xref: /linux/drivers/cpufreq/intel_pstate.c (revision 0a98bf52b15dfd66da2cf666495b3f7841c7b5ab)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32 
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 
39 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40 
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62 
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 	return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67 
68 static inline int ceiling_fp(int32_t x)
69 {
70 	int mask, ret;
71 
72 	ret = fp_toint(x);
73 	mask = (1 << FRAC_BITS) - 1;
74 	if (x & mask)
75 		ret += 1;
76 	return ret;
77 }
78 
79 static inline int32_t percent_fp(int percent)
80 {
81 	return div_fp(percent, 100);
82 }
83 
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 	return (x * y) >> EXT_FRAC_BITS;
87 }
88 
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 	return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93 
94 static inline int32_t percent_ext_fp(int percent)
95 {
96 	return div_ext_fp(percent, 100);
97 }
98 
99 /**
100  * struct sample -	Store performance sample
101  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102  *			performance during last sample period
103  * @busy_scaled:	Scaled busy value which is used to calculate next
104  *			P state. This can be different than core_avg_perf
105  *			to account for cpu idle period
106  * @aperf:		Difference of actual performance frequency clock count
107  *			read from APERF MSR between last and current sample
108  * @mperf:		Difference of maximum performance frequency clock count
109  *			read from MPERF MSR between last and current sample
110  * @tsc:		Difference of time stamp counter between last and
111  *			current sample
112  * @time:		Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118 	int32_t core_avg_perf;
119 	int32_t busy_scaled;
120 	u64 aperf;
121 	u64 mperf;
122 	u64 tsc;
123 	u64 time;
124 };
125 
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:	Current requested P state
129  * @min_pstate:		Min P state possible for this platform
130  * @max_pstate:		Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *			This can be higher than the max_pstate which can
133  *			be limited by platform thermal design power limits
134  * @scaling:		Scaling factor to  convert frequency to cpufreq
135  *			frequency units
136  * @turbo_pstate:	Max Turbo P state possible for this platform
137  * @max_freq:		@max_pstate frequency in cpufreq units
138  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143 	int	current_pstate;
144 	int	min_pstate;
145 	int	max_pstate;
146 	int	max_pstate_physical;
147 	int	scaling;
148 	int	turbo_pstate;
149 	unsigned int max_freq;
150 	unsigned int turbo_freq;
151 };
152 
153 /**
154  * struct vid_data -	Stores voltage information data
155  * @min:		VID data for this platform corresponding to
156  *			the lowest P state
157  * @max:		VID data corresponding to the highest P State.
158  * @turbo:		VID data for turbo P state
159  * @ratio:		Ratio of (vid max - vid min) /
160  *			(max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167 	int min;
168 	int max;
169 	int turbo;
170 	int32_t ratio;
171 };
172 
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:		Whether or not to use turbo P-states.
176  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
177  *			based on the MSR_IA32_MISC_ENABLE value and whether or
178  *			not the maximum reported turbo P-state is different from
179  *			the maximum reported non-turbo one.
180  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
181  *			P-state capacity.
182  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
183  *			P-state capacity.
184  */
185 struct global_params {
186 	bool no_turbo;
187 	bool turbo_disabled;
188 	int max_perf_pct;
189 	int min_perf_pct;
190 };
191 
192 /**
193  * struct cpudata -	Per CPU instance data storage
194  * @cpu:		CPU number for this instance data
195  * @policy:		CPUFreq policy value
196  * @update_util:	CPUFreq utility callback information
197  * @update_util_set:	CPUFreq utility callback is set
198  * @iowait_boost:	iowait-related boost fraction
199  * @last_update:	Time of the last update.
200  * @pstate:		Stores P state limits for this CPU
201  * @vid:		Stores VID limits for this CPU
202  * @last_sample_time:	Last Sample time
203  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
204  *			This shift is a multiplier to mperf delta to
205  *			calculate CPU busy.
206  * @prev_aperf:		Last APERF value read from APERF MSR
207  * @prev_mperf:		Last MPERF value read from MPERF MSR
208  * @prev_tsc:		Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *			current sample
211  * @sample:		Storage for storing last Sample data
212  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
215  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:	Last saved HWP energy performance preference
217  *			(EPP) or energy performance bias (EPB),
218  *			when policy switched to performance
219  * @epp_policy:		Last saved policy used to set EPP/EPB
220  * @epp_default:	Power on default HWP energy performance
221  *			preference/bias
222  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
223  *			operation
224  * @hwp_req_cached:	Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226  * @last_io_update:	Last time when IO wake flag was set
227  * @sched_flags:	Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:	Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233 	int cpu;
234 
235 	unsigned int policy;
236 	struct update_util_data update_util;
237 	bool   update_util_set;
238 
239 	struct pstate_data pstate;
240 	struct vid_data vid;
241 
242 	u64	last_update;
243 	u64	last_sample_time;
244 	u64	aperf_mperf_shift;
245 	u64	prev_aperf;
246 	u64	prev_mperf;
247 	u64	prev_tsc;
248 	u64	prev_cummulative_iowait;
249 	struct sample sample;
250 	int32_t	min_perf_ratio;
251 	int32_t	max_perf_ratio;
252 #ifdef CONFIG_ACPI
253 	struct acpi_processor_performance acpi_perf_data;
254 	bool valid_pss_table;
255 #endif
256 	unsigned int iowait_boost;
257 	s16 epp_powersave;
258 	s16 epp_policy;
259 	s16 epp_default;
260 	s16 epp_saved;
261 	u64 hwp_req_cached;
262 	u64 hwp_cap_cached;
263 	u64 last_io_update;
264 	unsigned int sched_flags;
265 	u32 hwp_boost_min;
266 };
267 
268 static struct cpudata **all_cpu_data;
269 
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:		Callback to get maximum non turbo effective P state
273  * @get_max_physical:	Callback to get maximum non turbo physical P state
274  * @get_min:		Callback to get minimum P state
275  * @get_turbo:		Callback to get turbo P state
276  * @get_scaling:	Callback to get frequency scaling factor
277  * @get_val:		Callback to convert P state to actual MSR write value
278  * @get_vid:		Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284 	int (*get_max)(void);
285 	int (*get_max_physical)(void);
286 	int (*get_min)(void);
287 	int (*get_turbo)(void);
288 	int (*get_scaling)(void);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return false;
321 }
322 
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 	if (intel_pstate_acpi_pm_profile_server())
326 		return true;
327 
328 	return acpi_ppc;
329 }
330 
331 #ifdef CONFIG_ACPI_CPPC_LIB
332 
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 	sched_set_itmt_support();
337 }
338 
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340 
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343 	struct cppc_perf_caps cppc_perf;
344 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 	int ret;
346 
347 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 	if (ret)
349 		return;
350 
351 	/*
352 	 * The priorities can be set regardless of whether or not
353 	 * sched_set_itmt_support(true) has been called and it is valid to
354 	 * update them at any time after it has been called.
