1 /* 2 * intel_pstate.c: Native P state management for Intel processors 3 * 4 * (C) Copyright 2012 Intel Corporation 5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/module.h> 16 #include <linux/ktime.h> 17 #include <linux/hrtimer.h> 18 #include <linux/tick.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/list.h> 22 #include <linux/cpu.h> 23 #include <linux/cpufreq.h> 24 #include <linux/sysfs.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/debugfs.h> 28 #include <linux/acpi.h> 29 #include <linux/vmalloc.h> 30 #include <trace/events/power.h> 31 32 #include <asm/div64.h> 33 #include <asm/msr.h> 34 #include <asm/cpu_device_id.h> 35 #include <asm/cpufeature.h> 36 37 #define ATOM_RATIOS 0x66a 38 #define ATOM_VIDS 0x66b 39 #define ATOM_TURBO_RATIOS 0x66c 40 #define ATOM_TURBO_VIDS 0x66d 41 42 #define FRAC_BITS 8 43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 44 #define fp_toint(X) ((X) >> FRAC_BITS) 45 46 static inline int32_t mul_fp(int32_t x, int32_t y) 47 { 48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 49 } 50 51 static inline int32_t div_fp(s64 x, s64 y) 52 { 53 return div64_s64((int64_t)x << FRAC_BITS, y); 54 } 55 56 static inline int ceiling_fp(int32_t x) 57 { 58 int mask, ret; 59 60 ret = fp_toint(x); 61 mask = (1 << FRAC_BITS) - 1; 62 if (x & mask) 63 ret += 1; 64 return ret; 65 } 66 67 /** 68 * struct sample - Store performance sample 69 * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual 70 * performance during last sample period 71 * @busy_scaled: Scaled busy value which is used to calculate next 72 * P state. This can be different than core_pct_busy 73 * to account for cpu idle period 74 * @aperf: Difference of actual performance frequency clock count 75 * read from APERF MSR between last and current sample 76 * @mperf: Difference of maximum performance frequency clock count 77 * read from MPERF MSR between last and current sample 78 * @tsc: Difference of time stamp counter between last and 79 * current sample 80 * @freq: Effective frequency calculated from APERF/MPERF 81 * @time: Current time from scheduler 82 * 83 * This structure is used in the cpudata structure to store performance sample 84 * data for choosing next P State. 85 */ 86 struct sample { 87 int32_t core_pct_busy; 88 int32_t busy_scaled; 89 u64 aperf; 90 u64 mperf; 91 u64 tsc; 92 int freq; 93 u64 time; 94 }; 95 96 /** 97 * struct pstate_data - Store P state data 98 * @current_pstate: Current requested P state 99 * @min_pstate: Min P state possible for this platform 100 * @max_pstate: Max P state possible for this platform 101 * @max_pstate_physical:This is physical Max P state for a processor 102 * This can be higher than the max_pstate which can 103 * be limited by platform thermal design power limits 104 * @scaling: Scaling factor to convert frequency to cpufreq 105 * frequency units 106 * @turbo_pstate: Max Turbo P state possible for this platform 107 * 108 * Stores the per cpu model P state limits and current P state. 109 */ 110 struct pstate_data { 111 int current_pstate; 112 int min_pstate; 113 int max_pstate; 114 int max_pstate_physical; 115 int scaling; 116 int turbo_pstate; 117 }; 118 119 /** 120 * struct vid_data - Stores voltage information data 121 * @min: VID data for this platform corresponding to 122 * the lowest P state 123 * @max: VID data corresponding to the highest P State. 124 * @turbo: VID data for turbo P state 125 * @ratio: Ratio of (vid max - vid min) / 126 * (max P state - Min P State) 127 * 128 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 129 * This data is used in Atom platforms, where in addition to target P state, 130 * the voltage data needs to be specified to select next P State. 131 */ 132 struct vid_data { 133 int min; 134 int max; 135 int turbo; 136 int32_t ratio; 137 }; 138 139 /** 140 * struct _pid - Stores PID data 141 * @setpoint: Target set point for busyness or performance 142 * @integral: Storage for accumulated error values 143 * @p_gain: PID proportional gain 144 * @i_gain: PID integral gain 145 * @d_gain: PID derivative gain 146 * @deadband: PID deadband 147 * @last_err: Last error storage for integral part of PID calculation 148 * 149 * Stores PID coefficients and last error for PID controller. 150 */ 151 struct _pid { 152 int setpoint; 153 int32_t integral; 154 int32_t p_gain; 155 int32_t i_gain; 156 int32_t d_gain; 157 int deadband; 158 int32_t last_err; 159 }; 160 161 /** 162 * struct cpudata - Per CPU instance data storage 163 * @cpu: CPU number for this instance data 164 * @update_util: CPUFreq utility callback information 165 * @pstate: Stores P state limits for this CPU 166 * @vid: Stores VID limits for this CPU 167 * @pid: Stores PID parameters for this CPU 168 * @last_sample_time: Last Sample time 169 * @prev_aperf: Last APERF value read from APERF MSR 170 * @prev_mperf: Last MPERF value read from MPERF MSR 171 * @prev_tsc: Last timestamp counter (TSC) value 172 * @prev_cummulative_iowait: IO Wait time difference from last and 173 * current sample 174 * @sample: Storage for storing last Sample data 175 * 176 * This structure stores per CPU instance data for all CPUs. 177 */ 178 struct cpudata { 179 int cpu; 180 181 struct update_util_data update_util; 182 183 struct pstate_data pstate; 184 struct vid_data vid; 185 struct _pid pid; 186 187 u64 last_sample_time; 188 u64 prev_aperf; 189 u64 prev_mperf; 190 u64 prev_tsc; 191 u64 prev_cummulative_iowait; 192 struct sample sample; 193 }; 194 195 static struct cpudata **all_cpu_data; 196 197 /** 198 * struct pid_adjust_policy - Stores static PID configuration data 199 * @sample_rate_ms: PID calculation sample rate in ms 200 * @sample_rate_ns: Sample rate calculation in ns 201 * @deadband: PID deadband 202 * @setpoint: PID Setpoint 203 * @p_gain_pct: PID proportional gain 204 * @i_gain_pct: PID integral gain 205 * @d_gain_pct: PID derivative gain 206 * 207 * Stores per CPU model static PID configuration data. 208 */ 209 struct pstate_adjust_policy { 210 int sample_rate_ms; 211 s64 sample_rate_ns; 212 int deadband; 213 int setpoint; 214 int p_gain_pct; 215 int d_gain_pct; 216 int i_gain_pct; 217 }; 218 219 /** 220 * struct pstate_funcs - Per CPU model specific callbacks 221 * @get_max: Callback to get maximum non turbo effective P state 222 * @get_max_physical: Callback to get maximum non turbo physical P state 223 * @get_min: Callback to get minimum P state 224 * @get_turbo: Callback to get turbo P state 225 * @get_scaling: Callback to get frequency scaling factor 226 * @get_val: Callback to convert P state to actual MSR write value 227 * @get_vid: Callback to get VID data for Atom platforms 228 * @get_target_pstate: Callback to a function to calculate next P state to use 229 * 230 * Core and Atom CPU models have different way to get P State limits. This 231 * structure is used to store those callbacks. 232 */ 233 struct pstate_funcs { 234 int (*get_max)(void); 235 int (*get_max_physical)(void); 236 int (*get_min)(void); 237 int (*get_turbo)(void); 238 int (*get_scaling)(void); 239 u64 (*get_val)(struct cpudata*, int pstate); 240 void (*get_vid)(struct cpudata *); 241 int32_t (*get_target_pstate)(struct cpudata *); 242 }; 243 244 /** 245 * struct cpu_defaults- Per CPU model default config data 246 * @pid_policy: PID config data 247 * @funcs: Callback function data 248 */ 249 struct cpu_defaults { 250 struct pstate_adjust_policy pid_policy; 251 struct pstate_funcs funcs; 252 }; 253 254 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu); 255 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu); 256 257 static struct pstate_adjust_policy pid_params; 258 static struct pstate_funcs pstate_funcs; 259 static int hwp_active; 260 261 262 /** 263 * struct perf_limits - Store user and policy limits 264 * @no_turbo: User requested turbo state from intel_pstate sysfs 265 * @turbo_disabled: Platform turbo status either from msr 266 * MSR_IA32_MISC_ENABLE or when maximum available pstate 267 * matches the maximum turbo pstate 268 * @max_perf_pct: Effective maximum performance limit in percentage, this 269 * is minimum of either limits enforced by cpufreq policy 270 * or limits from user set limits via intel_pstate sysfs 271 * @min_perf_pct: Effective minimum performance limit in percentage, this 272 * is maximum of either limits enforced by cpufreq policy 273 * or limits from user set limits via intel_pstate sysfs 274 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct 275 * This value is used to limit max pstate 276 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct 277 * This value is used to limit min pstate 278 * @max_policy_pct: The maximum performance in percentage enforced by 279 * cpufreq setpolicy interface 280 * @max_sysfs_pct: The maximum performance in percentage enforced by 281 * intel pstate sysfs interface 282 * @min_policy_pct: The minimum performance in percentage enforced by 283 * cpufreq setpolicy interface 284 * @min_sysfs_pct: The minimum performance in percentage enforced by 285 * intel pstate sysfs interface 286 * 287 * Storage for user and policy defined limits. 288 */ 289 struct perf_limits { 290 int no_turbo; 291 int turbo_disabled; 292 int max_perf_pct; 293 int min_perf_pct; 294 int32_t max_perf; 295 int32_t min_perf; 296 int max_policy_pct; 297 int max_sysfs_pct; 298 int min_policy_pct; 299 int min_sysfs_pct; 300 }; 301 302 static struct perf_limits performance_limits = { 303 .no_turbo = 0, 304 .turbo_disabled = 0, 305 .max_perf_pct = 100, 306 .max_perf = int_tofp(1), 307 .min_perf_pct = 100, 308 .min_perf = int_tofp(1), 309 .max_policy_pct = 100, 310 .max_sysfs_pct = 100, 311 .min_policy_pct = 0, 312 .min_sysfs_pct = 0, 313 }; 314 315 static struct perf_limits powersave_limits = { 316 .no_turbo = 0, 317 .turbo_disabled = 0, 318 .max_perf_pct = 100, 319 .max_perf = int_tofp(1), 320 .min_perf_pct = 0, 321 .min_perf = 0, 322 .max_policy_pct = 100, 323 .max_sysfs_pct = 100, 324 .min_policy_pct = 0, 325 .min_sysfs_pct = 0, 326 }; 327 328 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE 329 static struct perf_limits *limits = &performance_limits; 330 #else 331 static struct perf_limits *limits = &powersave_limits; 332 #endif 333 334 static inline void pid_reset(struct _pid *pid, int setpoint, int busy, 335 int deadband, int integral) { 336 pid->setpoint = int_tofp(setpoint); 337 pid->deadband = int_tofp(deadband); 338 pid->integral = int_tofp(integral); 339 pid->last_err = int_tofp(setpoint) - int_tofp(busy); 340 } 341 342 static inline void pid_p_gain_set(struct _pid *pid, int percent) 343 { 344 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100)); 345 } 346 347 static inline void pid_i_gain_set(struct _pid *pid, int percent) 348 { 349 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100)); 350 } 351 352 static inline void pid_d_gain_set(struct _pid *pid, int percent) 353 { 354 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100)); 355 } 356 357 static signed int pid_calc(struct _pid *pid, int32_t busy) 358 { 359 signed int result; 360 int32_t pterm, dterm, fp_error; 361 int32_t integral_limit; 362 363 fp_error = pid->setpoint - busy; 364 365 if (abs(fp_error) <= pid->deadband) 366 return 0; 367 368 pterm = mul_fp(pid->p_gain, fp_error); 369 370 pid->integral += fp_error; 371 372 /* 373 * We limit the integral here so that it will never 374 * get higher than 30. This prevents it from becoming 375 * too large an input over long periods of time and allows 376 * it to get factored out sooner. 377 * 378 * The value of 30 was chosen through experimentation. 