 /* The work item is needed to avoid CPU hotplug locking issues */
346 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
347 {
348 	sched_set_itmt_support();
349 }
350 
351 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
352 
353 #define CPPC_MAX_PERF	U8_MAX
354 
355 static void intel_pstate_set_itmt_prio(int cpu)
356 {
357 	struct cppc_perf_caps cppc_perf;
358 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
359 	int ret;
360 
361 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
362 	if (ret)
363 		return;
364 
365 	/*
366 	 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
367 	 * In this case we can't use CPPC.highest_perf to enable ITMT.
368 	 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
369 	 */
370 	if (cppc_perf.highest_perf == CPPC_MAX_PERF)
371 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
372 
373 	/*
374 	 * The priorities can be set regardless of whether or not
375 	 * sched_set_itmt_support(true) has been called and it is valid to
376 	 * update them at any time after it has been called.
377 	 */
378 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
379 
380 	if (max_highest_perf <= min_highest_perf) {
381 		if (cppc_perf.highest_perf > max_highest_perf)
382 			max_highest_perf = cppc_perf.highest_perf;
383 
384 		if (cppc_perf.highest_perf < min_highest_perf)
385 			min_highest_perf = cppc_perf.highest_perf;
386 
387 		if (max_highest_perf > min_highest_perf) {
388 			/*
389 			 * This code can be run during CPU online under the
390 			 * CPU hotplug locks, so sched_set_itmt_support()
391 			 * cannot be called from here.  Queue up a work item
392 			 * to invoke it.
393 			 */
394 			schedule_work(&sched_itmt_work);
395 		}
396 	}
397 }
398 
399 static int intel_pstate_get_cppc_guaranteed(int cpu)
400 {
401 	struct cppc_perf_caps cppc_perf;
402 	int ret;
403 
404 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
405 	if (ret)
406 		return ret;
407 
408 	if (cppc_perf.guaranteed_perf)
409 		return cppc_perf.guaranteed_perf;
410 
411 	return cppc_perf.nominal_perf;
412 }
413 
414 static int intel_pstate_cppc_get_scaling(int cpu)
415 {
416 	struct cppc_perf_caps cppc_perf;
417 	int ret;
418 
419 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
420 
421 	/*
422 	 * If the nominal frequency and the nominal performance are not
423 	 * zero and the ratio between them is not 100, return the hybrid
424 	 * scaling factor.
425 	 */
426 	if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
427 	    cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
428 		return hybrid_scaling_factor;
429 
430 	return core_get_scaling();
431 }
432 
433 #else /* CONFIG_ACPI_CPPC_LIB */
434 static inline void intel_pstate_set_itmt_prio(int cpu)
435 {
436 }
437 #endif /* CONFIG_ACPI_CPPC_LIB */
438 
439 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
440 {
441 	struct cpudata *cpu;
442 	int ret;
443 	int i;
444 
445 	if (hwp_active) {
446 		intel_pstate_set_itmt_prio(policy->cpu);
447 		return;
448 	}
449 
450 	if (!intel_pstate_get_ppc_enable_status())
451 		return;
452 
453 	cpu = all_cpu_data[policy->cpu];
454 
455 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
456 						  policy->cpu);
457 	if (ret)
458 		return;
459 
460 	/*
461 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
462 	 * guarantee that the states returned by it map to the states in our
463 	 * list directly.
464 	 */
465 	if (cpu->acpi_perf_data.control_register.space_id !=
466 						ACPI_ADR_SPACE_FIXED_HARDWARE)
467 		goto err;
468 
469 	/*
470 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
471 	 * usual without taking _PSS into account
472 	 */
473 	if (cpu->acpi_perf_data.state_count < 2)
474 		goto err;
475 
476 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
477 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
478 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
479 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
480 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
481 			 (u32) cpu->acpi_perf_data.states[i].power,
482 			 (u32) cpu->acpi_perf_data.states[i].control);
483 	}
484 
485 	cpu->valid_pss_table = true;
486 	pr_debug("_PPC limits will be enforced\n");
487 
488 	return;
489 
490  err:
491 	cpu->valid_pss_table = false;
492 	acpi_processor_unregister_performance(policy->cpu);
493 }
494 
495 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
496 {
497 	struct cpudata *cpu;
498 
499 	cpu = all_cpu_data[policy->cpu];
500 	if (!cpu->valid_pss_table)
501 		return;
502 
503 	acpi_processor_unregister_performance(policy->cpu);
504 }
505 #else /* CONFIG_ACPI */
506 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
507 {
508 }
509 
510 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
511 {
512 }
513 
514 static inline bool intel_pstate_acpi_pm_profile_server(void)
515 {
516 	return false;
517 }
518 #endif /* CONFIG_ACPI */
519 
520 #ifndef CONFIG_ACPI_CPPC_LIB
521 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
522 {
523 	return -ENOTSUPP;
524 }
525 
526 static int intel_pstate_cppc_get_scaling(int cpu)
527 {
528 	return core_get_scaling();
529 }
530 #endif /* CONFIG_ACPI_CPPC_LIB */
531 
532 /**
533  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
534  * @cpu: Target CPU.
535  *
536  * On hybrid processors, HWP may expose more performance levels than there are
537  * P-states accessible through the PERF_CTL interface.  If that happens, the
538  * scaling factor between HWP performance levels and CPU frequency will be less
539  * than the scaling factor between P-state values and CPU frequency.
540  *
541  * In that case, adjust the CPU parameters used in computations accordingly.
542  */
543 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
544 {
545 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
546 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
547 	int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
548 	int scaling = cpu->pstate.scaling;
549 
550 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
551 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
552 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
553 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
554 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
555 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
556 
557 	cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
558 					   perf_ctl_scaling);
559 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
560 					 perf_ctl_scaling);
561 
562 	cpu->pstate.max_pstate_physical =
563 			DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
564 				     scaling);
565 
566 	cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
567 	/*
568 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
569 	 * the effective range of HWP performance levels.
570 	 */
571 	cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
572 }
573 
574 static inline void update_turbo_state(void)
575 {
576 	u64 misc_en;
577 
578 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
579 	global.turbo_disabled = misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
580 }
581 
582 static int min_perf_pct_min(void)
583 {
584 	struct cpudata *cpu = all_cpu_data[0];
585 	int turbo_pstate = cpu->pstate.turbo_pstate;
586 
587 	return turbo_pstate ?
588 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
589 }
590 
591 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
592 {
593 	u64 epb;
594 	int ret;
595 
596 	if (!boot_cpu_has(X86_FEATURE_EPB))
597 		return -ENXIO;
598 
599 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
600 	if (ret)
601 		return (s16)ret;
602 
603 	return (s16)(epb & 0x0f);
604 }
605 
606 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
607 {
608 	s16 epp;
609 
610 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
611 		/*
612 		 * When hwp_req_data is 0, means that caller didn't read
613 		 * MSR_HWP_REQUEST, so need to read and get EPP.
614 		 */
615 		if (!hwp_req_data) {
616 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
617 					    &hwp_req_data);
618 			if (epp)
619 				return epp;
620 		}
621 		epp = (hwp_req_data >> 24) & 0xff;
622 	} else {
623 		/* When there is no EPP present, HWP uses EPB settings */
624 		epp = intel_pstate_get_epb(cpu_data);
625 	}
626 
627 	return epp;
628 }
629 
630 static int intel_pstate_set_epb(int cpu, s16 pref)
631 {
632 	u64 epb;
633 	int ret;
634 
635 	if (!boot_cpu_has(X86_FEATURE_EPB))
636 		return -ENXIO;
637 
638 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
639 	if (ret)
640 		return ret;
641 
642 	epb = (epb & ~0x0f) | pref;
643 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
644 
645 	return 0;
646 }
647 
648 /*
649  * EPP/EPB display strings corresponding to EPP index in the
650  * energy_perf_strings[]
651  *	index		String
652  *-------------------------------------
653  *	0		default
654  *	1		performance
655  *	2		balance_performance
656  *	3		balance_power
657  *	4		power
658  */
659 
660 enum energy_perf_value_index {
661 	EPP_INDEX_DEFAULT = 0,
662 	EPP_INDEX_PERFORMANCE,
663 	EPP_INDEX_BALANCE_PERFORMANCE,
664 	EPP_INDEX_BALANCE_POWERSAVE,
665 	EPP_INDEX_POWERSAVE,
666 };
667 
668 static const char * const energy_perf_strings[] = {
669 	[EPP_INDEX_DEFAULT] = "default",
670 	[EPP_INDEX_PERFORMANCE] = "performance",
671 	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
672 	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
673 	[EPP_INDEX_POWERSAVE] = "power",
674 	NULL
675 };
676 static unsigned int epp_values[] = {
677 	[EPP_INDEX_DEFAULT] = 0, /* Unused index */
678 	[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
679 	[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
680 	[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
681 	[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
682 };
683 
684 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
685 {
686 	s16 epp;
687 	int index = -EINVAL;
688 
689 	*raw_epp = 0;
690 	epp = intel_pstate_get_epp(cpu_data, 0);
691 	if (epp < 0)
692 		return epp;
693 
694 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
695 		if (epp == epp_values[EPP_INDEX_PERFORMANCE])
696 			return EPP_INDEX_PERFORMANCE;
697 		if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
698 			return EPP_INDEX_BALANCE_PERFORMANCE;
699 		if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
700 			return EPP_INDEX_BALANCE_POWERSAVE;
701 		if (epp == epp_values[EPP_INDEX_POWERSAVE])
702 			return EPP_INDEX_POWERSAVE;
703 		*raw_epp = epp;
704 		return 0;
705 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
706 		/*
707 		 * Range:
708 		 *	0x00-0x03	:	Performance
709 		 *	0x04-0x07	:	Balance performance
710 		 *	0x08-0x0B	:	Balance power
711 		 *	0x0C-0x0F	:	Power
712 		 * The EPB is a 4 bit value, but our ranges restrict the
713 		 * value which can be set. Here only using top two bits
714 		 * effectively.
715 		 */
716 		index = (epp >> 2) + 1;
717 	}
718 
719 	return index;
720 }
721 
722 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
723 {
724 	int ret;
725 
726 	/*
727 	 * Use the cached HWP Request MSR value, because in the active mode the
728 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
729 	 * intel_pstate_hwp_boost_down() at any time.
730 	 */
731 	u64 value = READ_ONCE(cpu->hwp_req_cached);
732 
733 	value &= ~GENMASK_ULL(31, 24);
734 	value |= (u64)epp << 24;
735 	/*
736 	 * The only other updater of hwp_req_cached in the active mode,
737 	 * intel_pstate_hwp_set(), is called under the same lock as this
738 	 * function, so it cannot run in parallel with the update below.
739 	 */
740 	WRITE_ONCE(cpu->hwp_req_cached, value);
741 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
742 	if (!ret)
743 		cpu->epp_cached = epp;
744 
745 	return ret;
746 }
747 
748 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
749 					      int pref_index, bool use_raw,
750 					      u32 raw_epp)
751 {
752 	int epp = -EINVAL;
753 	int ret;
754 
755 	if (!pref_index)
756 		epp = cpu_data->epp_default;
757 
758 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
759 		if (use_raw)
760 			epp = raw_epp;
761 		else if (epp == -EINVAL)
762 			epp = epp_values[pref_index];
763 
764 		/*
765 		 * To avoid confusion, refuse to set EPP to any values different
766 		 * from 0 (performance) if the current policy is "performance",
767 		 * because those values would be overridden.