355 	 */
356 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357 
358 	if (max_highest_perf <= min_highest_perf) {
359 		if (cppc_perf.highest_perf > max_highest_perf)
360 			max_highest_perf = cppc_perf.highest_perf;
361 
362 		if (cppc_perf.highest_perf < min_highest_perf)
363 			min_highest_perf = cppc_perf.highest_perf;
364 
365 		if (max_highest_perf > min_highest_perf) {
366 			/*
367 			 * This code can be run during CPU online under the
368 			 * CPU hotplug locks, so sched_set_itmt_support()
369 			 * cannot be called from here.  Queue up a work item
370 			 * to invoke it.
371 			 */
372 			schedule_work(&sched_itmt_work);
373 		}
374 	}
375 }
376 
377 static int intel_pstate_get_cppc_guranteed(int cpu)
378 {
379 	struct cppc_perf_caps cppc_perf;
380 	int ret;
381 
382 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 	if (ret)
384 		return ret;
385 
386 	return cppc_perf.guaranteed_perf;
387 }
388 
389 #else /* CONFIG_ACPI_CPPC_LIB */
390 static void intel_pstate_set_itmt_prio(int cpu)
391 {
392 }
393 #endif /* CONFIG_ACPI_CPPC_LIB */
394 
395 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
396 {
397 	struct cpudata *cpu;
398 	int ret;
399 	int i;
400 
401 	if (hwp_active) {
402 		intel_pstate_set_itmt_prio(policy->cpu);
403 		return;
404 	}
405 
406 	if (!intel_pstate_get_ppc_enable_status())
407 		return;
408 
409 	cpu = all_cpu_data[policy->cpu];
410 
411 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
412 						  policy->cpu);
413 	if (ret)
414 		return;
415 
416 	/*
417 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
418 	 * guarantee that the states returned by it map to the states in our
419 	 * list directly.
420 	 */
421 	if (cpu->acpi_perf_data.control_register.space_id !=
422 						ACPI_ADR_SPACE_FIXED_HARDWARE)
423 		goto err;
424 
425 	/*
426 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
427 	 * usual without taking _PSS into account
428 	 */
429 	if (cpu->acpi_perf_data.state_count < 2)
430 		goto err;
431 
432 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
433 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
434 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
435 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
436 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
437 			 (u32) cpu->acpi_perf_data.states[i].power,
438 			 (u32) cpu->acpi_perf_data.states[i].control);
439 	}
440 
441 	/*
442 	 * The _PSS table doesn't contain whole turbo frequency range.
443 	 * This just contains +1 MHZ above the max non turbo frequency,
444 	 * with control value corresponding to max turbo ratio. But
445 	 * when cpufreq set policy is called, it will call with this
446 	 * max frequency, which will cause a reduced performance as
447 	 * this driver uses real max turbo frequency as the max
448 	 * frequency. So correct this frequency in _PSS table to
449 	 * correct max turbo frequency based on the turbo state.
450 	 * Also need to convert to MHz as _PSS freq is in MHz.
451 	 */
452 	if (!global.turbo_disabled)
453 		cpu->acpi_perf_data.states[0].core_frequency =
454 					policy->cpuinfo.max_freq / 1000;
455 	cpu->valid_pss_table = true;
456 	pr_debug("_PPC limits will be enforced\n");
457 
458 	return;
459 
460  err:
461 	cpu->valid_pss_table = false;
462 	acpi_processor_unregister_performance(policy->cpu);
463 }
464 
465 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
466 {
467 	struct cpudata *cpu;
468 
469 	cpu = all_cpu_data[policy->cpu];
470 	if (!cpu->valid_pss_table)
471 		return;
472 
473 	acpi_processor_unregister_performance(policy->cpu);
474 }
475 #else /* CONFIG_ACPI */
476 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
477 {
478 }
479 
480 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
481 {
482 }
483 
484 static inline bool intel_pstate_acpi_pm_profile_server(void)
485 {
486 	return false;
487 }
488 #endif /* CONFIG_ACPI */
489 
490 #ifndef CONFIG_ACPI_CPPC_LIB
491 static int intel_pstate_get_cppc_guranteed(int cpu)
492 {
493 	return -ENOTSUPP;
494 }
495 #endif /* CONFIG_ACPI_CPPC_LIB */
496 
497 static inline void update_turbo_state(void)
498 {
499 	u64 misc_en;
500 	struct cpudata *cpu;
501 
502 	cpu = all_cpu_data[0];
503 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
504 	global.turbo_disabled =
505 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
506 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
507 }
508 
509 static int min_perf_pct_min(void)
510 {
511 	struct cpudata *cpu = all_cpu_data[0];
512 	int turbo_pstate = cpu->pstate.turbo_pstate;
513 
514 	return turbo_pstate ?
515 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
516 }
517 
518 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
519 {
520 	u64 epb;
521 	int ret;
522 
523 	if (!static_cpu_has(X86_FEATURE_EPB))
524 		return -ENXIO;
525 
526 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
527 	if (ret)
528 		return (s16)ret;
529 
530 	return (s16)(epb & 0x0f);
531 }
532 
533 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
534 {
535 	s16 epp;
536 
537 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
538 		/*
539 		 * When hwp_req_data is 0, means that caller didn't read
540 		 * MSR_HWP_REQUEST, so need to read and get EPP.