379 */ 380 integral_limit = int_tofp(30); 381 if (pid->integral > integral_limit) 382 pid->integral = integral_limit; 383 if (pid->integral < -integral_limit) 384 pid->integral = -integral_limit; 385 386 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err); 387 pid->last_err = fp_error; 388 389 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; 390 result = result + (1 << (FRAC_BITS-1)); 391 return (signed int)fp_toint(result); 392 } 393 394 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) 395 { 396 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct); 397 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct); 398 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct); 399 400 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0); 401 } 402 403 static inline void intel_pstate_reset_all_pid(void) 404 { 405 unsigned int cpu; 406 407 for_each_online_cpu(cpu) { 408 if (all_cpu_data[cpu]) 409 intel_pstate_busy_pid_reset(all_cpu_data[cpu]); 410 } 411 } 412 413 static inline void update_turbo_state(void) 414 { 415 u64 misc_en; 416 struct cpudata *cpu; 417 418 cpu = all_cpu_data[0]; 419 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 420 limits->turbo_disabled = 421 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 422 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 423 } 424 425 static void intel_pstate_hwp_set(const struct cpumask *cpumask) 426 { 427 int min, hw_min, max, hw_max, cpu, range, adj_range; 428 u64 value, cap; 429 430 rdmsrl(MSR_HWP_CAPABILITIES, cap); 431 hw_min = HWP_LOWEST_PERF(cap); 432 hw_max = HWP_HIGHEST_PERF(cap); 433 range = hw_max - hw_min; 434 435 for_each_cpu(cpu, cpumask) { 436 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 437 adj_range = limits->min_perf_pct * range / 100; 438 min = hw_min + adj_range; 439 value &= ~HWP_MIN_PERF(~0L); 440 value |= HWP_MIN_PERF(min); 441 442 adj_range = limits->max_perf_pct * range / 100; 443 max = hw_min + adj_range; 444 if (limits->no_turbo) { 445 hw_max = HWP_GUARANTEED_PERF(cap); 446 if (hw_max < max) 447 max = hw_max; 448 } 449 450 value &= ~HWP_MAX_PERF(~0L); 451 value |= HWP_MAX_PERF(max); 452 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 453 } 454 } 455 456 static void intel_pstate_hwp_set_online_cpus(void) 457 { 458 get_online_cpus(); 459 intel_pstate_hwp_set(cpu_online_mask); 460 put_online_cpus(); 461 } 462 463 /************************** debugfs begin ************************/ 464 static int pid_param_set(void *data, u64 val) 465 { 466 *(u32 *)data = val; 467 intel_pstate_reset_all_pid(); 468 return 0; 469 } 470 471 static int pid_param_get(void *data, u64 *val) 472 { 473 *val = *(u32 *)data; 474 return 0; 475 } 476 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n"); 477 478 struct pid_param { 479 char *name; 480 void *value; 481 }; 482 483 static struct pid_param pid_files[] = { 484 {"sample_rate_ms", &pid_params.sample_rate_ms}, 485 {"d_gain_pct", &pid_params.d_gain_pct}, 486 {"i_gain_pct", &pid_params.i_gain_pct}, 487 {"deadband", &pid_params.deadband}, 488 {"setpoint", &pid_params.setpoint}, 489 {"p_gain_pct", &pid_params.p_gain_pct}, 490 {NULL, NULL} 491 }; 492 493 static void __init intel_pstate_debug_expose_params(void) 494 { 495 struct dentry *debugfs_parent; 496 int i = 0; 497 498 if (hwp_active) 499 return; 500 debugfs_parent = debugfs_create_dir("pstate_snb", NULL); 501 if (IS_ERR_OR_NULL(debugfs_parent)) 502 return; 503 while (pid_files[i].name) { 504 debugfs_create_file(pid_files[i].name, 0660, 505 debugfs_parent, pid_files[i].value, 506 &fops_pid_param); 507 i++; 508 } 509 } 510 511 /************************** debugfs end ************************/ 512 513 /************************** sysfs begin ************************/ 514 #define show_one(file_name, object) \ 515 static ssize_t show_##file_name \ 516 (struct kobject *kobj, struct attribute *attr, char *buf) \ 517 { \ 518 return sprintf(buf, "%u\n", limits->object); \ 519 } 520 521 static ssize_t show_turbo_pct(struct kobject *kobj, 522 struct attribute *attr, char *buf) 523 { 524 struct cpudata *cpu; 525 int total, no_turbo, turbo_pct; 526 uint32_t turbo_fp; 527 528 cpu = all_cpu_data[0]; 529 530 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 531 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 532 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total)); 533 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 534 return sprintf(buf, "%u\n", turbo_pct); 535 } 536 537 static ssize_t show_num_pstates(struct kobject *kobj, 538 struct attribute *attr, char *buf) 539 { 540 struct cpudata *cpu; 541 int total; 542 543 cpu = all_cpu_data[0]; 544 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 545 return sprintf(buf, "%u\n", total); 546 } 547 548 static ssize_t show_no_turbo(struct kobject *kobj, 549 struct attribute *attr, char *buf) 550 { 551 ssize_t ret; 552 553 update_turbo_state(); 554 if (limits->turbo_disabled) 555 ret = sprintf(buf, "%u\n", limits->turbo_disabled); 556 else 557 ret = sprintf(buf, "%u\n", limits->no_turbo); 558 559 return ret; 560 } 561 562 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, 563 const char *buf, size_t count) 564 { 565 unsigned int input; 566 int ret; 567 568 ret = sscanf(buf, "%u", &input); 569 if (ret != 1) 570 return -EINVAL; 571 572 update_turbo_state(); 573 if (limits->turbo_disabled) { 574 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n"); 575 return -EPERM; 576 } 577 578 limits->no_turbo = clamp_t(int, input, 0, 1); 579 580 if (hwp_active) 581 intel_pstate_hwp_set_online_cpus(); 582 583 return count; 584 } 585 586 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, 587 const char *buf, size_t count) 588 { 589 unsigned int input; 590 int ret; 591 592 ret = sscanf(buf, "%u", &input); 593 if (ret != 1) 594 return -EINVAL; 595 596 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100); 597 limits->max_perf_pct = min(limits->max_policy_pct, 598 limits->max_sysfs_pct); 599 limits->max_perf_pct = max(limits->min_policy_pct, 600 limits->max_perf_pct); 601 limits->max_perf_pct = max(limits->min_perf_pct, 602 limits->max_perf_pct); 603 