768 		 */
769 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
770 			return -EBUSY;
771 
772 		ret = intel_pstate_set_epp(cpu_data, epp);
773 	} else {
774 		if (epp == -EINVAL)
775 			epp = (pref_index - 1) << 2;
776 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
777 	}
778 
779 	return ret;
780 }
781 
782 static ssize_t show_energy_performance_available_preferences(
783 				struct cpufreq_policy *policy, char *buf)
784 {
785 	int i = 0;
786 	int ret = 0;
787 
788 	while (energy_perf_strings[i] != NULL)
789 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
790 
791 	ret += sprintf(&buf[ret], "\n");
792 
793 	return ret;
794 }
795 
796 cpufreq_freq_attr_ro(energy_performance_available_preferences);
797 
798 static struct cpufreq_driver intel_pstate;
799 
800 static ssize_t store_energy_performance_preference(
801 		struct cpufreq_policy *policy, const char *buf, size_t count)
802 {
803 	struct cpudata *cpu = all_cpu_data[policy->cpu];
804 	char str_preference[21];
805 	bool raw = false;
806 	ssize_t ret;
807 	u32 epp = 0;
808 
809 	ret = sscanf(buf, "%20s", str_preference);
810 	if (ret != 1)
811 		return -EINVAL;
812 
813 	ret = match_string(energy_perf_strings, -1, str_preference);
814 	if (ret < 0) {
815 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
816 			return ret;
817 
818 		ret = kstrtouint(buf, 10, &epp);
819 		if (ret)
820 			return ret;
821 
822 		if (epp > 255)
823 			return -EINVAL;
824 
825 		raw = true;
826 	}
827 
828 	/*
829 	 * This function runs with the policy R/W semaphore held, which
830 	 * guarantees that the driver pointer will not change while it is
831 	 * running.
832 	 */
833 	if (!intel_pstate_driver)
834 		return -EAGAIN;
835 
836 	mutex_lock(&intel_pstate_limits_lock);
837 
838 	if (intel_pstate_driver == &intel_pstate) {
839 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
840 	} else {
841 		/*
842 		 * In the passive mode the governor needs to be stopped on the
843 		 * target CPU before the EPP update and restarted after it,
844 		 * which is super-heavy-weight, so make sure it is worth doing
845 		 * upfront.
846 		 */
847 		if (!raw)
848 			epp = ret ? epp_values[ret] : cpu->epp_default;
849 
850 		if (cpu->epp_cached != epp) {
851 			int err;
852 
853 			cpufreq_stop_governor(policy);
854 			ret = intel_pstate_set_epp(cpu, epp);
855 			err = cpufreq_start_governor(policy);
856 			if (!ret)
857 				ret = err;
858 		} else {
859 			ret = 0;
860 		}
861 	}
862 
863 	mutex_unlock(&intel_pstate_limits_lock);
864 
865 	return ret ?: count;
866 }
867 
868 static ssize_t show_energy_performance_preference(
869 				struct cpufreq_policy *policy, char *buf)
870 {
871 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
872 	int preference, raw_epp;
873 
874 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
875 	if (preference < 0)
876 		return preference;
877 
878 	if (raw_epp)
879 		return  sprintf(buf, "%d\n", raw_epp);
880 	else
881 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
882 }
883 
884 cpufreq_freq_attr_rw(energy_performance_preference);
885 
886 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
887 {
888 	struct cpudata *cpu = all_cpu_data[policy->cpu];
889 	int ratio, freq;
890 
891 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
892 	if (ratio <= 0) {
893 		u64 cap;
894 
895 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
896 		ratio = HWP_GUARANTEED_PERF(cap);
897 	}
898 
899 	freq = ratio * cpu->pstate.scaling;
900 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
901 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
902 
903 	return sprintf(buf, "%d\n", freq);
904 }
905 
906 cpufreq_freq_attr_ro(base_frequency);
907 
908 static struct freq_attr *hwp_cpufreq_attrs[] = {
909 	&energy_performance_preference,
910 	&energy_performance_available_preferences,
911 	&base_frequency,
912 	NULL,
913 };
914 
915 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
916 {
917 	u64 cap;
918 
919 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
920 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
921 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
922 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
923 }
924 
925 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
926 {
927 	int scaling = cpu->pstate.scaling;
928 
929 	__intel_pstate_get_hwp_cap(cpu);
930 
931 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
932 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
933 	if (scaling != cpu->pstate.perf_ctl_scaling) {
934 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
935 
936 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
937 						 perf_ctl_scaling);
938 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
939 						   perf_ctl_scaling);
940 	}
941 }
942 
943 static void intel_pstate_hwp_set(unsigned int cpu)
944 {
945 	struct cpudata *cpu_data = all_cpu_data[cpu];
946 	int max, min;
947 	u64 value;
948 	s16 epp;
949 
950 	max = cpu_data->max_perf_ratio;
951 	min = cpu_data->min_perf_ratio;
952 
953 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
954 		min = max;
955 
956 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
957 
958 	value &= ~HWP_MIN_PERF(~0L);
959 	value |= HWP_MIN_PERF(min);
960 
961 	value &= ~HWP_MAX_PERF(~0L);
962 	value |= HWP_MAX_PERF(max);
963 
964 	if (cpu_data->epp_policy == cpu_data->policy)
965 		goto skip_epp;
966 
967 	cpu_data->epp_policy = cpu_data->policy;
968 
969 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
970 		epp = intel_pstate_get_epp(cpu_data, value);
971 		cpu_data->epp_powersave = epp;
972 		/* If EPP read was failed, then don't try to write */
973 		if (epp < 0)
974 			goto skip_epp;
975 
976 		epp = 0;
977 	} else {
978 		/* skip setting EPP, when saved value is invalid */
979 		if (cpu_data->epp_powersave < 0)
980 			goto skip_epp;
981 
982 		/*
983 		 * No need to restore EPP when it is not zero. This
984 		 * means:
985 		 *  - Policy is not changed
986 		 *  - user has manually changed
987 		 *  - Error reading EPB
988 		 */
989 		epp = intel_pstate_get_epp(cpu_data, value);
990 		if (epp)
991 			goto skip_epp;
992 
993 		epp = cpu_data->epp_powersave;
994 	}
995 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
996 		value &= ~GENMASK_ULL(31, 24);
997 		value |= (u64)epp << 24;
998 	} else {
999 		intel_pstate_set_epb(cpu, epp);
1000 	}
1001 skip_epp:
1002 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1003 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1004 }
1005 
1006 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1007 
1008 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1009 {
1010 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1011 	int min_perf;
1012 
1013 	intel_pstate_disable_hwp_interrupt(cpu);
1014 
1015 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1016 		/*
1017 		 * In case the EPP has been set to "performance" by the
1018 		 * active mode "performance" scaling algorithm, replace that
1019 		 * temporary value with the cached EPP one.
1020 		 */
1021 		value &= ~GENMASK_ULL(31, 24);
1022 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1023 		/*
1024 		 * However, make sure that EPP will be set to "performance" when
1025 		 * the CPU is brought back online again and the "performance"
1026 		 * scaling algorithm is still in effect.
1027 		 */
1028 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1029 	}
1030 
1031 	/*
1032 	 * Clear the desired perf field in the cached HWP request value to
1033 	 * prevent nonzero desired values from being leaked into the active
1034 	 * mode.
1035 	 */
1036 	value &= ~HWP_DESIRED_PERF(~0L);
1037 	WRITE_ONCE(cpu->hwp_req_cached, value);
1038 
1039 	value &= ~GENMASK_ULL(31, 0);
1040 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1041 
1042 	/* Set hwp_max = hwp_min */
1043 	value |= HWP_MAX_PERF(min_perf);
1044 	value |= HWP_MIN_PERF(min_perf);
1045 
1046 	/* Set EPP to min */
1047 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1048 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1049 
1050 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1051 }
1052 
1053 #define POWER_CTL_EE_ENABLE	1
1054 #define POWER_CTL_EE_DISABLE	2
1055 
1056 static int power_ctl_ee_state;
1057 
1058 static void set_power_ctl_ee_state(bool input)
1059 {
1060 	u64 power_ctl;
1061 
1062 	mutex_lock(&intel_pstate_driver_lock);
1063 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1064 	if (input) {
1065 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1066 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1067 	} else {
1068 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1069 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1070 	}
1071 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1072 	mutex_unlock(&intel_pstate_driver_lock);
1073 }
1074 
1075 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1076 
1077 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1078 {
1079 	intel_pstate_hwp_enable(cpu);
1080 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1081 }
1082 
1083 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1084 {
1085 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1086 
1087 	pr_debug("CPU %d suspending\n", cpu->cpu);
1088 
1089 	cpu->suspended = true;
1090 
1091 	/* disable HWP interrupt and cancel any pending work */
1092 	intel_pstate_disable_hwp_interrupt(cpu);
1093 
1094 	return 0;
1095 }
1096 
1097 static int intel_pstate_resume(struct cpufreq_policy *policy)
1098 {
1099 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1100 
1101 	pr_debug("CPU %d resuming\n", cpu->cpu);
1102 
1103 	/* Only restore if the system default is changed */
1104 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1105 		set_power_ctl_ee_state(true);
1106 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1107 		set_power_ctl_ee_state(false);
1108 
1109 	if (cpu->suspended && hwp_active) {
1110 		mutex_lock(&intel_pstate_limits_lock);
1111 
1112 		/* Re-enable HWP, because "online" has not done that. */
1113 		intel_pstate_hwp_reenable(cpu);
1114 
1115 		mutex_unlock(&intel_pstate_limits_lock);
1116 	}
1117 
1118 	cpu->suspended = false;
1119 
1120 	return 0;
1121 }
1122 
1123 static void intel_pstate_update_policies(void)
1124 {
1125 	int cpu;
1126 
1127 	for_each_possible_cpu(cpu)
1128 		cpufreq_update_policy(cpu);
1129 }
1130 
1131 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1132 					   struct cpufreq_policy *policy)
1133 {
1134 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1135 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1136 	refresh_frequency_limits(policy);
1137 }
1138 
1139 static void intel_pstate_update_max_freq(unsigned int cpu)
1140 {
1141 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1142 
1143 	if (!policy)
1144 		return;
1145 
1146 	__intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1147 
1148 	cpufreq_cpu_release(policy);
1149 }
1150 
1151 static void intel_pstate_update_limits(unsigned int cpu)
1152 {
1153 	mutex_lock(&intel_pstate_driver_lock);
1154 
1155 	update_turbo_state();
1156 	/*
1157 	 * If turbo has been turned on or off globally, policy limits for
1158 	 * all CPUs need to be updated to reflect that.