541 		 */
542 		if (!hwp_req_data) {
543 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
544 					    &hwp_req_data);
545 			if (epp)
546 				return epp;
547 		}
548 		epp = (hwp_req_data >> 24) & 0xff;
549 	} else {
550 		/* When there is no EPP present, HWP uses EPB settings */
551 		epp = intel_pstate_get_epb(cpu_data);
552 	}
553 
554 	return epp;
555 }
556 
557 static int intel_pstate_set_epb(int cpu, s16 pref)
558 {
559 	u64 epb;
560 	int ret;
561 
562 	if (!static_cpu_has(X86_FEATURE_EPB))
563 		return -ENXIO;
564 
565 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
566 	if (ret)
567 		return ret;
568 
569 	epb = (epb & ~0x0f) | pref;
570 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
571 
572 	return 0;
573 }
574 
575 /*
576  * EPP/EPB display strings corresponding to EPP index in the
577  * energy_perf_strings[]
578  *	index		String
579  *-------------------------------------
580  *	0		default
581  *	1		performance
582  *	2		balance_performance
583  *	3		balance_power
584  *	4		power
585  */
586 static const char * const energy_perf_strings[] = {
587 	"default",
588 	"performance",
589 	"balance_performance",
590 	"balance_power",
591 	"power",
592 	NULL
593 };
594 static const unsigned int epp_values[] = {
595 	HWP_EPP_PERFORMANCE,
596 	HWP_EPP_BALANCE_PERFORMANCE,
597 	HWP_EPP_BALANCE_POWERSAVE,
598 	HWP_EPP_POWERSAVE
599 };
600 
601 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
602 {
603 	s16 epp;
604 	int index = -EINVAL;
605 
606 	epp = intel_pstate_get_epp(cpu_data, 0);
607 	if (epp < 0)
608 		return epp;
609 
610 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
611 		if (epp == HWP_EPP_PERFORMANCE)
612 			return 1;
613 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
614 			return 2;
615 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
616 			return 3;
617 		else
618 			return 4;
619 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
620 		/*
621 		 * Range:
622 		 *	0x00-0x03	:	Performance
623 		 *	0x04-0x07	:	Balance performance
624 		 *	0x08-0x0B	:	Balance power
625 		 *	0x0C-0x0F	:	Power
626 		 * The EPB is a 4 bit value, but our ranges restrict the
627 		 * value which can be set. Here only using top two bits
628 		 * effectively.
629 		 */
630 		index = (epp >> 2) + 1;
631 	}
632 
633 	return index;
634 }
635 
636 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
637 					      int pref_index)
638 {
639 	int epp = -EINVAL;
640 	int ret;
641 
642 	if (!pref_index)
643 		epp = cpu_data->epp_default;
644 
645 	mutex_lock(&intel_pstate_limits_lock);
646 
647 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
648 		u64 value;
649 
650 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
651 		if (ret)
652 			goto return_pref;
653 
654 		value &= ~GENMASK_ULL(31, 24);
655 
656 		if (epp == -EINVAL)
657 			epp = epp_values[pref_index - 1];
658 
659 		value |= (u64)epp << 24;
660 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
661 	} else {
662 		if (epp == -EINVAL)
663 			epp = (pref_index - 1) << 2;
664 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
665 	}
666 return_pref:
667 	mutex_unlock(&intel_pstate_limits_lock);
668 
669 	return ret;
670 }
671 
672 static ssize_t show_energy_performance_available_preferences(
673 				struct cpufreq_policy *policy, char *buf)
674 {
675 	int i = 0;
676 	int ret = 0;
677 
678 	while (energy_perf_strings[i] != NULL)
679 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
680 
681 	ret += sprintf(&buf[ret], "\n");
682 
683 	return ret;
684 }
685 
686 cpufreq_freq_attr_ro(energy_performance_available_preferences);
687 
688 static ssize_t store_energy_performance_preference(
689 		struct cpufreq_policy *policy, const char *buf, size_t count)
690 {
691 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
692 	char str_preference[21];
693 	int ret;
694 
695 	ret = sscanf(buf, "%20s", str_preference);
696 	if (ret != 1)
697 		return -EINVAL;
698 
699 	ret = match_string(energy_perf_strings, -1, str_preference);
700 	if (ret < 0)
701 		return ret;
702 
703 	intel_pstate_set_energy_pref_index(cpu_data, ret);
704 	return count;
705 }
706 
707 static ssize_t show_energy_performance_preference(
708 				struct cpufreq_policy *policy, char *buf)
709 {
710 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
711 	int preference;
712 
713 	preference = intel_pstate_get_energy_pref_index(cpu_data);
714 	if (preference < 0)
715 		return preference;
716 
717 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
718 }
719 
720 cpufreq_freq_attr_rw(energy_performance_preference);
721 
722 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
723 {
724 	struct cpudata *cpu;
725 	u64 cap;
726 	int ratio;
727 
728 	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
729 	if (ratio <= 0) {
730 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
731 		ratio = HWP_GUARANTEED_PERF(cap);
732 	}
733 
734 	cpu = all_cpu_data[policy->cpu];
735 
736 	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
737 }
738 
739 cpufreq_freq_attr_ro(base_frequency);
740 
741 static struct freq_attr *hwp_cpufreq_attrs[] = {
742 	&energy_performance_preference,
743 	&energy_performance_available_preferences,
744 	&base_frequency,
745 	NULL,
746 };
747 
748 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
749 				     int *current_max)
750 {
751 	u64 cap;
752 
753 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
754 	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
755 	if (global.no_turbo)
756 		*current_max = HWP_GUARANTEED_PERF(cap);
757 	else
758 		*current_max = HWP_HIGHEST_PERF(cap);
759 
760 	*phy_max = HWP_HIGHEST_PERF(cap);
761 }
762 
763 static void intel_pstate_hwp_set(unsigned int cpu)
764 {
765 	struct cpudata *cpu_data = all_cpu_data[cpu];