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct), 604 int_tofp(100)); 605 606 if (hwp_active) 607 intel_pstate_hwp_set_online_cpus(); 608 return count; 609 } 610 611 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, 612 const char *buf, size_t count) 613 { 614 unsigned int input; 615 int ret; 616 617 ret = sscanf(buf, "%u", &input); 618 if (ret != 1) 619 return -EINVAL; 620 621 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100); 622 limits->min_perf_pct = max(limits->min_policy_pct, 623 limits->min_sysfs_pct); 624 limits->min_perf_pct = min(limits->max_policy_pct, 625 limits->min_perf_pct); 626 limits->min_perf_pct = min(limits->max_perf_pct, 627 limits->min_perf_pct); 628 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct), 629 int_tofp(100)); 630 631 if (hwp_active) 632 intel_pstate_hwp_set_online_cpus(); 633 return count; 634 } 635 636 show_one(max_perf_pct, max_perf_pct); 637 show_one(min_perf_pct, min_perf_pct); 638 639 define_one_global_rw(no_turbo); 640 define_one_global_rw(max_perf_pct); 641 define_one_global_rw(min_perf_pct); 642 define_one_global_ro(turbo_pct); 643 define_one_global_ro(num_pstates); 644 645 static struct attribute *intel_pstate_attributes[] = { 646 &no_turbo.attr, 647 &max_perf_pct.attr, 648 &min_perf_pct.attr, 649 &turbo_pct.attr, 650 &num_pstates.attr, 651 NULL 652 }; 653 654 static struct attribute_group intel_pstate_attr_group = { 655 .attrs = intel_pstate_attributes, 656 }; 657 658 static void __init intel_pstate_sysfs_expose_params(void) 659 { 660 struct kobject *intel_pstate_kobject; 661 int rc; 662 663 intel_pstate_kobject = kobject_create_and_add("intel_pstate", 664 &cpu_subsys.dev_root->kobj); 665 BUG_ON(!intel_pstate_kobject); 666 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 667 BUG_ON(rc); 668 } 669 /************************** sysfs end ************************/ 670 671 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 672 { 673 /* First disable HWP notification interrupt as we don't process them */ 674 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 675 676 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 677 } 678 679 static int atom_get_min_pstate(void) 680 { 681 u64 value; 682 683 rdmsrl(ATOM_RATIOS, value); 684 return (value >> 8) & 0x7F; 685 } 686 687 static int atom_get_max_pstate(void) 688 { 689 u64 value; 690 691 rdmsrl(ATOM_RATIOS, value); 692 return (value >> 16) & 0x7F; 693 } 694 695 static int atom_get_turbo_pstate(void) 696 { 697 u64 value; 698 699 rdmsrl(ATOM_TURBO_RATIOS, value); 700 return value & 0x7F; 701 } 702 703 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 704 { 705 u64 val; 706 int32_t vid_fp; 707 u32 vid; 708 709 val = (u64)pstate << 8; 710 if (limits->no_turbo && !limits->turbo_disabled) 711 val |= (u64)1 << 32; 712 713 vid_fp = cpudata->vid.min + mul_fp( 714 int_tofp(pstate - cpudata->pstate.min_pstate), 715 cpudata->vid.ratio); 716 717 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 718 vid = ceiling_fp(vid_fp); 719 720 if (pstate > cpudata->pstate.max_pstate) 721 vid = cpudata->vid.turbo; 722 723 return val | vid; 724 } 725 726 static int silvermont_get_scaling(void) 727 { 728 u64 value; 729 int i; 730 /* Defined in Table 35-6 from SDM (Sept 2015) */ 731 static int silvermont_freq_table[] = { 732 83300, 100000, 133300, 116700, 80000}; 733 734 rdmsrl(MSR_FSB_FREQ, value); 735 i = value & 0x7; 736 WARN_ON(i > 4); 737 738 return silvermont_freq_table[i]; 739 } 740 741 static int airmont_get_scaling(void) 742 { 743 u64 value; 744 int i; 745 /* Defined in Table 35-10 from SDM (Sept 2015) */ 746 static int airmont_freq_table[] = { 747 83300, 100000, 133300, 116700, 80000, 748 93300, 90000, 88900, 87500}; 749 750 rdmsrl(MSR_FSB_FREQ, value); 751 i = value & 0xF; 752 WARN_ON(i > 8); 753 754 return airmont_freq_table[i]; 755 } 756 757 static void atom_get_vid(struct cpudata *cpudata) 758 { 759 u64 value; 760 761 rdmsrl(ATOM_VIDS, value); 762 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 763 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 764 cpudata->vid.ratio = div_fp( 765 cpudata->vid.max - cpudata->vid.min, 766 int_tofp(cpudata->pstate.max_pstate - 767 cpudata->pstate.min_pstate)); 768 769 rdmsrl(ATOM_TURBO_VIDS, value); 770 cpudata->vid.turbo = value & 0x7f; 771 } 772 773 static int core_get_min_pstate(void) 774 { 775 u64 value; 776 777 rdmsrl(MSR_PLATFORM_INFO, value); 778 return (value >> 40) & 0xFF; 779 } 780 781 static int core_get_max_pstate_physical(void) 782 { 783 u64 value; 784 785 rdmsrl(MSR_PLATFORM_INFO, value); 786 return (value >> 8) & 0xFF; 787 } 788 789 static int core_get_max_pstate(void) 790 { 791 u64 tar; 792 u64 plat_info; 793 int max_pstate; 794 int err; 795 796 rdmsrl(MSR_PLATFORM_INFO, plat_info); 797 max_pstate = (plat_info >> 8) & 0xFF; 798 799 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); 800 if (!err) { 801 /* Do some sanity checking for safety */ 802 if (plat_info & 0x600000000) { 803 u64 tdp_ctrl; 804 u64 tdp_ratio; 805 int tdp_msr; 806 807 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 808 if (err) 809 goto skip_tar; 810 811 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl; 812 err = rdmsrl_safe(tdp_msr, &tdp_ratio); 813 if (err) 814 goto skip_tar; 815 816 if (tdp_ratio - 1 == tar) { 817 max_pstate = tar; 818 pr_debug("max_pstate=TAC %x\n", max_pstate); 819 } else { 820 goto skip_tar; 821 } 822 } 823 } 824 825 skip_tar: 826 return max_pstate; 827 } 828 829 static int core_get_turbo_pstate(void) 830 { 831 u64 value; 832 int nont, ret; 833 834 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); 835 nont = core_get_max_pstate(); 836 ret = (value) & 255; 837 if (ret <= nont) 838 ret = nont; 839 return ret; 840 } 841 842 static inline int core_get_scaling(void) 843 { 844 return 100000; 845 } 846 847 static u64 core_get_val(struct cpudata *cpudata, int pstate) 848 { 849 u64 val; 850 851 val = (u64)pstate << 8; 852 if (limits->no_turbo && !limits->turbo_disabled) 853 val |= (u64)1 << 32; 854 855 return val; 856 } 857 858 static int knl_get_turbo_pstate(void) 859 { 860 u64 value; 861 int nont, ret; 862 863 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); 864 nont = core_get_max_pstate(); 865 ret = (((value) >> 8) & 0xFF); 866 if (ret <= nont) 867 ret = nont; 868 return ret; 869 } 870 871 static struct cpu_defaults core_params = { 872 .pid_policy = { 873 .sample_rate_ms = 10, 874 .deadband = 0, 875 .setpoint = 97, 876 .p_gain_pct = 20, 877 .d_gain_pct = 0, 878 .i_gain_pct = 0, 879 }, 880 .funcs = { 881 .get_max = core_get_max_pstate, 882 .get_max_physical = core_get_max_pstate_physical, 883 .get_min = core_get_min_pstate, 884 .get_turbo = core_get_turbo_pstate, 885 .get_scaling = core_get_scaling, 886 .get_val = core_get_val, 887 .get_target_pstate = get_target_pstate_use_performance, 888 }, 889 }; 890 891 static struct cpu_defaults silvermont_params = { 892 .pid_policy = { 893 .sample_rate_ms = 10, 894 .deadband = 0, 895 .setpoint = 60, 896 .p_gain_pct = 14, 897 .d_gain_pct = 0, 898 .i_gain_pct = 4, 899 }, 900 .funcs = { 901 .get_max = atom_get_max_pstate, 902 .get_max_physical = atom_get_max_pstate, 903 .get_min = atom_get_min_pstate, 904 .get_turbo = atom_get_turbo_pstate, 905 .get_val = atom_get_val, 906 .get_scaling = silvermont_get_scaling, 907 .get_vid = atom_get_vid, 908 .get_target_pstate = get_target_pstate_use_cpu_load, 909 }, 910 }; 911 912 static struct cpu_defaults airmont_params = { 913 .pid_policy = { 914 .sample_rate_ms = 10, 915 .deadband = 0, 916 .setpoint = 60, 917 .p_gain_pct = 14, 918 .d_gain_pct = 0, 919 .i_gain_pct = 4, 920 }, 921 .funcs = { 922 .get_max = atom_get_max_pstate, 923 .get_max_physical = atom_get_max_pstate, 924 .get_min = atom_get_min_pstate, 925 .get_turbo = atom_get_turbo_pstate, 926 .get_val = atom_get_val, 927 .get_scaling = airmont_get_scaling, 928 .get_vid = atom_get_vid, 929 .get_target_pstate = get_target_pstate_use_cpu_load, 930 }, 931 }; 932 933 static struct cpu_defaults knl_params = { 934 .pid_policy = { 935 .sample_rate_ms = 10, 936 .deadband = 0, 937 .setpoint = 97, 938 .p_gain_pct = 20, 939 .d_gain_pct = 0, 940 .i_gain_pct = 0, 941 }, 942 .funcs = { 943 .get_max = core_get_max_pstate, 944 .get_max_physical = core_get_max_pstate_physical, 945 .get_min = core_get_min_pstate, 946 .get_turbo = knl_get_turbo_pstate, 947 .get_scaling = core_get_scaling, 948 .get_val = core_get_val, 949 .get_target_pstate = get_target_pstate_use_performance, 950 }, 951 }; 952 953 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) 954 { 955 int max_perf = cpu->pstate.turbo_pstate; 956 int max_perf_adj; 957 int min_perf; 958 959 if (limits->no_turbo || limits->turbo_disabled) 960 max_perf = cpu->pstate.max_pstate; 961 962 /* 963 * performance can be limited by user through sysfs, by cpufreq 964 * policy, or by cpu specific default values determined through 965 * experimentation. 966 */ 967 max_perf_adj = fp_toint(max_perf * limits->max_perf); 968 *max = clamp_t(int, max_perf_adj, 969 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); 970 971 min_perf = fp_toint(max_perf * limits->min_perf); 972 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf); 973 } 974 975 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate) 976 { 977 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 978 cpu->pstate.current_pstate = pstate; 979 } 980 981 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 982 { 983 int pstate = cpu->pstate.min_pstate; 984 985 intel_pstate_record_pstate(cpu, pstate); 986 /* 987 * Generally, there is no guarantee that this code will always run on 988 * the CPU being updated, so force the register update to run on the 989 * right CPU. 990 */ 991 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 992 pstate_funcs.get_val(cpu, pstate)); 993 } 994 995 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 996 { 997 cpu->pstate.min_pstate = pstate_funcs.get_min(); 998 cpu->pstate.max_pstate = pstate_funcs.get_max(); 999 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); 1000 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); 1001 cpu->pstate.scaling = pstate_funcs.get_scaling(); 1002 1003 if (pstate_funcs.get_vid) 1004 pstate_funcs.get_vid(cpu); 1005 1006 intel_pstate_set_min_pstate(cpu); 1007 } 1008 1009 static inline void intel_pstate_calc_busy(struct cpudata *cpu) 1010 { 1011 struct sample *sample = &cpu->sample; 1012 int64_t core_pct; 1013 1014 core_pct = int_tofp(sample->aperf) * int_tofp(100); 1015 core_pct = div64_u64(core_pct, int_tofp(sample->mperf)); 1016 1017 sample->core_pct_busy = (int32_t)core_pct; 1018 } 1019 1020 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 1021 { 1022 u64 aperf, mperf; 1023 unsigned long flags; 1024 u64 tsc; 1025 1026 local_irq_save(flags); 1027 rdmsrl(MSR_IA32_APERF, aperf); 1028 rdmsrl(MSR_IA32_MPERF, mperf); 1029 tsc = rdtsc(); 1030 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 1031 local_irq_restore(flags); 1032 return false; 1033 } 1034 local_irq_restore(flags); 1035 1036 cpu->last_sample_time = cpu->sample.time; 1037 cpu->sample.time = time; 1038 cpu->sample.aperf = aperf; 1039 cpu->sample.mperf = mperf; 1040 cpu->sample.tsc = tsc; 1041 cpu->sample.aperf -= cpu->prev_aperf; 1042 cpu->sample.mperf -= cpu->prev_mperf; 1043 cpu->sample.tsc -= cpu->prev_tsc; 1044 1045 cpu->prev_aperf = aperf; 1046 cpu->prev_mperf = mperf; 1047 cpu->prev_tsc = tsc; 1048 /* 1049 * First time this function is invoked in a given cycle, all of the 1050 * previous sample data fields are equal to zero or stale and they must 1051 * be populated with meaningful numbers for things to work, so assume 1052 * that sample.time will always be reset before setting the utilization 1053 * update hook and make the caller skip the sample then. 1054 */ 1055 return !!cpu->last_sample_time; 1056 } 