1159 	 */
1160 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1161 		global.turbo_disabled_mf = global.turbo_disabled;
1162 		arch_set_max_freq_ratio(global.turbo_disabled);
1163 		for_each_possible_cpu(cpu)
1164 			intel_pstate_update_max_freq(cpu);
1165 	} else {
1166 		cpufreq_update_policy(cpu);
1167 	}
1168 
1169 	mutex_unlock(&intel_pstate_driver_lock);
1170 }
1171 
1172 /************************** sysfs begin ************************/
1173 #define show_one(file_name, object)					\
1174 	static ssize_t show_##file_name					\
1175 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1176 	{								\
1177 		return sprintf(buf, "%u\n", global.object);		\
1178 	}
1179 
1180 static ssize_t intel_pstate_show_status(char *buf);
1181 static int intel_pstate_update_status(const char *buf, size_t size);
1182 
1183 static ssize_t show_status(struct kobject *kobj,
1184 			   struct kobj_attribute *attr, char *buf)
1185 {
1186 	ssize_t ret;
1187 
1188 	mutex_lock(&intel_pstate_driver_lock);
1189 	ret = intel_pstate_show_status(buf);
1190 	mutex_unlock(&intel_pstate_driver_lock);
1191 
1192 	return ret;
1193 }
1194 
1195 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1196 			    const char *buf, size_t count)
1197 {
1198 	char *p = memchr(buf, '\n', count);
1199 	int ret;
1200 
1201 	mutex_lock(&intel_pstate_driver_lock);
1202 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1203 	mutex_unlock(&intel_pstate_driver_lock);
1204 
1205 	return ret < 0 ? ret : count;
1206 }
1207 
1208 static ssize_t show_turbo_pct(struct kobject *kobj,
1209 				struct kobj_attribute *attr, char *buf)
1210 {
1211 	struct cpudata *cpu;
1212 	int total, no_turbo, turbo_pct;
1213 	uint32_t turbo_fp;
1214 
1215 	mutex_lock(&intel_pstate_driver_lock);
1216 
1217 	if (!intel_pstate_driver) {
1218 		mutex_unlock(&intel_pstate_driver_lock);
1219 		return -EAGAIN;
1220 	}
1221 
1222 	cpu = all_cpu_data[0];
1223 
1224 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1225 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1226 	turbo_fp = div_fp(no_turbo, total);
1227 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1228 
1229 	mutex_unlock(&intel_pstate_driver_lock);
1230 
1231 	return sprintf(buf, "%u\n", turbo_pct);
1232 }
1233 
1234 static ssize_t show_num_pstates(struct kobject *kobj,
1235 				struct kobj_attribute *attr, char *buf)
1236 {
1237 	struct cpudata *cpu;
1238 	int total;
1239 
1240 	mutex_lock(&intel_pstate_driver_lock);
1241 
1242 	if (!intel_pstate_driver) {
1243 		mutex_unlock(&intel_pstate_driver_lock);
1244 		return -EAGAIN;
1245 	}
1246 
1247 	cpu = all_cpu_data[0];
1248 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1249 
1250 	mutex_unlock(&intel_pstate_driver_lock);
1251 
1252 	return sprintf(buf, "%u\n", total);
1253 }
1254 
1255 static ssize_t show_no_turbo(struct kobject *kobj,
1256 			     struct kobj_attribute *attr, char *buf)
1257 {
1258 	ssize_t ret;
1259 
1260 	mutex_lock(&intel_pstate_driver_lock);
1261 
1262 	if (!intel_pstate_driver) {
1263 		mutex_unlock(&intel_pstate_driver_lock);
1264 		return -EAGAIN;
1265 	}
1266 
1267 	update_turbo_state();
1268 	if (global.turbo_disabled)
1269 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1270 	else
1271 		ret = sprintf(buf, "%u\n", global.no_turbo);
1272 
1273 	mutex_unlock(&intel_pstate_driver_lock);
1274 
1275 	return ret;
1276 }
1277 
1278 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1279 			      const char *buf, size_t count)
1280 {
1281 	unsigned int input;
1282 	int ret;
1283 
1284 	ret = sscanf(buf, "%u", &input);
1285 	if (ret != 1)
1286 		return -EINVAL;
1287 
1288 	mutex_lock(&intel_pstate_driver_lock);
1289 
1290 	if (!intel_pstate_driver) {
1291 		mutex_unlock(&intel_pstate_driver_lock);
1292 		return -EAGAIN;
1293 	}
1294 
1295 	mutex_lock(&intel_pstate_limits_lock);
1296 
1297 	update_turbo_state();
1298 	if (global.turbo_disabled) {
1299 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1300 		mutex_unlock(&intel_pstate_limits_lock);
1301 		mutex_unlock(&intel_pstate_driver_lock);
1302 		return -EPERM;
1303 	}
1304 
1305 	global.no_turbo = clamp_t(int, input, 0, 1);
1306 
1307 	if (global.no_turbo) {
1308 		struct cpudata *cpu = all_cpu_data[0];
1309 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1310 
1311 		/* Squash the global minimum into the permitted range. */
1312 		if (global.min_perf_pct > pct)
1313 			global.min_perf_pct = pct;
1314 	}
1315 
1316 	mutex_unlock(&intel_pstate_limits_lock);
1317 
1318 	intel_pstate_update_policies();
1319 	arch_set_max_freq_ratio(global.no_turbo);
1320 
1321 	mutex_unlock(&intel_pstate_driver_lock);
1322 
1323 	return count;
1324 }
1325 
1326 static void update_qos_request(enum freq_qos_req_type type)
1327 {
1328 	struct freq_qos_request *req;
1329 	struct cpufreq_policy *policy;
1330 	int i;
1331 
1332 	for_each_possible_cpu(i) {
1333 		struct cpudata *cpu = all_cpu_data[i];
1334 		unsigned int freq, perf_pct;
1335 
1336 		policy = cpufreq_cpu_get(i);
1337 		if (!policy)
1338 			continue;
1339 
1340 		req = policy->driver_data;
1341 		cpufreq_cpu_put(policy);
1342 
1343 		if (!req)
1344 			continue;
1345 
1346 		if (hwp_active)
1347 			intel_pstate_get_hwp_cap(cpu);
1348 
1349 		if (type == FREQ_QOS_MIN) {
1350 			perf_pct = global.min_perf_pct;
1351 		} else {
1352 			req++;
1353 			perf_pct = global.max_perf_pct;
1354 		}
1355 
1356 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1357 
1358 		if (freq_qos_update_request(req, freq) < 0)
1359 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1360 	}
1361 }
1362 
1363 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1364 				  const char *buf, size_t count)
1365 {
1366 	unsigned int input;
1367 	int ret;
1368 
1369 	ret = sscanf(buf, "%u", &input);
1370 	if (ret != 1)
1371 		return -EINVAL;
1372 
1373 	mutex_lock(&intel_pstate_driver_lock);
1374 
1375 	if (!intel_pstate_driver) {
1376 		mutex_unlock(&intel_pstate_driver_lock);
1377 		return -EAGAIN;
1378 	}
1379 
1380 	mutex_lock(&intel_pstate_limits_lock);
1381 
1382 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1383 
1384 	mutex_unlock(&intel_pstate_limits_lock);
1385 
1386 	if (intel_pstate_driver == &intel_pstate)
1387 		intel_pstate_update_policies();
1388 	else
1389 		update_qos_request(FREQ_QOS_MAX);
1390 
1391 	mutex_unlock(&intel_pstate_driver_lock);
1392 
1393 	return count;
1394 }
1395 
1396 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1397 				  const char *buf, size_t count)
1398 {
1399 	unsigned int input;
1400 	int ret;
1401 
1402 	ret = sscanf(buf, "%u", &input);
1403 	if (ret != 1)
1404 		return -EINVAL;
1405 
1406 	mutex_lock(&intel_pstate_driver_lock);
1407 
1408 	if (!intel_pstate_driver) {
1409 		mutex_unlock(&intel_pstate_driver_lock);
1410 		return -EAGAIN;
1411 	}
1412 
1413 	mutex_lock(&intel_pstate_limits_lock);
1414 
1415 	global.min_perf_pct = clamp_t(int, input,
1416 				      min_perf_pct_min(), global.max_perf_pct);
1417 
1418 	mutex_unlock(&intel_pstate_limits_lock);
1419 
1420 	if (intel_pstate_driver == &intel_pstate)
1421 		intel_pstate_update_policies();
1422 	else
1423 		update_qos_request(FREQ_QOS_MIN);
1424 
1425 	mutex_unlock(&intel_pstate_driver_lock);
1426 
1427 	return count;
1428 }
1429 
1430 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1431 				struct kobj_attribute *attr, char *buf)
1432 {
1433 	return sprintf(buf, "%u\n", hwp_boost);
1434 }
1435 
1436 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1437 				       struct kobj_attribute *b,
1438 				       const char *buf, size_t count)
1439 {
1440 	unsigned int input;
1441 	int ret;
1442 
1443 	ret = kstrtouint(buf, 10, &input);
1444 	if (ret)
1445 		return ret;
1446 
1447 	mutex_lock(&intel_pstate_driver_lock);
1448 	hwp_boost = !!input;
1449 	intel_pstate_update_policies();
1450 	mutex_unlock(&intel_pstate_driver_lock);
1451 
1452 	return count;
1453 }
1454 
1455 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1456 				      char *buf)
1457 {
1458 	u64 power_ctl;
1459 	int enable;
1460 
1461 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1462 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1463 	return sprintf(buf, "%d\n", !enable);
1464 }
1465 
1466 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1467 				       const char *buf, size_t count)
1468 {
1469 	bool input;
1470 	int ret;
1471 
1472 	ret = kstrtobool(buf, &input);
1473 	if (ret)
1474 		return ret;
1475 
1476 	set_power_ctl_ee_state(input);
1477 
1478 	return count;
1479 }
1480 
1481 show_one(max_perf_pct, max_perf_pct);
1482 show_one(min_perf_pct, min_perf_pct);
1483 
1484 define_one_global_rw(status);
1485 define_one_global_rw(no_turbo);
1486 define_one_global_rw(max_perf_pct);
1487 define_one_global_rw(min_perf_pct);
1488 define_one_global_ro(turbo_pct);
1489 define_one_global_ro(num_pstates);
1490 define_one_global_rw(hwp_dynamic_boost);
1491 define_one_global_rw(energy_efficiency);
1492 
1493 static struct attribute *intel_pstate_attributes[] = {
1494 	&status.attr,
1495 	&no_turbo.attr,
1496 	NULL
1497 };
1498 
1499 static const struct attribute_group intel_pstate_attr_group = {
1500 	.attrs = intel_pstate_attributes,
1501 };
1502 
1503 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1504 
1505 static struct kobject *intel_pstate_kobject;
1506 
1507 static void __init intel_pstate_sysfs_expose_params(void)
1508 {
1509 	struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1510 	int rc;
1511 
1512 	if (dev_root) {
1513 		intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1514 		put_device(dev_root);
1515 	}
1516 	if (WARN_ON(!intel_pstate_kobject))
1517 		return;
1518 
1519 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1520 	if (WARN_ON(rc))
1521 		return;
1522 
1523 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1524 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1525 		WARN_ON(rc);
1526 
1527 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1528 		WARN_ON(rc);
1529 	}
1530 
1531 	/*
1532 	 * If per cpu limits are enforced there are no global limits, so
1533 	 * return without creating max/min_perf_pct attributes
1534 	 */
1535 	if (per_cpu_limits)
1536 		return;
1537 
1538 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1539 	WARN_ON(rc);
1540 
1541 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1542 	WARN_ON(rc);
1543 
1544 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1545 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1546 		WARN_ON(rc);
1547 	}
1548 }
1549 
1550 static void __init intel_pstate_sysfs_remove(void)
1551 {
1552 	if (!intel_pstate_kobject)
1553 		return;
1554 
1555 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1556 
1557 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1558 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1559 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1560 	}
1561 
1562 	if (!per_cpu_limits) {
1563 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1564 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1565 
1566 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1567 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1568 	}
1569 
1570 	kobject_put(intel_pstate_kobject);
1571 }
1572 
1573 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1574 {
1575 	int rc;
1576 
1577 	if (!hwp_active)
1578 		return;
1579 
1580 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1581 	WARN_ON_ONCE(rc);
1582 }
1583 
1584 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1585 {
1586 	if (!hwp_active)
1587 		return;
1588 
1589 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1590 }
1591 
1592 /************************** sysfs end ************************/
1593 
1594 static void intel_pstate_notify_work(struct work_struct *work)
1595 {
1596 	struct cpudata *cpudata =
1597 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1598 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1599 
1600 	if (policy) {
1601 		intel_pstate_get_hwp_cap(cpudata);
1602 		__intel_pstate_update_max_freq(cpudata, policy);
1603 
1604 		cpufreq_cpu_release(policy);
1605 	}
1606 
1607 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1608 }
1609 
1610 static DEFINE_SPINLOCK(hwp_notify_lock);
1611 static cpumask_t hwp_intr_enable_mask;
1612 
1613 void notify_hwp_interrupt(void)
1614 {
1615 	unsigned int this_cpu = smp_processor_id();
1616 	struct cpudata *cpudata;
1617 	unsigned long flags;
1618 	u64 value;
1619 
1620 	if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1621 		return;
1622 
1623 	rdmsrl_safe(MSR_HWP_STATUS, &value);
1624 	if (!(value & 0x01))
1625 		return;
1626 
1627 	spin_lock_irqsave(&hwp_notify_lock, flags);
1628 
1629 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1630 		goto ack_intr;
1631 
1632 	/*
1633 	 * Currently we never free all_cpu_data. And we can't reach here
1634 	 * without this allocated. But for safety for future changes, added
1635 	 * check.