766 	int max, min;
767 	u64 value;
768 	s16 epp;
769 
770 	max = cpu_data->max_perf_ratio;
771 	min = cpu_data->min_perf_ratio;
772 
773 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
774 		min = max;
775 
776 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
777 
778 	value &= ~HWP_MIN_PERF(~0L);
779 	value |= HWP_MIN_PERF(min);
780 
781 	value &= ~HWP_MAX_PERF(~0L);
782 	value |= HWP_MAX_PERF(max);
783 
784 	if (cpu_data->epp_policy == cpu_data->policy)
785 		goto skip_epp;
786 
787 	cpu_data->epp_policy = cpu_data->policy;
788 
789 	if (cpu_data->epp_saved >= 0) {
790 		epp = cpu_data->epp_saved;
791 		cpu_data->epp_saved = -EINVAL;
792 		goto update_epp;
793 	}
794 
795 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
796 		epp = intel_pstate_get_epp(cpu_data, value);
797 		cpu_data->epp_powersave = epp;
798 		/* If EPP read was failed, then don't try to write */
799 		if (epp < 0)
800 			goto skip_epp;
801 
802 		epp = 0;
803 	} else {
804 		/* skip setting EPP, when saved value is invalid */
805 		if (cpu_data->epp_powersave < 0)
806 			goto skip_epp;
807 
808 		/*
809 		 * No need to restore EPP when it is not zero. This
810 		 * means:
811 		 *  - Policy is not changed
812 		 *  - user has manually changed
813 		 *  - Error reading EPB
814 		 */
815 		epp = intel_pstate_get_epp(cpu_data, value);
816 		if (epp)
817 			goto skip_epp;
818 
819 		epp = cpu_data->epp_powersave;
820 	}
821 update_epp:
822 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
823 		value &= ~GENMASK_ULL(31, 24);
824 		value |= (u64)epp << 24;
825 	} else {
826 		intel_pstate_set_epb(cpu, epp);
827 	}
828 skip_epp:
829 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
830 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
831 }
832 
833 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
834 {
835 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
836 
837 	if (!hwp_active)
838 		return 0;
839 
840 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
841 
842 	return 0;
843 }
844 
845 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
846 
847 static int intel_pstate_resume(struct cpufreq_policy *policy)
848 {
849 	if (!hwp_active)
850 		return 0;
851 
852 	mutex_lock(&intel_pstate_limits_lock);
853 
854 	if (policy->cpu == 0)
855 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
856 
857 	all_cpu_data[policy->cpu]->epp_policy = 0;
858 	intel_pstate_hwp_set(policy->cpu);
859 
860 	mutex_unlock(&intel_pstate_limits_lock);
861 
862 	return 0;
863 }
864 
865 static void intel_pstate_update_policies(void)
866 {
867 	int cpu;
868 
869 	for_each_possible_cpu(cpu)
870 		cpufreq_update_policy(cpu);
871 }
872 
873 /************************** sysfs begin ************************/
874 #define show_one(file_name, object)					\
875 	static ssize_t show_##file_name					\
876 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
877 	{								\
878 		return sprintf(buf, "%u\n", global.object);		\
879 	}
880 
881 static ssize_t intel_pstate_show_status(char *buf);
882 static int intel_pstate_update_status(const char *buf, size_t size);
883 
884 static ssize_t show_status(struct kobject *kobj,
885 			   struct attribute *attr, char *buf)
886 {
887 	ssize_t ret;
888 
889 	mutex_lock(&intel_pstate_driver_lock);
890 	ret = intel_pstate_show_status(buf);
891 	mutex_unlock(&intel_pstate_driver_lock);
892 
893 	return ret;
894 }
895 
896 static ssize_t store_status(struct kobject *a, struct attribute *b,
897 			    const char *buf, size_t count)
898 {
899 	char *p = memchr(buf, '\n', count);
900 	int ret;
901 
902 	mutex_lock(&intel_pstate_driver_lock);
903 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
904 	mutex_unlock(&intel_pstate_driver_lock);
905 
906 	return ret < 0 ? ret : count;
907 }
908 
909 static ssize_t show_turbo_pct(struct kobject *kobj,
910 				struct attribute *attr, char *buf)
911 {
912 	struct cpudata *cpu;
913 	int total, no_turbo, turbo_pct;
914 	uint32_t turbo_fp;
915 
916 	mutex_lock(&intel_pstate_driver_lock);
917 
918 	if (!intel_pstate_driver) {
919 		mutex_unlock(&intel_pstate_driver_lock);
920 		return -EAGAIN;
921 	}
922 
923 	cpu = all_cpu_data[0];
924 
925 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
926 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
927 	turbo_fp = div_fp(no_turbo, total);
928 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
929 
930 	mutex_unlock(&intel_pstate_driver_lock);
931 
932 	return sprintf(buf, "%u\n", turbo_pct);
933 }
934 
935 static ssize_t show_num_pstates(struct kobject *kobj,
936 				struct attribute *attr, char *buf)
937 {
938 	struct cpudata *cpu;
939 	int total;
940 
941 	mutex_lock(&intel_pstate_driver_lock);
942 
943 	if (!intel_pstate_driver) {
944 		mutex_unlock(&intel_pstate_driver_lock);
945 		return -EAGAIN;
946 	}
947 
948 	cpu = all_cpu_data[0];
949 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
950 
951 	mutex_unlock(&intel_pstate_driver_lock);
952 
953 	return sprintf(buf, "%u\n", total);
954 }
955 
956 static ssize_t show_no_turbo(struct kobject *kobj,
957 			     struct attribute *attr, char *buf)
958 {
959 	ssize_t ret;
960 
961 	mutex_lock(&intel_pstate_driver_lock);
962 
963 	if (!intel_pstate_driver) {
964 		mutex_unlock(&intel_pstate_driver_lock);
965 		return -EAGAIN;
966 	}
967 
968 	update_turbo_state();
969 	if (global.turbo_disabled)
970 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
971 	else
972 		ret = sprintf(buf, "%u\n", global.no_turbo);
973 
974 	mutex_unlock(&intel_pstate_driver_lock);
975 
976 	return ret;
977 }
978 
979 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
980 			      const char *buf, size_t count)
981 {
982 	unsigned int input;
983 	int ret;
984 