1057 1058 static inline int32_t get_avg_frequency(struct cpudata *cpu) 1059 { 1060 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf * 1061 cpu->pstate.scaling, cpu->sample.mperf); 1062 } 1063 1064 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu) 1065 { 1066 struct sample *sample = &cpu->sample; 1067 u64 cummulative_iowait, delta_iowait_us; 1068 u64 delta_iowait_mperf; 1069 u64 mperf, now; 1070 int32_t cpu_load; 1071 1072 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now); 1073 1074 /* 1075 * Convert iowait time into number of IO cycles spent at max_freq. 1076 * IO is considered as busy only for the cpu_load algorithm. For 1077 * performance this is not needed since we always try to reach the 1078 * maximum P-State, so we are already boosting the IOs. 1079 */ 1080 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait; 1081 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling * 1082 cpu->pstate.max_pstate, MSEC_PER_SEC); 1083 1084 mperf = cpu->sample.mperf + delta_iowait_mperf; 1085 cpu->prev_cummulative_iowait = cummulative_iowait; 1086 1087 /* 1088 * The load can be estimated as the ratio of the mperf counter 1089 * running at a constant frequency during active periods 1090 * (C0) and the time stamp counter running at the same frequency 1091 * also during C-states. 1092 */ 1093 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc); 1094 cpu->sample.busy_scaled = cpu_load; 1095 1096 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load); 1097 } 1098 1099 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu) 1100 { 1101 int32_t core_busy, max_pstate, current_pstate, sample_ratio; 1102 u64 duration_ns; 1103 1104 intel_pstate_calc_busy(cpu); 1105 1106 /* 1107 * core_busy is the ratio of actual performance to max 1108 * max_pstate is the max non turbo pstate available 1109 * current_pstate was the pstate that was requested during 1110 * the last sample period. 1111 * 1112 * We normalize core_busy, which was our actual percent 1113 * performance to what we requested during the last sample 1114 * period. The result will be a percentage of busy at a 1115 * specified pstate. 1116 */ 1117 core_busy = cpu->sample.core_pct_busy; 1118 max_pstate = int_tofp(cpu->pstate.max_pstate_physical); 1119 current_pstate = int_tofp(cpu->pstate.current_pstate); 1120 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate)); 1121 1122 /* 1123 * Since our utilization update callback will not run unless we are 1124 * in C0, check if the actual elapsed time is significantly greater (3x) 1125 * than our sample interval. If it is, then we were idle for a long 1126 * enough period of time to adjust our busyness. 1127 */ 1128 duration_ns = cpu->sample.time - cpu->last_sample_time; 1129 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) { 1130 sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns), 1131 int_tofp(duration_ns)); 1132 core_busy = mul_fp(core_busy, sample_ratio); 1133 } 1134 1135 cpu->sample.busy_scaled = core_busy; 1136 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy); 1137 } 1138 1139 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 1140 { 1141 int max_perf, min_perf; 1142 1143 update_turbo_state(); 1144 1145 intel_pstate_get_min_max(cpu, &min_perf, &max_perf); 1146 pstate = clamp_t(int, pstate, min_perf, max_perf); 1147 if (pstate == cpu->pstate.current_pstate) 1148 return; 1149 1150 intel_pstate_record_pstate(cpu, pstate); 1151 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 1152 } 1153 1154 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) 1155 { 1156 int from, target_pstate; 1157 struct sample *sample; 1158 1159 from = cpu->pstate.current_pstate; 1160 1161 target_pstate = pstate_funcs.get_target_pstate(cpu); 1162 1163 intel_pstate_update_pstate(cpu, target_pstate); 1164 1165 sample = &cpu->sample; 1166 trace_pstate_sample(fp_toint(sample->core_pct_busy), 1167 fp_toint(sample->busy_scaled), 1168 from, 1169 cpu->pstate.current_pstate, 1170 sample->mperf, 1171 sample->aperf, 1172 sample->tsc, 1173 get_avg_frequency(cpu)); 1174 } 1175 1176 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 1177 unsigned long util, unsigned long max) 1178 { 1179 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 1180 u64 delta_ns = time - cpu->sample.time; 1181 1182 if ((s64)delta_ns >= pid_params.sample_rate_ns) { 1183 bool sample_taken = intel_pstate_sample(cpu, time); 1184 1185 if (sample_taken && !hwp_active) 1186 intel_pstate_adjust_busy_pstate(cpu); 1187 } 1188 } 1189 1190 #define ICPU(model, policy) \ 1191 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ 1192 (unsigned long)&policy } 1193 1194 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 1195 ICPU(0x2a, core_params), 1196 ICPU(0x2d, core_params), 1197 ICPU(0x37, silvermont_params), 1198 ICPU(0x3a, core_params), 1199 ICPU(0x3c, core_params), 1200 ICPU(0x3d, core_params), 1201 ICPU(0x3e, core_params), 1202 ICPU(0x3f, core_params), 1203 ICPU(0x45, core_params), 1204 ICPU(0x46, core_params), 1205 ICPU(0x47, core_params), 1206 ICPU(0x4c, airmont_params), 1207 ICPU(0x4e, core_params), 1208 ICPU(0x4f, core_params), 1209 ICPU(0x5e, core_params), 1210 ICPU(0x56, core_params), 1211 ICPU(0x57, knl_params), 1212 {} 1213 }; 1214 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 1215 1216 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = { 1217 ICPU(0x56, core_params), 1218 {} 1219 }; 1220 1221 static int intel_pstate_init_cpu(unsigned int cpunum) 1222 { 1223 struct cpudata *cpu; 1224 1225 if (!all_cpu_data[cpunum]) 1226 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), 1227 GFP_KERNEL); 1228 if (!all_cpu_data[cpunum]) 1229 return -ENOMEM; 1230 1231 cpu = all_cpu_data[cpunum]; 1232 1233 cpu->cpu = cpunum; 1234 1235 if (hwp_active) { 1236 intel_pstate_hwp_enable(cpu); 1237 pid_params.sample_rate_ms = 50; 1238 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC; 1239 } 