1636 	 */
1637 	if (unlikely(!READ_ONCE(all_cpu_data)))
1638 		goto ack_intr;
1639 
1640 	/*
1641 	 * The free is done during cleanup, when cpufreq registry is failed.
1642 	 * We wouldn't be here if it fails on init or switch status. But for
1643 	 * future changes, added check.
1644 	 */
1645 	cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1646 	if (unlikely(!cpudata))
1647 		goto ack_intr;
1648 
1649 	schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1650 
1651 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1652 
1653 	return;
1654 
1655 ack_intr:
1656 	wrmsrl_safe(MSR_HWP_STATUS, 0);
1657 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1658 }
1659 
1660 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1661 {
1662 	unsigned long flags;
1663 
1664 	if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1665 		return;
1666 
1667 	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1668 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1669 
1670 	spin_lock_irqsave(&hwp_notify_lock, flags);
1671 	if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1672 		cancel_delayed_work(&cpudata->hwp_notify_work);
1673 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1674 }
1675 
1676 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1677 {
1678 	/* Enable HWP notification interrupt for guaranteed performance change */
1679 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1680 		unsigned long flags;
1681 
1682 		spin_lock_irqsave(&hwp_notify_lock, flags);
1683 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1684 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1685 		spin_unlock_irqrestore(&hwp_notify_lock, flags);
1686 
1687 		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1688 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1689 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1690 	}
1691 }
1692 
1693 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1694 {
1695 	cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1696 
1697 	/*
1698 	 * If the EPP is set by firmware, which means that firmware enabled HWP
1699 	 * - Is equal or less than 0x80 (default balance_perf EPP)
1700 	 * - But less performance oriented than performance EPP
1701 	 *   then use this as new balance_perf EPP.
1702 	 */
1703 	if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1704 	    cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1705 		epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1706 		return;
1707 	}
1708 
1709 	/*
1710 	 * If this CPU gen doesn't call for change in balance_perf
1711 	 * EPP return.
1712 	 */
1713 	if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1714 		return;
1715 
1716 	/*
1717 	 * Use hard coded value per gen to update the balance_perf
1718 	 * and default EPP.
1719 	 */
1720 	cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1721 	intel_pstate_set_epp(cpudata, cpudata->epp_default);
1722 }
1723 
1724 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1725 {
1726 	/* First disable HWP notification interrupt till we activate again */
1727 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1728 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1729 
1730 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1731 
1732 	intel_pstate_enable_hwp_interrupt(cpudata);
1733 
1734 	if (cpudata->epp_default >= 0)
1735 		return;
1736 
1737 	intel_pstate_update_epp_defaults(cpudata);
1738 }
1739 
1740 static int atom_get_min_pstate(int not_used)
1741 {
1742 	u64 value;
1743 
1744 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1745 	return (value >> 8) & 0x7F;
1746 }
1747 
1748 static int atom_get_max_pstate(int not_used)
1749 {
1750 	u64 value;
1751 
1752 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1753 	return (value >> 16) & 0x7F;
1754 }
1755 
1756 static int atom_get_turbo_pstate(int not_used)
1757 {
1758 	u64 value;
1759 
1760 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1761 	return value & 0x7F;
1762 }
1763 
1764 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1765 {
1766 	u64 val;
1767 	int32_t vid_fp;
1768 	u32 vid;
1769 
1770 	val = (u64)pstate << 8;
1771 	if (global.no_turbo && !global.turbo_disabled)
1772 		val |= (u64)1 << 32;
1773 
1774 	vid_fp = cpudata->vid.min + mul_fp(
1775 		int_tofp(pstate - cpudata->pstate.min_pstate),
1776 		cpudata->vid.ratio);
1777 
1778 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1779 	vid = ceiling_fp(vid_fp);
1780 
1781 	if (pstate > cpudata->pstate.max_pstate)
1782 		vid = cpudata->vid.turbo;
1783 
1784 	return val | vid;
1785 }
1786 
1787 static int silvermont_get_scaling(void)
1788 {
1789 	u64 value;
1790 	int i;
1791 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1792 	static int silvermont_freq_table[] = {
1793 		83300, 100000, 133300, 116700, 80000};
1794 
1795 	rdmsrl(MSR_FSB_FREQ, value);
1796 	i = value & 0x7;
1797 	WARN_ON(i > 4);
1798 
1799 	return silvermont_freq_table[i];
1800 }
1801 
1802 static int airmont_get_scaling(void)
1803 {
1804 	u64 value;
1805 	int i;
1806 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1807 	static int airmont_freq_table[] = {
1808 		83300, 100000, 133300, 116700, 80000,
1809 		93300, 90000, 88900, 87500};
1810 
1811 	rdmsrl(MSR_FSB_FREQ, value);
1812 	i = value & 0xF;
1813 	WARN_ON(i > 8);
1814 
1815 	return airmont_freq_table[i];
1816 }
1817 
1818 static void atom_get_vid(struct cpudata *cpudata)
1819 {
1820 	u64 value;
1821 
1822 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1823 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1824 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1825 	cpudata->vid.ratio = div_fp(
1826 		cpudata->vid.max - cpudata->vid.min,
1827 		int_tofp(cpudata->pstate.max_pstate -
1828 			cpudata->pstate.min_pstate));
1829 
1830 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1831 	cpudata->vid.turbo = value & 0x7f;
1832 }
1833 
1834 static int core_get_min_pstate(int cpu)
1835 {
1836 	u64 value;
1837 
1838 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1839 	return (value >> 40) & 0xFF;
1840 }
1841 
1842 static int core_get_max_pstate_physical(int cpu)
1843 {
1844 	u64 value;
1845 
1846 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1847 	return (value >> 8) & 0xFF;
1848 }
1849 
1850 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1851 {
1852 	/* Check how many TDP levels present */
1853 	if (plat_info & 0x600000000) {
1854 		u64 tdp_ctrl;
1855 		u64 tdp_ratio;
1856 		int tdp_msr;
1857 		int err;
1858 
1859 		/* Get the TDP level (0, 1, 2) to get ratios */
1860 		err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1861 		if (err)
1862 			return err;
1863 
1864 		/* TDP MSR are continuous starting at 0x648 */
1865 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1866 		err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1867 		if (err)
1868 			return err;
1869 
1870 		/* For level 1 and 2, bits[23:16] contain the ratio */
1871 		if (tdp_ctrl & 0x03)
1872 			tdp_ratio >>= 16;
1873 
1874 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1875 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1876 
1877 		return (int)tdp_ratio;
1878 	}
1879 
1880 	return -ENXIO;
1881 }
1882 
1883 static int core_get_max_pstate(int cpu)
1884 {
1885 	u64 tar;
1886 	u64 plat_info;
1887 	int max_pstate;
1888 	int tdp_ratio;
1889 	int err;
1890 
1891 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1892 	max_pstate = (plat_info >> 8) & 0xFF;
1893 
1894 	tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1895 	if (tdp_ratio <= 0)
1896 		return max_pstate;
1897 
1898 	if (hwp_active) {
1899 		/* Turbo activation ratio is not used on HWP platforms */
1900 		return tdp_ratio;
1901 	}
1902 
1903 	err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1904 	if (!err) {
1905 		int tar_levels;
1906 
1907 		/* Do some sanity checking for safety */
1908 		tar_levels = tar & 0xff;
1909 		if (tdp_ratio - 1 == tar_levels) {
1910 			max_pstate = tar_levels;
1911 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1912 		}
1913 	}
1914 
1915 	return max_pstate;
1916 }
1917 
1918 static int core_get_turbo_pstate(int cpu)
1919 {
1920 	u64 value;
1921 	int nont, ret;
1922 
1923 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1924 	nont = core_get_max_pstate(cpu);
1925 	ret = (value) & 255;
1926 	if (ret <= nont)
1927 		ret = nont;
1928 	return ret;
1929 }
1930 
1931 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1932 {
1933 	u64 val;
1934 
1935 	val = (u64)pstate << 8;
1936 	if (global.no_turbo && !global.turbo_disabled)
1937 		val |= (u64)1 << 32;
1938 
1939 	return val;
1940 }
1941 
1942 static int knl_get_aperf_mperf_shift(void)
1943 {
1944 	return 10;
1945 }
1946 
1947 static int knl_get_turbo_pstate(int cpu)
1948 {
1949 	u64 value;
1950 	int nont, ret;
1951 
1952 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1953 	nont = core_get_max_pstate(cpu);
1954 	ret = (((value) >> 8) & 0xFF);
1955 	if (ret <= nont)
1956 		ret = nont;
1957 	return ret;
1958 }
1959 
1960 static void hybrid_get_type(void *data)
1961 {
1962 	u8 *cpu_type = data;
1963 
1964 	*cpu_type = get_this_hybrid_cpu_type();
1965 }
1966 
1967 static int hwp_get_cpu_scaling(int cpu)
1968 {
1969 	u8 cpu_type = 0;
1970 
1971 	smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1972 	/* P-cores have a smaller perf level-to-freqency scaling factor. */
1973 	if (cpu_type == 0x40)
1974 		return hybrid_scaling_factor;
1975 
1976 	/* Use default core scaling for E-cores */
1977 	if (cpu_type == 0x20)
1978 		return core_get_scaling();
1979 
1980 	/*
1981 	 * If reached here, this system is either non-hybrid (like Tiger
1982 	 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
1983 	 * no E cores (in which case CPUID for hybrid support is 0).
1984 	 *
1985 	 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
1986 	 * so the default core scaling will be used for them.
1987 	 */
1988 	return intel_pstate_cppc_get_scaling(cpu);
1989 }
1990 
1991 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1992 {
1993 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1994 	cpu->pstate.current_pstate = pstate;
1995 	/*
1996 	 * Generally, there is no guarantee that this code will always run on
1997 	 * the CPU being updated, so force the register update to run on the
1998 	 * right CPU.