985 	ret = sscanf(buf, "%u", &input);
986 	if (ret != 1)
987 		return -EINVAL;
988 
989 	mutex_lock(&intel_pstate_driver_lock);
990 
991 	if (!intel_pstate_driver) {
992 		mutex_unlock(&intel_pstate_driver_lock);
993 		return -EAGAIN;
994 	}
995 
996 	mutex_lock(&intel_pstate_limits_lock);
997 
998 	update_turbo_state();
999 	if (global.turbo_disabled) {
1000 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1001 		mutex_unlock(&intel_pstate_limits_lock);
1002 		mutex_unlock(&intel_pstate_driver_lock);
1003 		return -EPERM;
1004 	}
1005 
1006 	global.no_turbo = clamp_t(int, input, 0, 1);
1007 
1008 	if (global.no_turbo) {
1009 		struct cpudata *cpu = all_cpu_data[0];
1010 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1011 
1012 		/* Squash the global minimum into the permitted range. */
1013 		if (global.min_perf_pct > pct)
1014 			global.min_perf_pct = pct;
1015 	}
1016 
1017 	mutex_unlock(&intel_pstate_limits_lock);
1018 
1019 	intel_pstate_update_policies();
1020 
1021 	mutex_unlock(&intel_pstate_driver_lock);
1022 
1023 	return count;
1024 }
1025 
1026 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1027 				  const char *buf, size_t count)
1028 {
1029 	unsigned int input;
1030 	int ret;
1031 
1032 	ret = sscanf(buf, "%u", &input);
1033 	if (ret != 1)
1034 		return -EINVAL;
1035 
1036 	mutex_lock(&intel_pstate_driver_lock);
1037 
1038 	if (!intel_pstate_driver) {
1039 		mutex_unlock(&intel_pstate_driver_lock);
1040 		return -EAGAIN;
1041 	}
1042 
1043 	mutex_lock(&intel_pstate_limits_lock);
1044 
1045 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1046 
1047 	mutex_unlock(&intel_pstate_limits_lock);
1048 
1049 	intel_pstate_update_policies();
1050 
1051 	mutex_unlock(&intel_pstate_driver_lock);
1052 
1053 	return count;
1054 }
1055 
1056 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1057 				  const char *buf, size_t count)
1058 {
1059 	unsigned int input;
1060 	int ret;
1061 
1062 	ret = sscanf(buf, "%u", &input);
1063 	if (ret != 1)
1064 		return -EINVAL;
1065 
1066 	mutex_lock(&intel_pstate_driver_lock);
1067 
1068 	if (!intel_pstate_driver) {
1069 		mutex_unlock(&intel_pstate_driver_lock);
1070 		return -EAGAIN;
1071 	}
1072 
1073 	mutex_lock(&intel_pstate_limits_lock);
1074 
1075 	global.min_perf_pct = clamp_t(int, input,
1076 				      min_perf_pct_min(), global.max_perf_pct);
1077 
1078 	mutex_unlock(&intel_pstate_limits_lock);
1079 
1080 	intel_pstate_update_policies();
1081 
1082 	mutex_unlock(&intel_pstate_driver_lock);
1083 
1084 	return count;
1085 }
1086 
1087 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1088 				struct attribute *attr, char *buf)
1089 {
1090 	return sprintf(buf, "%u\n", hwp_boost);
1091 }
1092 
1093 static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1094 				       const char *buf, size_t count)
1095 {
1096 	unsigned int input;
1097 	int ret;
1098 
1099 	ret = kstrtouint(buf, 10, &input);
1100 	if (ret)
1101 		return ret;
1102 
1103 	mutex_lock(&intel_pstate_driver_lock);
1104 	hwp_boost = !!input;
1105 	intel_pstate_update_policies();
1106 	mutex_unlock(&intel_pstate_driver_lock);
1107 
1108 	return count;
1109 }
1110 
1111 show_one(max_perf_pct, max_perf_pct);
1112 show_one(min_perf_pct, min_perf_pct);
1113 
1114 define_one_global_rw(status);
1115 define_one_global_rw(no_turbo);
1116 define_one_global_rw(max_perf_pct);
1117 define_one_global_rw(min_perf_pct);
1118 define_one_global_ro(turbo_pct);
1119 define_one_global_ro(num_pstates);
1120 define_one_global_rw(hwp_dynamic_boost);
1121 
1122 static struct attribute *intel_pstate_attributes[] = {
1123 	&status.attr,
1124 	&no_turbo.attr,
1125 	&turbo_pct.attr,
1126 	&num_pstates.attr,
1127 	NULL
1128 };
1129 
1130 static const struct attribute_group intel_pstate_attr_group = {
1131 	.attrs = intel_pstate_attributes,
1132 };
1133 
1134 static void __init intel_pstate_sysfs_expose_params(void)
1135 {
1136 	struct kobject *intel_pstate_kobject;
1137 	int rc;
1138 
1139 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1140 						&cpu_subsys.dev_root->kobj);
1141 	if (WARN_ON(!intel_pstate_kobject))
1142 		return;
1143 
1144 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1145 	if (WARN_ON(rc))
1146 		return;
1147 
1148 	/*
1149 	 * If per cpu limits are enforced there are no global limits, so
1150 	 * return without creating max/min_perf_pct attributes
1151 	 */
1152 	if (per_cpu_limits)
1153 		return;
1154 
1155 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1156 	WARN_ON(rc);
1157 
1158 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1159 	WARN_ON(rc);
1160 
1161 	if (hwp_active) {
1162 		rc = sysfs_create_file(intel_pstate_kobject,
1163 				       &hwp_dynamic_boost.attr);
1164 		WARN_ON(rc);
1165 	}
1166 }
1167 /************************** sysfs end ************************/
1168 
1169 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1170 {
1171 	/* First disable HWP notification interrupt as we don't process them */
1172 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1173 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1174 
1175 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1176 	cpudata->epp_policy = 0;
1177 	if (cpudata->epp_default == -EINVAL)
1178 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1179 }
1180 
1181 #define MSR_IA32_POWER_CTL_BIT_EE	19
1182 
1183 /* Disable energy efficiency optimization */
1184 static void intel_pstate_disable_ee(int cpu)
1185 {
1186 	u64 power_ctl;
1187 	int ret;
1188 
1189 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1190 	if (ret)
1191 		return;
1192 
1193 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1194 		pr_info("Disabling energy efficiency optimization\n");