1240 1241 intel_pstate_get_cpu_pstates(cpu); 1242 1243 intel_pstate_busy_pid_reset(cpu); 1244 1245 cpu->update_util.func = intel_pstate_update_util; 1246 1247 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum); 1248 1249 return 0; 1250 } 1251 1252 static unsigned int intel_pstate_get(unsigned int cpu_num) 1253 { 1254 struct sample *sample; 1255 struct cpudata *cpu; 1256 1257 cpu = all_cpu_data[cpu_num]; 1258 if (!cpu) 1259 return 0; 1260 sample = &cpu->sample; 1261 return get_avg_frequency(cpu); 1262 } 1263 1264 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 1265 { 1266 struct cpudata *cpu = all_cpu_data[cpu_num]; 1267 1268 /* Prevent intel_pstate_update_util() from using stale data. */ 1269 cpu->sample.time = 0; 1270 cpufreq_set_update_util_data(cpu_num, &cpu->update_util); 1271 } 1272 1273 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 1274 { 1275 cpufreq_set_update_util_data(cpu, NULL); 1276 synchronize_sched(); 1277 } 1278 1279 static void intel_pstate_set_performance_limits(struct perf_limits *limits) 1280 { 1281 limits->no_turbo = 0; 1282 limits->turbo_disabled = 0; 1283 limits->max_perf_pct = 100; 1284 limits->max_perf = int_tofp(1); 1285 limits->min_perf_pct = 100; 1286 limits->min_perf = int_tofp(1); 1287 limits->max_policy_pct = 100; 1288 limits->max_sysfs_pct = 100; 1289 limits->min_policy_pct = 0; 1290 limits->min_sysfs_pct = 0; 1291 } 1292 1293 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 1294 { 1295 if (!policy->cpuinfo.max_freq) 1296 return -ENODEV; 1297 1298 intel_pstate_clear_update_util_hook(policy->cpu); 1299 1300 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) { 1301 limits = &performance_limits; 1302 if (policy->max >= policy->cpuinfo.max_freq) { 1303 pr_debug("intel_pstate: set performance\n"); 1304 intel_pstate_set_performance_limits(limits); 1305 goto out; 1306 } 1307 } else { 1308 pr_debug("intel_pstate: set powersave\n"); 1309 limits = &powersave_limits; 1310 } 1311 1312 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq; 1313 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100); 1314 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100, 1315 policy->cpuinfo.max_freq); 1316 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100); 1317 1318 /* Normalize user input to [min_policy_pct, max_policy_pct] */ 1319 limits->min_perf_pct = max(limits->min_policy_pct, 1320 limits->min_sysfs_pct); 1321 limits->min_perf_pct = min(limits->max_policy_pct, 1322 limits->min_perf_pct); 1323 limits->max_perf_pct = min(limits->max_policy_pct, 1324 limits->max_sysfs_pct); 1325 limits->max_perf_pct = max(limits->min_policy_pct, 1326 limits->max_perf_pct); 1327 limits->max_perf = round_up(limits->max_perf, FRAC_BITS); 1328 1329 /* Make sure min_perf_pct <= max_perf_pct */ 1330 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct); 1331 1332 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct), 1333 int_tofp(100)); 1334 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct), 1335 int_tofp(100)); 1336 1337 out: 1338 intel_pstate_set_update_util_hook(policy->cpu); 1339 1340 if (hwp_active) 1341 intel_pstate_hwp_set(policy->cpus); 1342 1343 return 0; 1344 } 1345 1346 static int intel_pstate_verify_policy(struct cpufreq_policy *policy) 1347 { 1348 cpufreq_verify_within_cpu_limits(policy); 1349 1350 if (policy->policy != CPUFREQ_POLICY_POWERSAVE && 1351 policy->policy != CPUFREQ_POLICY_PERFORMANCE) 1352 return -EINVAL; 1353 1354 return 0; 1355 } 1356 1357 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) 1358 { 1359 int cpu_num = policy->cpu; 1360 struct cpudata *cpu = all_cpu_data[cpu_num]; 1361 1362 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num); 1363 1364 intel_pstate_clear_update_util_hook(cpu_num); 1365 1366 if (hwp_active) 1367 return; 1368 1369 intel_pstate_set_min_pstate(cpu); 1370 } 1371 1372 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 1373 { 1374 struct cpudata *cpu; 1375 int rc; 1376 1377 rc = intel_pstate_init_cpu(policy->cpu); 1378 if (rc) 1379 return rc; 1380 1381 cpu = all_cpu_data[policy->cpu]; 1382 1383 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100) 1384 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 1385 else 1386 policy->policy = CPUFREQ_POLICY_POWERSAVE; 1387 1388 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; 1389 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 1390 1391 /* cpuinfo and default policy values */ 1392 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; 1393 policy->cpuinfo.max_freq = 1394 cpu->pstate.turbo_pstate * cpu->pstate.scaling; 1395 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; 1396 cpumask_set_cpu(policy->cpu, policy->cpus); 1397 1398 return 0; 1399 } 1400 1401 static struct cpufreq_driver intel_pstate_driver = { 1402 .flags = CPUFREQ_CONST_LOOPS, 1403 .verify = intel_pstate_verify_policy, 1404 .setpolicy = intel_pstate_set_policy, 1405 .get = intel_pstate_get, 1406 .init = intel_pstate_cpu_init, 1407 .stop_cpu = intel_pstate_stop_cpu, 1408 .name = "intel_pstate", 1409 }; 1410 1411 static int __initdata no_load; 1412 static int __initdata no_hwp; 1413 static int __initdata hwp_only; 1414 static unsigned int force_load; 1415 1416 static int intel_pstate_msrs_not_valid(void) 1417 { 1418 if (!pstate_funcs.get_max() || 1419 !pstate_funcs.get_min() || 1420 !pstate_funcs.get_turbo()) 1421 return -ENODEV; 1422 1423 return 0; 1424 } 1425 1426 static void copy_pid_params(struct pstate_adjust_policy *policy) 1427 { 1428 pid_params.sample_rate_ms = policy->sample_rate_ms; 1429 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC; 1430 pid_params.p_gain_pct = policy->p_gain_pct; 1431 pid_params.i_gain_pct = policy->i_gain_pct; 1432 pid_params.d_gain_pct = policy->d_gain_pct; 1433 pid_params.deadband = policy->deadband; 1434 pid_params.setpoint = policy->setpoint; 1435 } 1436 1437 static void copy_cpu_funcs(struct pstate_funcs *funcs) 1438 { 1439 pstate_funcs.get_max = funcs->get_max; 1440 pstate_funcs.get_max_physical = funcs->get_max_physical; 1441 pstate_funcs.get_min = funcs->get_min; 1442 pstate_funcs.get_turbo = funcs->get_turbo; 1443 pstate_funcs.get_scaling = funcs->get_scaling; 1444 pstate_funcs.get_val = funcs->get_val; 1445 pstate_funcs.get_vid = funcs->get_vid; 1446 pstate_funcs.get_target_pstate = funcs->get_target_pstate; 1447 1448 } 1449 1450 #if IS_ENABLED(CONFIG_ACPI) 1451 #include <acpi/processor.h> 1452 1453 static bool intel_pstate_no_acpi_pss(void) 1454 { 1455 int i; 1456 1457 for_each_possible_cpu(i) { 1458 acpi_status status; 1459 union acpi_object *pss; 1460 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1461 struct acpi_processor *pr = per_cpu(processors, i); 1462 1463 if (!pr) 1464 continue; 1465 1466 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 1467 if (ACPI_FAILURE(status)) 1468 continue; 1469 1470 pss = buffer.pointer; 1471 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 1472 kfree(pss); 1473 return false; 1474 } 1475 1476 kfree(pss); 1477 } 1478 1479 return true; 1480 } 1481 1482 static bool intel_pstate_has_acpi_ppc(void) 1483 { 1484 int i; 1485 1486 for_each_possible_cpu(i) { 1487 struct acpi_processor *pr = per_cpu(processors, i); 1488 1489 if (!pr) 1490 continue; 1491 if (acpi_has_method(pr->handle, "_PPC")) 1492 return true; 1493 } 1494 return false; 1495 } 1496 1497 enum { 1498 PSS, 1499 PPC, 1500 }; 1501 1502 struct hw_vendor_info { 1503 u16 valid; 1504 char oem_id[ACPI_OEM_ID_SIZE]; 1505 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE]; 1506 int oem_pwr_table; 1507 }; 1508 1509 /* Hardware vendor-specific info that has its own power management modes */ 1510 static struct hw_vendor_info vendor_info[] = { 1511 {1, "HP ", "ProLiant", PSS}, 1512 {1, "ORACLE", "X4-2 ", PPC}, 1513 {1, "ORACLE", "X4-2L ", PPC}, 1514 {1, "ORACLE", "X4-2B ", PPC}, 1515 {1, "ORACLE", "X3-2 ", PPC}, 1516 {1, "ORACLE", "X3-2L ", PPC}, 1517 {1, "ORACLE", "X3-2B ", PPC}, 1518 {1, "ORACLE", "X4470M2 ", PPC}, 1519 {1, "ORACLE", "X4270M3 ", PPC}, 1520 {1, "ORACLE", "X4270M2 ", PPC}, 1521 {1, "ORACLE", "X4170M2 ", PPC}, 1522 {1, "ORACLE", "X4170 M3", PPC}, 1523 {1, "ORACLE", "X4275 M3", PPC}, 1524 {1, "ORACLE", "X6-2 ", PPC}, 1525 {1, "ORACLE", "Sudbury ", PPC}, 1526 {0, "", ""}, 1527 }; 1528 1529 static bool intel_pstate_platform_pwr_mgmt_exists(void) 1530 { 1531 struct acpi_table_header hdr; 1532 struct hw_vendor_info *v_info; 1533 const struct x86_cpu_id *id; 1534 u64 misc_pwr; 1535 1536 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 1537 if (id) { 1538 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 1539 if ( misc_pwr & (1 << 8)) 1540 return true; 1541 } 1542 1543 if (acpi_disabled || 1544 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr))) 1545 return false; 1546 1547 for (v_info = vendor_info; v_info->valid; v_info++) { 1548 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) && 1549 !strncmp(hdr.oem_table_id, v_info->oem_table_id, 1550 ACPI_OEM_TABLE_ID_SIZE)) 1551 switch (v_info->oem_pwr_table) { 1552 case PSS: 1553 return intel_pstate_no_acpi_pss(); 1554 case PPC: 1555 return intel_pstate_has_acpi_ppc() && 1556 (!force_load); 1557 } 1558 } 1559 1560 return false; 1561 } 1562 #else /* CONFIG_ACPI not enabled */ 1563 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 1564 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 1565 #endif /* CONFIG_ACPI */ 1566 1567 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 1568 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP }, 1569 {} 1570 }; 1571 1572 static int __init intel_pstate_init(void) 1573 { 1574 int cpu, rc = 0; 1575 const struct x86_cpu_id *id; 1576 struct cpu_defaults *cpu_def; 1577 1578 if (no_load) 1579 return -ENODEV; 1580 1581 if (x86_match_cpu(hwp_support_ids) && !no_hwp) { 1582 copy_cpu_funcs(&core_params.funcs); 1583 hwp_active++; 1584 goto hwp_cpu_matched; 1585 } 1586 1587 id = x86_match_cpu(intel_pstate_cpu_ids); 1588 if (!id) 1589 return -ENODEV; 1590 1591 cpu_def = (struct cpu_defaults *)id->driver_data; 1592 1593 copy_pid_params(&cpu_def->pid_policy); 1594 copy_cpu_funcs(&cpu_def->funcs); 1595 1596 if (intel_pstate_msrs_not_valid()) 1597 return -ENODEV; 1598 1599 hwp_cpu_matched: 1600 /* 1601 * The Intel pstate driver will be ignored if the platform 1602 * firmware has its own power management modes. 1603 */ 1604 if (intel_pstate_platform_pwr_mgmt_exists()) 1605 return -ENODEV; 1606 1607 pr_info("Intel P-state driver initializing.\n"); 1608 1609 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); 1610 if (!all_cpu_data) 1611 return -ENOMEM; 1612 1613 if (!hwp_active && hwp_only) 1614 goto out; 1615 1616 rc = cpufreq_register_driver(&intel_pstate_driver); 1617 if (rc) 1618 goto out; 1619 1620 intel_pstate_debug_expose_params(); 1621 intel_pstate_sysfs_expose_params(); 1622 1623 if (hwp_active) 1624 pr_info("intel_pstate: HWP enabled\n"); 1625 1626 return rc; 1627 out: 1628 get_online_cpus(); 1629 for_each_online_cpu(cpu) { 1630 if (all_cpu_data[cpu]) { 1631 intel_pstate_clear_update_util_hook(cpu); 1632 kfree(all_cpu_data[cpu]); 1633 } 1634 } 1635 1636 put_online_cpus(); 1637 vfree(all_cpu_data); 1638 return -ENODEV; 1639 } 1640 device_initcall(intel_pstate_init); 1641 1642 static int __init intel_pstate_setup(char *str) 1643 { 1644 if (!str) 1645 return -EINVAL; 1646 1647 if (!strcmp(str, "disable")) 1648 no_load = 1; 1649 if (!strcmp(str, "no_hwp")) { 1650 pr_info("intel_pstate: HWP disabled\n"); 1651 no_hwp = 1; 1652 } 1653 if (!strcmp(str, "force")) 1654 force_load = 1; 1655 if (!strcmp(str, "hwp_only")) 1656 hwp_only = 1; 1657 return 0; 1658 } 1659 early_param("intel_pstate", intel_pstate_setup); 1660 1661 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 1662 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 1663 MODULE_LICENSE("GPL"); 1664