1999 	 */
2000 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2001 		      pstate_funcs.get_val(cpu, pstate));
2002 }
2003 
2004 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2005 {
2006 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2007 }
2008 
2009 static void intel_pstate_max_within_limits(struct cpudata *cpu)
2010 {
2011 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2012 
2013 	update_turbo_state();
2014 	intel_pstate_set_pstate(cpu, pstate);
2015 }
2016 
2017 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2018 {
2019 	int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2020 	int perf_ctl_scaling = pstate_funcs.get_scaling();
2021 
2022 	cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2023 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2024 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2025 
2026 	if (hwp_active && !hwp_mode_bdw) {
2027 		__intel_pstate_get_hwp_cap(cpu);
2028 
2029 		if (pstate_funcs.get_cpu_scaling) {
2030 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2031 			if (cpu->pstate.scaling != perf_ctl_scaling)
2032 				intel_pstate_hybrid_hwp_adjust(cpu);
2033 		} else {
2034 			cpu->pstate.scaling = perf_ctl_scaling;
2035 		}
2036 	} else {
2037 		cpu->pstate.scaling = perf_ctl_scaling;
2038 		cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2039 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2040 	}
2041 
2042 	if (cpu->pstate.scaling == perf_ctl_scaling) {
2043 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2044 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2045 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2046 	}
2047 
2048 	if (pstate_funcs.get_aperf_mperf_shift)
2049 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2050 
2051 	if (pstate_funcs.get_vid)
2052 		pstate_funcs.get_vid(cpu);
2053 
2054 	intel_pstate_set_min_pstate(cpu);
2055 }
2056 
2057 /*
2058  * Long hold time will keep high perf limits for long time,
2059  * which negatively impacts perf/watt for some workloads,
2060  * like specpower. 3ms is based on experiements on some
2061  * workoads.
2062  */
2063 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2064 
2065 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2066 {
2067 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2068 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2069 	u32 max_limit = (hwp_req & 0xff00) >> 8;
2070 	u32 min_limit = (hwp_req & 0xff);
2071 	u32 boost_level1;
2072 
2073 	/*
2074 	 * Cases to consider (User changes via sysfs or boot time):
2075 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2076 	 *	No boost, return.
2077 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2078 	 *     Should result in one level boost only for P0.
2079 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2080 	 *     Should result in two level boost:
2081 	 *         (min + p1)/2 and P1.
2082 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2083 	 *     Should result in three level boost:
2084 	 *        (min + p1)/2, P1 and P0.
2085 	 */
2086 
2087 	/* If max and min are equal or already at max, nothing to boost */
2088 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2089 		return;
2090 
2091 	if (!cpu->hwp_boost_min)
2092 		cpu->hwp_boost_min = min_limit;
2093 
2094 	/* level at half way mark between min and guranteed */
2095 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2096 
2097 	if (cpu->hwp_boost_min < boost_level1)
2098 		cpu->hwp_boost_min = boost_level1;
2099 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2100 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2101 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2102 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2103 		cpu->hwp_boost_min = max_limit;
2104 	else
2105 		return;
2106 
2107 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2108 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2109 	cpu->last_update = cpu->sample.time;
2110 }
2111 
2112 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2113 {
2114 	if (cpu->hwp_boost_min) {
2115 		bool expired;
2116 
2117 		/* Check if we are idle for hold time to boost down */
2118 		expired = time_after64(cpu->sample.time, cpu->last_update +
2119 				       hwp_boost_hold_time_ns);
2120 		if (expired) {
2121 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2122 			cpu->hwp_boost_min = 0;
2123 		}
2124 	}
2125 	cpu->last_update = cpu->sample.time;
2126 }
2127 
2128 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2129 						      u64 time)
2130 {
2131 	cpu->sample.time = time;
2132 
2133 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2134 		bool do_io = false;
2135 
2136 		cpu->sched_flags = 0;
2137 		/*
2138 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2139 		 * is set all the time, we can't just conclude that there is
2140 		 * some IO bound activity is scheduled on this CPU with just
2141 		 * one occurrence. If we receive at least two in two
2142 		 * consecutive ticks, then we treat as boost candidate.
2143 		 */
2144 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2145 			do_io = true;
2146 
2147 		cpu->last_io_update = time;
2148 
2149 		if (do_io)
2150 			intel_pstate_hwp_boost_up(cpu);
2151 
2152 	} else {
2153 		intel_pstate_hwp_boost_down(cpu);
2154 	}
2155 }
2156 
2157 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2158 						u64 time, unsigned int flags)
2159 {
2160 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2161 
2162 	cpu->sched_flags |= flags;
2163 
2164 	if (smp_processor_id() == cpu->cpu)
2165 		intel_pstate_update_util_hwp_local(cpu, time);
2166 }
2167 
2168 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2169 {
2170 	struct sample *sample = &cpu->sample;
2171 
2172 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2173 }
2174 
2175 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2176 {
2177 	u64 aperf, mperf;
2178 	unsigned long flags;
2179 	u64 tsc;
2180 
2181 	local_irq_save(flags);
2182 	rdmsrl(MSR_IA32_APERF, aperf);
2183 	rdmsrl(MSR_IA32_MPERF, mperf);
2184 	tsc = rdtsc();
2185 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2186 		local_irq_restore(flags);
2187 		return false;
2188 	}
2189 	local_irq_restore(flags);
2190 
2191 	cpu->last_sample_time = cpu->sample.time;
2192 	cpu->sample.time = time;
2193 	cpu->sample.aperf = aperf;
2194 	cpu->sample.mperf = mperf;
2195 	cpu->sample.tsc =  tsc;
2196 	cpu->sample.aperf -= cpu->prev_aperf;
2197 	cpu->sample.mperf -= cpu->prev_mperf;
2198 	cpu->sample.tsc -= cpu->prev_tsc;
2199 
2200 	cpu->prev_aperf = aperf;
2201 	cpu->prev_mperf = mperf;
2202 	cpu->prev_tsc = tsc;
2203 	/*
2204 	 * First time this function is invoked in a given cycle, all of the
2205 	 * previous sample data fields are equal to zero or stale and they must
2206 	 * be populated with meaningful numbers for things to work, so assume
2207 	 * that sample.time will always be reset before setting the utilization
2208 	 * update hook and make the caller skip the sample then.
2209 	 */
2210 	if (cpu->last_sample_time) {
2211 		intel_pstate_calc_avg_perf(cpu);
2212 		return true;
2213 	}
2214 	return false;
2215 }
2216 
2217 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2218 {
2219 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2220 }
2221 
2222 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2223 {
2224 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2225 			  cpu->sample.core_avg_perf);
2226 }
2227 
2228 static inline int32_t get_target_pstate(struct cpudata *cpu)
2229 {
2230 	struct sample *sample = &cpu->sample;
2231 	int32_t busy_frac;
2232 	int target, avg_pstate;
2233 
2234 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2235 			   sample->tsc);
2236 
2237 	if (busy_frac < cpu->iowait_boost)
2238 		busy_frac = cpu->iowait_boost;
2239 
2240 	sample->busy_scaled = busy_frac * 100;
2241 
2242 	target = global.no_turbo || global.turbo_disabled ?
2243 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2244 	target += target >> 2;
2245 	target = mul_fp(target, busy_frac);
2246 	if (target < cpu->pstate.min_pstate)
2247 		target = cpu->pstate.min_pstate;
2248 
2249 	/*
2250 	 * If the average P-state during the previous cycle was higher than the
2251 	 * current target, add 50% of the difference to the target to reduce
2252 	 * possible performance oscillations and offset possible performance
2253 	 * loss related to moving the workload from one CPU to another within
2254 	 * a package/module.
2255 	 */
2256 	avg_pstate = get_avg_pstate(cpu);
2257 	if (avg_pstate > target)
2258 		target += (avg_pstate - target) >> 1;
2259 
2260 	return target;
2261 }
2262 
2263 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2264 {
2265 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2266 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2267 
2268 	return clamp_t(int, pstate, min_pstate, max_pstate);
2269 }
2270 
2271 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2272 {
2273 	if (pstate == cpu->pstate.current_pstate)
2274 		return;
2275 
2276 	cpu->pstate.current_pstate = pstate;
2277 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2278 }
2279 
2280 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2281 {
2282 	int from = cpu->pstate.current_pstate;
2283 	struct sample *sample;
2284 	int target_pstate;
2285 
2286 	update_turbo_state();
2287 
2288 	target_pstate = get_target_pstate(cpu);
2289 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2290 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2291 	intel_pstate_update_pstate(cpu, target_pstate);
2292 
2293 	sample = &cpu->sample;
2294 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2295 		fp_toint(sample->busy_scaled),
2296 		from,
2297 		cpu->pstate.current_pstate,
2298 		sample->mperf,
2299 		sample->aperf,
2300 		sample->tsc,
2301 		get_avg_frequency(cpu),
2302 		fp_toint(cpu->iowait_boost * 100));
2303 }
2304 
2305 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2306 				     unsigned int flags)
2307 {
2308 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2309 	u64 delta_ns;
2310 
2311 	/* Don't allow remote callbacks */
2312 	if (smp_processor_id() != cpu->cpu)
2313 		return;
2314 
2315 	delta_ns = time - cpu->last_update;
2316 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2317 		/* Start over if the CPU may have been idle. */
2318 		if (delta_ns > TICK_NSEC) {
2319 			cpu->iowait_boost = ONE_EIGHTH_FP;
2320 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2321 			cpu->iowait_boost <<= 1;
2322 			if (cpu->iowait_boost > int_tofp(1))
2323 				cpu->iowait_boost = int_tofp(1);
2324 		} else {
2325 			cpu->iowait_boost = ONE_EIGHTH_FP;
2326 		}
2327 	} else if (cpu->iowait_boost) {
2328 		/* Clear iowait_boost if the CPU may have been idle. */
2329 		if (delta_ns > TICK_NSEC)
2330 			cpu->iowait_boost = 0;
2331 		else
2332 			cpu->iowait_boost >>= 1;
2333 	}
2334 	cpu->last_update = time;
2335 	delta_ns = time - cpu->sample.time;
2336 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2337 		return;
2338 
2339 	if (intel_pstate_sample(cpu, time))
2340 		intel_pstate_adjust_pstate(cpu);
2341 }
2342 
2343 static struct pstate_funcs core_funcs = {
2344 	.get_max = core_get_max_pstate,
2345 	.get_max_physical = core_get_max_pstate_physical,
2346 	.get_min = core_get_min_pstate,
2347 	.get_turbo = core_get_turbo_pstate,
2348 	.get_scaling = core_get_scaling,
2349 	.get_val = core_get_val,
2350 };
2351 
2352 static const struct pstate_funcs silvermont_funcs = {
2353 	.get_max = atom_get_max_pstate,
2354 	.get_max_physical = atom_get_max_pstate,
2355 	.get_min = atom_get_min_pstate,
2356 	.get_turbo = atom_get_turbo_pstate,
2357 	.get_val = atom_get_val,
2358 	.get_scaling = silvermont_get_scaling,
2359 	.get_vid = atom_get_vid,
2360 };
2361 
2362 static const struct pstate_funcs airmont_funcs = {
2363 	.get_max = atom_get_max_pstate,
2364 	.get_max_physical = atom_get_max_pstate,
2365 	.get_min = atom_get_min_pstate,
2366 	.get_turbo = atom_get_turbo_pstate,
2367 	.get_val = atom_get_val,
2368 	.get_scaling = airmont_get_scaling,
2369 	.get_vid = atom_get_vid,
2370 };
2371 
2372 static const struct pstate_funcs knl_funcs = {
2373 	.get_max = core_get_max_pstate,
2374 	.get_max_physical = core_get_max_pstate_physical,
2375 	.get_min = core_get_min_pstate,
2376 	.get_turbo = knl_get_turbo_pstate,
2377 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2378 	.get_scaling = core_get_scaling,
2379 	.get_val = core_get_val,
2380 };
2381 
2382 #define X86_MATCH(model, policy)					 \
2383 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2384 					   X86_FEATURE_APERFMPERF, &policy)
2385 
2386 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2387 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2388 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2389 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2390 	X86_MATCH(IVYBRIDGE,		core_funcs),
2391 	X86_MATCH(HASWELL,		core_funcs),
2392 	X86_MATCH(BROADWELL,		core_funcs),
2393 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2394 	X86_MATCH(HASWELL_X,		core_funcs),
2395 	X86_MATCH(HASWELL_L,		core_funcs),
2396 	X86_MATCH(HASWELL_G,		core_funcs),
2397 	X86_MATCH(BROADWELL_G,		core_funcs),
2398 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2399 	X86_MATCH(SKYLAKE_L,		core_funcs),
2400 	X86_MATCH(BROADWELL_X,		core_funcs),
2401 	X86_MATCH(SKYLAKE,		core_funcs),
2402 	X86_MATCH(BROADWELL_D,		core_funcs),
2403 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2404 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2405 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2406 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2407 	X86_MATCH(SKYLAKE_X,		core_funcs),
2408 	X86_MATCH(COMETLAKE,		core_funcs),
2409 	X86_MATCH(ICELAKE_X,		core_funcs),
2410 	X86_MATCH(TIGERLAKE,		core_funcs),
2411 	X86_MATCH(SAPPHIRERAPIDS_X,	core_funcs),
2412 	X86_MATCH(EMERALDRAPIDS_X,      core_funcs),
2413 	{}
2414 };
2415 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2416 
2417 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2418 	X86_MATCH(BROADWELL_D,		core_funcs),
2419 	X86_MATCH(BROADWELL_X,		core_funcs),
2420 	X86_MATCH(SKYLAKE_X,		core_funcs),
2421 	X86_MATCH(ICELAKE_X,		core_funcs),
2422 	X86_MATCH(SAPPHIRERAPIDS_X,	core_funcs),
2423 	{}
2424 };
2425 
2426 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2427 	X86_MATCH(KABYLAKE,		core_funcs),
2428 	{}
2429 };
2430 
2431 static int intel_pstate_init_cpu(unsigned int cpunum)
2432 {
2433 	struct cpudata *cpu;
2434 
2435 	cpu = all_cpu_data[cpunum];
2436 
2437 	if (!cpu) {
2438 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2439 		if (!cpu)
2440 			return -ENOMEM;
2441 
2442 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2443 
2444 		cpu->cpu = cpunum;
2445 
2446 		cpu->epp_default = -EINVAL;
2447 
2448 		if (hwp_active) {
2449 			intel_pstate_hwp_enable(cpu);
2450 
2451 			if (intel_pstate_acpi_pm_profile_server())
2452 				hwp_boost = true;
2453 		}
2454 	} else if (hwp_active) {
2455 		/*
2456 		 * Re-enable HWP in case this happens after a resume from ACPI
2457 		 * S3 if the CPU was offline during the whole system/resume
2458 		 * cycle.