1195 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1196 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1197 	}
1198 }
1199 
1200 static int atom_get_min_pstate(void)
1201 {
1202 	u64 value;
1203 
1204 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1205 	return (value >> 8) & 0x7F;
1206 }
1207 
1208 static int atom_get_max_pstate(void)
1209 {
1210 	u64 value;
1211 
1212 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1213 	return (value >> 16) & 0x7F;
1214 }
1215 
1216 static int atom_get_turbo_pstate(void)
1217 {
1218 	u64 value;
1219 
1220 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1221 	return value & 0x7F;
1222 }
1223 
1224 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1225 {
1226 	u64 val;
1227 	int32_t vid_fp;
1228 	u32 vid;
1229 
1230 	val = (u64)pstate << 8;
1231 	if (global.no_turbo && !global.turbo_disabled)
1232 		val |= (u64)1 << 32;
1233 
1234 	vid_fp = cpudata->vid.min + mul_fp(
1235 		int_tofp(pstate - cpudata->pstate.min_pstate),
1236 		cpudata->vid.ratio);
1237 
1238 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1239 	vid = ceiling_fp(vid_fp);
1240 
1241 	if (pstate > cpudata->pstate.max_pstate)
1242 		vid = cpudata->vid.turbo;
1243 
1244 	return val | vid;
1245 }
1246 
1247 static int silvermont_get_scaling(void)
1248 {
1249 	u64 value;
1250 	int i;
1251 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1252 	static int silvermont_freq_table[] = {
1253 		83300, 100000, 133300, 116700, 80000};
1254 
1255 	rdmsrl(MSR_FSB_FREQ, value);
1256 	i = value & 0x7;
1257 	WARN_ON(i > 4);
1258 
1259 	return silvermont_freq_table[i];
1260 }
1261 
1262 static int airmont_get_scaling(void)
1263 {
1264 	u64 value;
1265 	int i;
1266 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1267 	static int airmont_freq_table[] = {
1268 		83300, 100000, 133300, 116700, 80000,
1269 		93300, 90000, 88900, 87500};
1270 
1271 	rdmsrl(MSR_FSB_FREQ, value);
1272 	i = value & 0xF;
1273 	WARN_ON(i > 8);
1274 
1275 	return airmont_freq_table[i];
1276 }
1277 
1278 static void atom_get_vid(struct cpudata *cpudata)
1279 {
1280 	u64 value;
1281 
1282 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1283 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1284 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1285 	cpudata->vid.ratio = div_fp(
1286 		cpudata->vid.max - cpudata->vid.min,
1287 		int_tofp(cpudata->pstate.max_pstate -
1288 			cpudata->pstate.min_pstate));
1289 
1290 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1291 	cpudata->vid.turbo = value & 0x7f;
1292 }
1293 
1294 static int core_get_min_pstate(void)
1295 {
1296 	u64 value;
1297 
1298 	rdmsrl(MSR_PLATFORM_INFO, value);
1299 	return (value >> 40) & 0xFF;
1300 }
1301 
1302 static int core_get_max_pstate_physical(void)
1303 {
1304 	u64 value;
1305 
1306 	rdmsrl(MSR_PLATFORM_INFO, value);
1307 	return (value >> 8) & 0xFF;
1308 }
1309 
1310 static int core_get_tdp_ratio(u64 plat_info)
1311 {
1312 	/* Check how many TDP levels present */
1313 	if (plat_info & 0x600000000) {
1314 		u64 tdp_ctrl;
1315 		u64 tdp_ratio;
1316 		int tdp_msr;
1317 		int err;
1318 
1319 		/* Get the TDP level (0, 1, 2) to get ratios */
1320 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1321 		if (err)
1322 			return err;
1323 
1324 		/* TDP MSR are continuous starting at 0x648 */
1325 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1326 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1327 		if (err)
1328 			return err;
1329 
1330 		/* For level 1 and 2, bits[23:16] contain the ratio */
1331 		if (tdp_ctrl & 0x03)
1332 			tdp_ratio >>= 16;
1333 
1334 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1335 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1336 
1337 		return (int)tdp_ratio;
1338 	}
1339 
1340 	return -ENXIO;
1341 }
1342 
1343 static int core_get_max_pstate(void)
1344 {
1345 	u64 tar;
1346 	u64 plat_info;
1347 	int max_pstate;
1348 	int tdp_ratio;
1349 	int err;
1350 
1351 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1352 	max_pstate = (plat_info >> 8) & 0xFF;
1353 
1354 	tdp_ratio = core_get_tdp_ratio(plat_info);
1355 	if (tdp_ratio <= 0)
1356 		return max_pstate;
1357 
1358 	if (hwp_active) {
1359 		/* Turbo activation ratio is not used on HWP platforms */
1360 		return tdp_ratio;
1361 	}
1362 
1363 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1364 	if (!err) {
1365 		int tar_levels;
1366 
1367 		/* Do some sanity checking for safety */
1368 		tar_levels = tar & 0xff;
1369 		if (tdp_ratio - 1 == tar_levels) {
1370 			max_pstate = tar_levels;
1371 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1372 		}
1373 	}
1374 
1375 	return max_pstate;
1376 }
1377 
1378 static int core_get_turbo_pstate(void)
1379 {
1380 	u64 value;
1381 	int nont, ret;
1382 
1383 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1384 	nont = core_get_max_pstate();
1385 	ret = (value) & 255;
1386 	if (ret <= nont)
1387 		ret = nont;
1388 	return ret;
1389 }
1390 
1391 static inline int core_get_scaling(void)
1392 {
1393 	return 100000;
1394 }
1395 
1396 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1397 {
1398 	u64 val;
1399 
1400 	val = (u64)pstate << 8;
1401 	if (global.no_turbo && !global.turbo_disabled)
1402 		val |= (u64)1 << 32;
1403 
1404 	return val;
1405 }
1406 
1407 static int knl_get_aperf_mperf_shift(void)
1408 {
1409 	return 10;
1410 }
1411 
1412 static int knl_get_turbo_pstate(void)
1413 {
1414 	u64 value;
1415 	int nont, ret;
1416 
1417 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1418 	nont = core_get_max_pstate();
1419 	ret = (((value) >> 8) & 0xFF);
1420 	if (ret <= nont)
1421 		ret = nont;
1422 	return ret;
1423 }
1424 
1425 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1426 {
1427 	return global.no_turbo || global.turbo_disabled ?
1428 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1429 }
1430 
1431 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1432 {
1433 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1434 	cpu->pstate.current_pstate = pstate;
1435 	/*
1436 	 * Generally, there is no guarantee that this code will always run on
1437 	 * the CPU being updated, so force the register update to run on the
1438 	 * right CPU.
1439 	 */
1440 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1441 		      pstate_funcs.get_val(cpu, pstate));
1442 }
1443 
1444 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1445 {
1446 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1447 }
1448 
1449 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1450 {
1451 	int pstate;
1452 
1453 	update_turbo_state();
1454 	pstate = intel_pstate_get_base_pstate(cpu);
1455 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1456 	intel_pstate_set_pstate(cpu, pstate);
1457 }
1458 
1459 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1460 {
1461 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1462 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1463 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1464 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1465 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1466 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1467 
1468 	if (hwp_active && !hwp_mode_bdw) {
1469 		unsigned int phy_max, current_max;
1470 
1471 		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1472 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1473 	} else {
1474 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1475 	}
1476 
1477 	if (pstate_funcs.get_aperf_mperf_shift)
1478 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1479 
1480 	if (pstate_funcs.get_vid)
1481 		pstate_funcs.get_vid(cpu);
1482 
1483 	intel_pstate_set_min_pstate(cpu);
1484 }
1485 
1486 /*
1487  * Long hold time will keep high perf limits for long time,
1488  * which negatively impacts perf/watt for some workloads,
1489  * like specpower. 3ms is based on experiements on some
1490  * workoads.
1491  */
1492 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1493 
1494 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1495 {
1496 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1497 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1498 	u32 min_limit = (hwp_req & 0xff);
1499 	u32 boost_level1;
1500 
1501 	/*
1502 	 * Cases to consider (User changes via sysfs or boot time):
1503 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1504 	 *	No boost, return.
1505 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1506 	 *     Should result in one level boost only for P0.
1507 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1508 	 *     Should result in two level boost:
1509 	 *         (min + p1)/2 and P1.
1510 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1511 	 *     Should result in three level boost:
1512 	 *        (min + p1)/2, P1 and P0.
1513 	 */
1514 
1515 	/* If max and min are equal or already at max, nothing to boost */
1516 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1517 		return;
1518 
1519 	if (!cpu->hwp_boost_min)
1520 		cpu->hwp_boost_min = min_limit;
1521 
1522 	/* level at half way mark between min and guranteed */
1523 	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1524 
1525 	if (cpu->hwp_boost_min < boost_level1)
1526 		cpu->hwp_boost_min = boost_level1;
1527 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1528 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1529 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1530 		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1531 		cpu->hwp_boost_min = max_limit;
1532 	else
1533 		return;
1534 
1535 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1536 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1537 	cpu->last_update = cpu->sample.time;
1538 }
1539 
1540 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1541 {
1542 	if (cpu->hwp_boost_min) {
1543 		bool expired;
1544 
1545 		/* Check if we are idle for hold time to boost down */
1546 		expired = time_after64(cpu->sample.time, cpu->last_update +
1547 				       hwp_boost_hold_time_ns);
1548 		if (expired) {
1549 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1550 			cpu->hwp_boost_min = 0;
1551 		}
1552 	}
1553 	cpu->last_update = cpu->sample.time;
1554 }
1555 
1556 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1557 						      u64 time)
1558 {
1559 	cpu->sample.time = time;
1560 
1561 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1562 		bool do_io = false;
1563 
1564 		cpu->sched_flags = 0;
1565 		/*
1566 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1567 		 * is set all the time, we can't just conclude that there is
1568 		 * some IO bound activity is scheduled on this CPU with just
1569 		 * one occurrence. If we receive at least two in two
1570 		 * consecutive ticks, then we treat as boost candidate.
1571 		 */
1572 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1573 			do_io = true;
1574 
1575 		cpu->last_io_update = time;
1576 
1577 		if (do_io)
1578 			intel_pstate_hwp_boost_up(cpu);
1579 
1580 	} else {
1581 		intel_pstate_hwp_boost_down(cpu);
1582 	}
1583 }
1584 
1585 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1586 						u64 time, unsigned int flags)
1587 {
1588 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1589 
1590 	cpu->sched_flags |= flags;
1591 
1592 	if (smp_processor_id() == cpu->cpu)
1593 		intel_pstate_update_util_hwp_local(cpu, time);
1594 }
1595 
1596 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1597 {
1598 	struct sample *sample = &cpu->sample;
1599 
1600 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1601 }
1602 
1603 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1604 {
1605 	u64 aperf, mperf;
1606 	unsigned long flags;
1607 	u64 tsc;
1608 
1609 	local_irq_save(flags);
1610 	rdmsrl(MSR_IA32_APERF, aperf);
1611 	rdmsrl(MSR_IA32_MPERF, mperf);
1612 	tsc = rdtsc();
1613 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1614 		local_irq_restore(flags);
1615 		return false;
1616 	}
1617 	local_irq_restore(flags);
1618 
1619 	cpu->last_sample_time = cpu->sample.time;
1620 	cpu->sample.time = time;
1621 	cpu->sample.aperf = aperf;
1622 	cpu->sample.mperf = mperf;
1623 	cpu->sample.tsc =  tsc;
1624 	cpu->sample.aperf -= cpu->prev_aperf;
1625 	cpu->sample.mperf -= cpu->prev_mperf;
1626 	cpu->sample.tsc -= cpu->prev_tsc;
1627 
1628 	cpu->prev_aperf = aperf;
1629 	cpu->prev_mperf = mperf;
1630 	cpu->prev_tsc = tsc;
1631 	/*
1632 	 * First time this function is invoked in a given cycle, all of the
1633 	 * previous sample data fields are equal to zero or stale and they must
1634 	 * be populated with meaningful numbers for things to work, so assume
1635 	 * that sample.time will always be reset before setting the utilization
1636 	 * update hook and make the caller skip the sample then.