2459 		 */
2460 		intel_pstate_hwp_reenable(cpu);
2461 	}
2462 
2463 	cpu->epp_powersave = -EINVAL;
2464 	cpu->epp_policy = 0;
2465 
2466 	intel_pstate_get_cpu_pstates(cpu);
2467 
2468 	pr_debug("controlling: cpu %d\n", cpunum);
2469 
2470 	return 0;
2471 }
2472 
2473 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2474 {
2475 	struct cpudata *cpu = all_cpu_data[cpu_num];
2476 
2477 	if (hwp_active && !hwp_boost)
2478 		return;
2479 
2480 	if (cpu->update_util_set)
2481 		return;
2482 
2483 	/* Prevent intel_pstate_update_util() from using stale data. */
2484 	cpu->sample.time = 0;
2485 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2486 				     (hwp_active ?
2487 				      intel_pstate_update_util_hwp :
2488 				      intel_pstate_update_util));
2489 	cpu->update_util_set = true;
2490 }
2491 
2492 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2493 {
2494 	struct cpudata *cpu_data = all_cpu_data[cpu];
2495 
2496 	if (!cpu_data->update_util_set)
2497 		return;
2498 
2499 	cpufreq_remove_update_util_hook(cpu);
2500 	cpu_data->update_util_set = false;
2501 	synchronize_rcu();
2502 }
2503 
2504 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2505 {
2506 	return global.turbo_disabled || global.no_turbo ?
2507 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2508 }
2509 
2510 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2511 					    unsigned int policy_min,
2512 					    unsigned int policy_max)
2513 {
2514 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2515 	int32_t max_policy_perf, min_policy_perf;
2516 
2517 	max_policy_perf = policy_max / perf_ctl_scaling;
2518 	if (policy_max == policy_min) {
2519 		min_policy_perf = max_policy_perf;
2520 	} else {
2521 		min_policy_perf = policy_min / perf_ctl_scaling;
2522 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2523 					  0, max_policy_perf);
2524 	}
2525 
2526 	/*
2527 	 * HWP needs some special consideration, because HWP_REQUEST uses
2528 	 * abstract values to represent performance rather than pure ratios.
2529 	 */
2530 	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2531 		int scaling = cpu->pstate.scaling;
2532 		int freq;
2533 
2534 		freq = max_policy_perf * perf_ctl_scaling;
2535 		max_policy_perf = DIV_ROUND_UP(freq, scaling);
2536 		freq = min_policy_perf * perf_ctl_scaling;
2537 		min_policy_perf = DIV_ROUND_UP(freq, scaling);
2538 	}
2539 
2540 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2541 		 cpu->cpu, min_policy_perf, max_policy_perf);
2542 
2543 	/* Normalize user input to [min_perf, max_perf] */
2544 	if (per_cpu_limits) {
2545 		cpu->min_perf_ratio = min_policy_perf;
2546 		cpu->max_perf_ratio = max_policy_perf;
2547 	} else {
2548 		int turbo_max = cpu->pstate.turbo_pstate;
2549 		int32_t global_min, global_max;
2550 
2551 		/* Global limits are in percent of the maximum turbo P-state. */
2552 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2553 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2554 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2555 
2556 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2557 			 global_min, global_max);
2558 
2559 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2560 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2561 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2562 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2563 
2564 		/* Make sure min_perf <= max_perf */
2565 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2566 					  cpu->max_perf_ratio);
2567 
2568 	}
2569 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2570 		 cpu->max_perf_ratio,
2571 		 cpu->min_perf_ratio);
2572 }
2573 
2574 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2575 {
2576 	struct cpudata *cpu;
2577 
2578 	if (!policy->cpuinfo.max_freq)
2579 		return -ENODEV;
2580 
2581 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2582 		 policy->cpuinfo.max_freq, policy->max);
2583 
2584 	cpu = all_cpu_data[policy->cpu];
2585 	cpu->policy = policy->policy;
2586 
2587 	mutex_lock(&intel_pstate_limits_lock);
2588 
2589 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2590 
2591 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2592 		/*
2593 		 * NOHZ_FULL CPUs need this as the governor callback may not
2594 		 * be invoked on them.
2595 		 */
2596 		intel_pstate_clear_update_util_hook(policy->cpu);
2597 		intel_pstate_max_within_limits(cpu);
2598 	} else {
2599 		intel_pstate_set_update_util_hook(policy->cpu);
2600 	}
2601 
2602 	if (hwp_active) {
2603 		/*
2604 		 * When hwp_boost was active before and dynamically it
2605 		 * was turned off, in that case we need to clear the
2606 		 * update util hook.
2607 		 */
2608 		if (!hwp_boost)
2609 			intel_pstate_clear_update_util_hook(policy->cpu);
2610 		intel_pstate_hwp_set(policy->cpu);
2611 	}
2612 	/*
2613 	 * policy->cur is never updated with the intel_pstate driver, but it
2614 	 * is used as a stale frequency value. So, keep it within limits.
2615 	 */
2616 	policy->cur = policy->min;
2617 
2618 	mutex_unlock(&intel_pstate_limits_lock);
2619 
2620 	return 0;
2621 }
2622 
2623 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2624 					   struct cpufreq_policy_data *policy)
2625 {
2626 	if (!hwp_active &&
2627 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2628 	    policy->max < policy->cpuinfo.max_freq &&
2629 	    policy->max > cpu->pstate.max_freq) {
2630 		pr_debug("policy->max > max non turbo frequency\n");
2631 		policy->max = policy->cpuinfo.max_freq;
2632 	}
2633 }
2634 
2635 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2636 					   struct cpufreq_policy_data *policy)
2637 {
2638 	int max_freq;
2639 
2640 	update_turbo_state();
2641 	if (hwp_active) {
2642 		intel_pstate_get_hwp_cap(cpu);
2643 		max_freq = global.no_turbo || global.turbo_disabled ?
2644 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2645 	} else {
2646 		max_freq = intel_pstate_get_max_freq(cpu);
2647 	}
2648 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2649 
2650 	intel_pstate_adjust_policy_max(cpu, policy);
2651 }
2652 
2653 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2654 {
2655 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2656 
2657 	return 0;
2658 }
2659 
2660 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2661 {
2662 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2663 
2664 	pr_debug("CPU %d going offline\n", cpu->cpu);
2665 
2666 	if (cpu->suspended)
2667 		return 0;
2668 
2669 	/*
2670 	 * If the CPU is an SMT thread and it goes offline with the performance
2671 	 * settings different from the minimum, it will prevent its sibling
2672 	 * from getting to lower performance levels, so force the minimum
2673 	 * performance on CPU offline to prevent that from happening.
2674 	 */
2675 	if (hwp_active)
2676 		intel_pstate_hwp_offline(cpu);
2677 	else
2678 		intel_pstate_set_min_pstate(cpu);
2679 
2680 	intel_pstate_exit_perf_limits(policy);
2681 
2682 	return 0;
2683 }
2684 
2685 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2686 {
2687 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2688 
2689 	pr_debug("CPU %d going online\n", cpu->cpu);
2690 
2691 	intel_pstate_init_acpi_perf_limits(policy);
2692 
2693 	if (hwp_active) {
2694 		/*
2695 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2696 		 * know that it need not do that.
2697 		 */
2698 		intel_pstate_hwp_reenable(cpu);
2699 		cpu->suspended = false;
2700 	}
2701 
2702 	return 0;
2703 }
2704 
2705 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2706 {
2707 	intel_pstate_clear_update_util_hook(policy->cpu);
2708 
2709 	return intel_cpufreq_cpu_offline(policy);
2710 }
2711 
2712 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2713 {
2714 	pr_debug("CPU %d exiting\n", policy->cpu);
2715 
2716 	policy->fast_switch_possible = false;
2717 
2718 	return 0;
2719 }
2720 
2721 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2722 {
2723 	struct cpudata *cpu;
2724 	int rc;
2725 
2726 	rc = intel_pstate_init_cpu(policy->cpu);
2727 	if (rc)
2728 		return rc;
2729 
2730 	cpu = all_cpu_data[policy->cpu];
2731 
2732 	cpu->max_perf_ratio = 0xFF;
2733 	cpu->min_perf_ratio = 0;
2734 
2735 	/* cpuinfo and default policy values */
2736 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2737 	update_turbo_state();
2738 	global.turbo_disabled_mf = global.turbo_disabled;
2739 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2740 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2741 
2742 	policy->min = policy->cpuinfo.min_freq;
2743 	policy->max = policy->cpuinfo.max_freq;
2744 
2745 	intel_pstate_init_acpi_perf_limits(policy);
2746 
2747 	policy->fast_switch_possible = true;
2748 
2749 	return 0;
2750 }
2751 
2752 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2753 {
2754 	int ret = __intel_pstate_cpu_init(policy);
2755 
2756 	if (ret)
2757 		return ret;
2758 
2759 	/*
2760 	 * Set the policy to powersave to provide a valid fallback value in case
2761 	 * the default cpufreq governor is neither powersave nor performance.
2762 	 */
2763 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2764 
2765 	if (hwp_active) {
2766 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2767 
2768 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2769 	}
2770 
2771 	return 0;
2772 }
2773 
2774 static struct cpufreq_driver intel_pstate = {
2775 	.flags		= CPUFREQ_CONST_LOOPS,
2776 	.verify		= intel_pstate_verify_policy,
2777 	.setpolicy	= intel_pstate_set_policy,
2778 	.suspend	= intel_pstate_suspend,
2779 	.resume		= intel_pstate_resume,
2780 	.init		= intel_pstate_cpu_init,
2781 	.exit		= intel_pstate_cpu_exit,
2782 	.offline	= intel_pstate_cpu_offline,
2783 	.online		= intel_pstate_cpu_online,
2784 	.update_limits	= intel_pstate_update_limits,
2785 	.name		= "intel_pstate",
2786 };
2787 
2788 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2789 {
2790 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2791 
2792 	intel_pstate_verify_cpu_policy(cpu, policy);
2793 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2794 
2795 	return 0;
2796 }
2797 
2798 /* Use of trace in passive mode:
2799  *
2800  * In passive mode the trace core_busy field (also known as the
2801  * performance field, and lablelled as such on the graphs; also known as
2802  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2803  * driver call was via the normal or fast switch path. Various graphs
2804  * output from the intel_pstate_tracer.py utility that include core_busy
2805  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2806  * so we use 10 to indicate the normal path through the driver, and
2807  * 90 to indicate the fast switch path through the driver.
2808  * The scaled_busy field is not used, and is set to 0.
2809  */
2810 
2811 #define	INTEL_PSTATE_TRACE_TARGET 10
2812 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2813 
2814 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2815 {
2816 	struct sample *sample;
2817 
2818 	if (!trace_pstate_sample_enabled())
2819 		return;
2820 
2821 	if (!intel_pstate_sample(cpu, ktime_get()))
2822 		return;
2823 
2824 	sample = &cpu->sample;
2825 	trace_pstate_sample(trace_type,
2826 		0,
2827 		old_pstate,
2828 		cpu->pstate.current_pstate,
2829 		sample->mperf,
2830 		sample->aperf,
2831 		sample->tsc,
2832 		get_avg_frequency(cpu),
2833 		fp_toint(cpu->iowait_boost * 100));
2834 }
2835 
2836 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2837 				     u32 desired, bool fast_switch)
2838 {
2839 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2840 
2841 	value &= ~HWP_MIN_PERF(~0L);
2842 	value |= HWP_MIN_PERF(min);
2843 
2844 	value &= ~HWP_MAX_PERF(~0L);
2845 	value |= HWP_MAX_PERF(max);
2846 
2847 	value &= ~HWP_DESIRED_PERF(~0L);
2848 	value |= HWP_DESIRED_PERF(desired);
2849 
2850 	if (value == prev)
2851 		return;
2852 
2853 	WRITE_ONCE(cpu->hwp_req_cached, value);
2854 	if (fast_switch)
2855 		wrmsrl(MSR_HWP_REQUEST, value);
2856 	else
2857 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2858 }
2859 
2860 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2861 					  u32 target_pstate, bool fast_switch)
2862 {
2863 	if (fast_switch)
2864 		wrmsrl(MSR_IA32_PERF_CTL,
2865 		       pstate_funcs.get_val(cpu, target_pstate));
2866 	else
2867 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2868 			      pstate_funcs.get_val(cpu, target_pstate));
2869 }
2870 
2871 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2872 				       int target_pstate, bool fast_switch)
2873 {
2874 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2875 	int old_pstate = cpu->pstate.current_pstate;
2876 
2877 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2878 	if (hwp_active) {
2879 		int max_pstate = policy->strict_target ?
2880 					target_pstate : cpu->max_perf_ratio;
2881 
2882 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2883 					 fast_switch);
2884 	} else if (target_pstate != old_pstate) {
2885 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2886 	}
2887 
2888 	cpu->pstate.current_pstate = target_pstate;
2889 
2890 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2891 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2892 
2893 	return target_pstate;
2894 }
2895 
2896 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2897 				unsigned int target_freq,
2898 				unsigned int relation)
2899 {
2900 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2901 	struct cpufreq_freqs freqs;
2902 	int target_pstate;
2903 
2904 	update_turbo_state();
2905 
2906 	freqs.old = policy->cur;
2907 	freqs.new = target_freq;
2908 
2909 	cpufreq_freq_transition_begin(policy, &freqs);
2910 
2911 	switch (relation) {
2912 	case CPUFREQ_RELATION_L:
2913 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2914 		break;
2915 	case CPUFREQ_RELATION_H:
2916 		target_pstate = freqs.new / cpu->pstate.scaling;
2917 		break;
2918 	default:
2919 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2920 		break;
2921 	}
2922 
2923 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2924 
2925 	freqs.new = target_pstate * cpu->pstate.scaling;
2926 
2927 	cpufreq_freq_transition_end(policy, &freqs, false);
2928 
2929 	return 0;
2930 }
2931 
2932 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2933 					      unsigned int target_freq)
2934 {
2935 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2936 	int target_pstate;
2937 
2938 	update_turbo_state();
2939 
2940 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2941 
2942 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2943 
2944 	return target_pstate * cpu->pstate.scaling;
2945 }
2946 
2947 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2948 				      unsigned long min_perf,
2949 				      unsigned long target_perf,
2950 				      unsigned long capacity)
2951 {
2952 	struct cpudata *cpu = all_cpu_data[cpunum];
2953 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2954 	int old_pstate = cpu->pstate.current_pstate;
2955 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2956 
2957 	update_turbo_state();
2958 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2959 					     HWP_HIGHEST_PERF(hwp_cap);
2960 
2961 	/* Optimization: Avoid unnecessary divisions. */
2962 
2963 	target_pstate = cap_pstate;
2964 	if (target_perf < capacity)
2965 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2966 
2967 	min_pstate = cap_pstate;
2968 	if (min_perf < capacity)
2969 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2970 
2971 	if (min_pstate < cpu->pstate.min_pstate)
2972 		min_pstate = cpu->pstate.min_pstate;
2973 
2974 	if (min_pstate < cpu->min_perf_ratio)
2975 		min_pstate = cpu->min_perf_ratio;
2976 
2977 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2978 	if (max_pstate < min_pstate)
2979 		max_pstate = min_pstate;
2980 
2981 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2982 
2983 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2984 
2985 	cpu->pstate.current_pstate = target_pstate;
2986 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2987 }
2988 
2989 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2990 {
2991 	struct freq_qos_request *req;
2992 	struct cpudata *cpu;
2993 	struct device *dev;
2994 	int ret, freq;
2995 
2996 	dev = get_cpu_device(policy->cpu);
2997 	if (!dev)
2998 		return -ENODEV;
2999 
3000 	ret = __intel_pstate_cpu_init(policy);
3001 	if (ret)
3002 		return ret;
3003 
3004 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3005 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
3006 	policy->cur = policy->cpuinfo.min_freq;
3007 
3008 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3009 	if (!req) {
3010 		ret = -ENOMEM;
3011 		goto pstate_exit;
3012 	}
3013 
3014 	cpu = all_cpu_data[policy->cpu];
3015 
3016 	if (hwp_active) {
3017 		u64 value;
3018 
3019 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3020 
3021 		intel_pstate_get_hwp_cap(cpu);
3022 
3023 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3024 		WRITE_ONCE(cpu->hwp_req_cached, value);
3025 
3026 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3027 	} else {
3028 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3029 	}
3030 
3031 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3032 
3033 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3034 				   freq);
3035 	if (ret < 0) {
3036 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3037 		goto free_req;
3038 	}
3039 
3040 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3041 
3042 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3043 				   freq);
3044 	if (ret < 0) {
3045 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3046 		goto remove_min_req;
3047 	}
3048 
3049 	policy->driver_data = req;
3050 
3051 	return 0;
3052 
3053 remove_min_req:
3054 	freq_qos_remove_request(req);
3055 free_req:
3056 	kfree(req);
3057 pstate_exit:
3058 	intel_pstate_exit_perf_limits(policy);
3059 
3060 	return ret;
3061 }
3062 
3063 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3064 {
3065 	struct freq_qos_request *req;
3066 
3067 	req = policy->driver_data;
3068 
3069 	freq_qos_remove_request(req + 1);
3070 	freq_qos_remove_request(req);
3071 	kfree(req);
3072 
3073 	return intel_pstate_cpu_exit(policy);
3074 }
3075 
3076 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3077 {
3078 	intel_pstate_suspend(policy);
3079 
3080 	if (hwp_active) {
3081 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3082 		u64 value = READ_ONCE(cpu->hwp_req_cached);
3083 
3084 		/*
3085 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3086 		 * intel_cpufreq_adjust_perf() is in use and the last value
3087 		 * written by it may not be suitable.
3088 		 */
3089 		value &= ~HWP_DESIRED_PERF(~0L);
3090 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3091 		WRITE_ONCE(cpu->hwp_req_cached, value);
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 static struct cpufreq_driver intel_cpufreq = {
3098 	.flags		= CPUFREQ_CONST_LOOPS,
3099 	.verify		= intel_cpufreq_verify_policy,
3100 	.target		= intel_cpufreq_target,
3101 	.fast_switch	= intel_cpufreq_fast_switch,
3102 	.init		= intel_cpufreq_cpu_init,
3103 	.exit		= intel_cpufreq_cpu_exit,
3104 	.offline	= intel_cpufreq_cpu_offline,
3105 	.online		= intel_pstate_cpu_online,
3106 	.suspend	= intel_cpufreq_suspend,
3107 	.resume		= intel_pstate_resume,
3108 	.update_limits	= intel_pstate_update_limits,
3109 	.name		= "intel_cpufreq",
3110 };
3111 
3112 static struct cpufreq_driver *default_driver;
3113 
3114 static void intel_pstate_driver_cleanup(void)
3115 {
3116 	unsigned int cpu;
3117 
3118 	cpus_read_lock();
3119 	for_each_online_cpu(cpu) {
3120 		if (all_cpu_data[cpu]) {
3121 			if (intel_pstate_driver == &intel_pstate)
3122 				intel_pstate_clear_update_util_hook(cpu);
3123 
3124 			spin_lock(&hwp_notify_lock);
3125 			kfree(all_cpu_data[cpu]);
3126 			WRITE_ONCE(all_cpu_data[cpu], NULL);
3127 			spin_unlock(&hwp_notify_lock);
3128 		}
3129 	}
3130 	cpus_read_unlock();
3131 
3132 	intel_pstate_driver = NULL;
3133 }
3134 
3135 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3136 {
3137 	int ret;
3138 
3139 	if (driver == &intel_pstate)
3140 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3141 
3142 	memset(&global, 0, sizeof(global));
3143 	global.max_perf_pct = 100;
3144 
3145 	intel_pstate_driver = driver;
3146 	ret = cpufreq_register_driver(intel_pstate_driver);
3147 	if (ret) {
3148 		intel_pstate_driver_cleanup();
3149 		return ret;
3150 	}
3151 
3152 	global.min_perf_pct = min_perf_pct_min();
3153 
3154 	return 0;
3155 }
3156 
3157 static ssize_t intel_pstate_show_status(char *buf)
3158 {
3159 	if (!intel_pstate_driver)
3160 		return sprintf(buf, "off\n");
3161 
3162 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3163 					"active" : "passive");
3164 }
3165 
3166 static int intel_pstate_update_status(const char *buf, size_t size)
3167 {
3168 	if (size == 3 && !strncmp(buf, "off", size)) {
3169 		if (!intel_pstate_driver)
3170 			return -EINVAL;
3171 
3172 		if (hwp_active)
3173 			return -EBUSY;
3174 
3175 		cpufreq_unregister_driver(intel_pstate_driver);
3176 		intel_pstate_driver_cleanup();
3177 		return 0;
3178 	}
3179 
3180 	if (size == 6 && !strncmp(buf, "active", size)) {
3181 		if (intel_pstate_driver) {
3182 			if (intel_pstate_driver == &intel_pstate)
3183 				return 0;
3184 
3185 			cpufreq_unregister_driver(intel_pstate_driver);
3186 		}
3187 
3188 		return intel_pstate_register_driver(&intel_pstate);
3189 	}
3190 
3191 	if (size == 7 && !strncmp(buf, "passive", size)) {
3192 		if (intel_pstate_driver) {
3193 			if (intel_pstate_driver == &intel_cpufreq)
3194 				return 0;
3195 
3196 			cpufreq_unregister_driver(intel_pstate_driver);
3197 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3198 		}
3199 
3200 		return intel_pstate_register_driver(&intel_cpufreq);
3201 	}
3202 
3203 	return -EINVAL;
3204 }
3205 
3206 static int no_load __initdata;
3207 static int no_hwp __initdata;
3208 static int hwp_only __initdata;
3209 static unsigned int force_load __initdata;
3210 
3211 static int __init intel_pstate_msrs_not_valid(void)
3212 {
3213 	if (!pstate_funcs.get_max(0) ||
3214 	    !pstate_funcs.get_min(0) ||
3215 	    !pstate_funcs.get_turbo(0))
3216 		return -ENODEV;
3217 
3218 	return 0;
3219 }
3220 
3221 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3222 {
3223 	pstate_funcs.get_max   = funcs->get_max;
3224 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3225 	pstate_funcs.get_min   = funcs->get_min;
3226 	pstate_funcs.get_turbo = funcs->get_turbo;
3227 	pstate_funcs.get_scaling = funcs->get_scaling;
3228 	pstate_funcs.get_val   = funcs->get_val;
3229 	pstate_funcs.get_vid   = funcs->get_vid;
3230 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3231 }
3232 
3233 #ifdef CONFIG_ACPI
3234 
3235 static bool __init intel_pstate_no_acpi_pss(void)
3236 {
3237 	int i;
3238 
3239 	for_each_possible_cpu(i) {
3240 		acpi_status status;
3241 		union acpi_object *pss;
3242 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3243 		struct acpi_processor *pr = per_cpu(processors, i);
3244 
3245 		if (!pr)
3246 			continue;
3247 
3248 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3249 		if (ACPI_FAILURE(status))
3250 			continue;
3251 
3252 		pss = buffer.pointer;
3253 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3254 			kfree(pss);
3255 			return false;
3256 		}
3257 
3258 		kfree(pss);
3259 	}
3260 
3261 	pr_debug("ACPI _PSS not found\n");
3262 	return true;
3263 }
3264 
3265 static bool __init intel_pstate_no_acpi_pcch(void)
3266 {
3267 	acpi_status status;
3268 	acpi_handle handle;
3269 
3270 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3271 	if (ACPI_FAILURE(status))
3272 		goto not_found;
3273 
3274 	if (acpi_has_method(handle, "PCCH"))
3275 		return false;
3276 
3277 not_found:
3278 	pr_debug("ACPI PCCH not found\n");
3279 	return true;
3280 }
3281 
3282 static bool __init intel_pstate_has_acpi_ppc(void)
3283 {
3284 	int i;
3285 
3286 	for_each_possible_cpu(i) {
3287 		struct acpi_processor *pr = per_cpu(processors, i);
3288 
3289 		if (!pr)
3290 			continue;
3291 		if (acpi_has_method(pr->handle, "_PPC"))
3292 			return true;
3293 	}
3294 	pr_debug("ACPI _PPC not found\n");
3295 	return false;
3296 }
3297 
3298 enum {
3299 	PSS,
3300 	PPC,
3301 };
3302 
3303 /* Hardware vendor-specific info that has its own power management modes */
3304 static struct acpi_platform_list plat_info[] __initdata = {
3305 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3306 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3307 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3308 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3309 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3310 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3311 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3312 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3313 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3314 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3315 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3316 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3317 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3318 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3319 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3320 	{ } /* End */
3321 };
3322 
3323 #define BITMASK_OOB	(BIT(8) | BIT(18))
3324 
3325 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3326 {
3327 	const struct x86_cpu_id *id;
3328 	u64 misc_pwr;
3329 	int idx;
3330 
3331 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3332 	if (id) {
3333 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3334 		if (misc_pwr & BITMASK_OOB) {
3335 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3336 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3337 			return true;
3338 		}
3339 	}
3340 
3341 	idx = acpi_match_platform_list(plat_info);
3342 	if (idx < 0)
3343 		return false;
3344 
3345 	switch (plat_info[idx].data) {
3346 	case PSS:
3347 		if (!intel_pstate_no_acpi_pss())
3348 			return false;
3349 
3350 		return intel_pstate_no_acpi_pcch();
3351 	case PPC:
3352 		return intel_pstate_has_acpi_ppc() && !force_load;
3353 	}
3354 
3355 	return false;
3356 }
3357 
3358 static void intel_pstate_request_control_from_smm(void)
3359 {
3360 	/*
3361 	 * It may be unsafe to request P-states control from SMM if _PPC support
3362 	 * has not been enabled.
3363 	 */
3364 	if (acpi_ppc)
3365 		acpi_processor_pstate_control();
3366 }
3367 #else /* CONFIG_ACPI not enabled */
3368 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3369 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3370 static inline void intel_pstate_request_control_from_smm(void) {}
3371 #endif /* CONFIG_ACPI */
3372 
3373 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3374 
3375 #define X86_MATCH_HWP(model, hwp_mode)					\
3376 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3377 					   X86_FEATURE_HWP, hwp_mode)
3378 
3379 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3380 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3381 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3382 	X86_MATCH_HWP(ANY,		0),
3383 	{}
3384 };
3385 
3386 static bool intel_pstate_hwp_is_enabled(void)
3387 {
3388 	u64 value;
3389 
3390 	rdmsrl(MSR_PM_ENABLE, value);
3391 	return !!(value & 0x1);
3392 }
3393 
3394 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3395 	/*
3396 	 * Set EPP value as 102, this is the max suggested EPP
3397 	 * which can result in one core turbo frequency for
3398 	 * AlderLake Mobile CPUs.
3399 	 */
3400 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3401 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3402 	{}
3403 };
3404 
3405 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3406 	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3407 	{}
3408 };
3409 
3410 static int __init intel_pstate_init(void)
3411 {
3412 	static struct cpudata **_all_cpu_data;
3413 	const struct x86_cpu_id *id;
3414 	int rc;
3415 
3416 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3417 		return -ENODEV;
3418 
3419 	id = x86_match_cpu(hwp_support_ids);
3420 	if (id) {
3421 		hwp_forced = intel_pstate_hwp_is_enabled();
3422 
3423 		if (hwp_forced)
3424 			pr_info("HWP enabled by BIOS\n");
3425 		else if (no_load)
3426 			return -ENODEV;
3427 
3428 		copy_cpu_funcs(&core_funcs);
3429 		/*
3430 		 * Avoid enabling HWP for processors without EPP support,
3431 		 * because that means incomplete HWP implementation which is a
3432 		 * corner case and supporting it is generally problematic.
3433 		 *
3434 		 * If HWP is enabled already, though, there is no choice but to
3435 		 * deal with it.
3436 		 */
3437 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3438 			WRITE_ONCE(hwp_active, 1);
3439 			hwp_mode_bdw = id->driver_data;
3440 			intel_pstate.attr = hwp_cpufreq_attrs;
3441 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3442 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3443 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3444 			if (!default_driver)
3445 				default_driver = &intel_pstate;
3446 
3447 			pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3448 
3449 			goto hwp_cpu_matched;
3450 		}
3451 		pr_info("HWP not enabled\n");
3452 	} else {
3453 		if (no_load)
3454 			return -ENODEV;
3455 
3456 		id = x86_match_cpu(intel_pstate_cpu_ids);
3457 		if (!id) {
3458 			pr_info("CPU model not supported\n");
3459 			return -ENODEV;
3460 		}
3461 
3462 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3463 	}
3464 
3465 	if (intel_pstate_msrs_not_valid()) {
3466 		pr_info("Invalid MSRs\n");
3467 		return -ENODEV;
3468 	}
3469 	/* Without HWP start in the passive mode. */
3470 	if (!default_driver)
3471 		default_driver = &intel_cpufreq;
3472 
3473 hwp_cpu_matched:
3474 	/*
3475 	 * The Intel pstate driver will be ignored if the platform
3476 	 * firmware has its own power management modes.
3477 	 */
3478 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3479 		pr_info("P-states controlled by the platform\n");
3480 		return -ENODEV;
3481 	}
3482 
3483 	if (!hwp_active && hwp_only)
3484 		return -ENOTSUPP;
3485 
3486 	pr_info("Intel P-state driver initializing\n");
3487 
3488 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3489 	if (!_all_cpu_data)
3490 		return -ENOMEM;
3491 
3492 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
3493 
3494 	intel_pstate_request_control_from_smm();
3495 
3496 	intel_pstate_sysfs_expose_params();
3497 
3498 	if (hwp_active) {
3499 		const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3500 		const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3501 
3502 		if (id)
3503 			epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3504 
3505 		if (hybrid_id) {
3506 			hybrid_scaling_factor = hybrid_id->driver_data;
3507 			pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3508 		}
3509 
3510 	}
3511 
3512 	mutex_lock(&intel_pstate_driver_lock);
3513 	rc = intel_pstate_register_driver(default_driver);
3514 	mutex_unlock(&intel_pstate_driver_lock);
3515 	if (rc) {
3516 		intel_pstate_sysfs_remove();
3517 		return rc;
3518 	}
3519 
3520 	if (hwp_active) {
3521 		const struct x86_cpu_id *id;
3522 
3523 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3524 		if (id) {
3525 			set_power_ctl_ee_state(false);
3526 			pr_info("Disabling energy efficiency optimization\n");
3527 		}
3528 
3529 		pr_info("HWP enabled\n");
3530 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3531 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3532 	}
3533 
3534 	return 0;
3535 }
3536 device_initcall(intel_pstate_init);
3537 
3538 static int __init intel_pstate_setup(char *str)
3539 {
3540 	if (!str)
3541 		return -EINVAL;
3542 
3543 	if (!strcmp(str, "disable"))
3544 		no_load = 1;
3545 	else if (!strcmp(str, "active"))
3546 		default_driver = &intel_pstate;
3547 	else if (!strcmp(str, "passive"))
3548 		default_driver = &intel_cpufreq;
3549 
3550 	if (!strcmp(str, "no_hwp"))
3551 		no_hwp = 1;
3552 
3553 	if (!strcmp(str, "force"))
3554 		force_load = 1;
3555 	if (!strcmp(str, "hwp_only"))
3556 		hwp_only = 1;
3557 	if (!strcmp(str, "per_cpu_perf_limits"))
3558 		per_cpu_limits = true;
3559 
3560 #ifdef CONFIG_ACPI
3561 	if (!strcmp(str, "support_acpi_ppc"))
3562 		acpi_ppc = true;
3563 #endif
3564 
3565 	return 0;
3566 }
3567 early_param("intel_pstate", intel_pstate_setup);
3568 
3569 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3570 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3571