1637 	 */
1638 	if (cpu->last_sample_time) {
1639 		intel_pstate_calc_avg_perf(cpu);
1640 		return true;
1641 	}
1642 	return false;
1643 }
1644 
1645 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1646 {
1647 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1648 }
1649 
1650 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1651 {
1652 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1653 			  cpu->sample.core_avg_perf);
1654 }
1655 
1656 static inline int32_t get_target_pstate(struct cpudata *cpu)
1657 {
1658 	struct sample *sample = &cpu->sample;
1659 	int32_t busy_frac, boost;
1660 	int target, avg_pstate;
1661 
1662 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1663 			   sample->tsc);
1664 
1665 	boost = cpu->iowait_boost;
1666 	cpu->iowait_boost >>= 1;
1667 
1668 	if (busy_frac < boost)
1669 		busy_frac = boost;
1670 
1671 	sample->busy_scaled = busy_frac * 100;
1672 
1673 	target = global.no_turbo || global.turbo_disabled ?
1674 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1675 	target += target >> 2;
1676 	target = mul_fp(target, busy_frac);
1677 	if (target < cpu->pstate.min_pstate)
1678 		target = cpu->pstate.min_pstate;
1679 
1680 	/*
1681 	 * If the average P-state during the previous cycle was higher than the
1682 	 * current target, add 50% of the difference to the target to reduce
1683 	 * possible performance oscillations and offset possible performance
1684 	 * loss related to moving the workload from one CPU to another within
1685 	 * a package/module.
1686 	 */
1687 	avg_pstate = get_avg_pstate(cpu);
1688 	if (avg_pstate > target)
1689 		target += (avg_pstate - target) >> 1;
1690 
1691 	return target;
1692 }
1693 
1694 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1695 {
1696 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1697 	int min_pstate;
1698 
1699 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1700 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1701 	return clamp_t(int, pstate, min_pstate, max_pstate);
1702 }
1703 
1704 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1705 {
1706 	if (pstate == cpu->pstate.current_pstate)
1707 		return;
1708 
1709 	cpu->pstate.current_pstate = pstate;
1710 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1711 }
1712 
1713 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1714 {
1715 	int from = cpu->pstate.current_pstate;
1716 	struct sample *sample;
1717 	int target_pstate;
1718 
1719 	update_turbo_state();
1720 
1721 	target_pstate = get_target_pstate(cpu);
1722 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1723 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1724 	intel_pstate_update_pstate(cpu, target_pstate);
1725 
1726 	sample = &cpu->sample;
1727 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1728 		fp_toint(sample->busy_scaled),
1729 		from,
1730 		cpu->pstate.current_pstate,
1731 		sample->mperf,
1732 		sample->aperf,
1733 		sample->tsc,
1734 		get_avg_frequency(cpu),
1735 		fp_toint(cpu->iowait_boost * 100));
1736 }
1737 
1738 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1739 				     unsigned int flags)
1740 {
1741 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1742 	u64 delta_ns;
1743 
1744 	/* Don't allow remote callbacks */
1745 	if (smp_processor_id() != cpu->cpu)
1746 		return;
1747 
1748 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1749 		cpu->iowait_boost = int_tofp(1);
1750 		cpu->last_update = time;
1751 		/*
1752 		 * The last time the busy was 100% so P-state was max anyway
1753 		 * so avoid overhead of computation.
1754 		 */
1755 		if (fp_toint(cpu->sample.busy_scaled) == 100)
1756 			return;
1757 
1758 		goto set_pstate;
1759 	} else if (cpu->iowait_boost) {
1760 		/* Clear iowait_boost if the CPU may have been idle. */
1761 		delta_ns = time - cpu->last_update;
1762 		if (delta_ns > TICK_NSEC)
1763 			cpu->iowait_boost = 0;
1764 	}
1765 	cpu->last_update = time;
1766 	delta_ns = time - cpu->sample.time;
1767 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1768 		return;
1769 
1770 set_pstate:
1771 	if (intel_pstate_sample(cpu, time))
1772 		intel_pstate_adjust_pstate(cpu);
1773 }
1774 
1775 static struct pstate_funcs core_funcs = {
1776 	.get_max = core_get_max_pstate,
1777 	.get_max_physical = core_get_max_pstate_physical,
1778 	.get_min = core_get_min_pstate,
1779 	.get_turbo = core_get_turbo_pstate,
1780 	.get_scaling = core_get_scaling,
1781 	.get_val = core_get_val,
1782 };
1783 
1784 static const struct pstate_funcs silvermont_funcs = {
1785 	.get_max = atom_get_max_pstate,
1786 	.get_max_physical = atom_get_max_pstate,
1787 	.get_min = atom_get_min_pstate,
1788 	.get_turbo = atom_get_turbo_pstate,
1789 	.get_val = atom_get_val,
1790 	.get_scaling = silvermont_get_scaling,
1791 	.get_vid = atom_get_vid,
1792 };
1793 
1794 static const struct pstate_funcs airmont_funcs = {
1795 	.get_max = atom_get_max_pstate,
1796 	.get_max_physical = atom_get_max_pstate,
1797 	.get_min = atom_get_min_pstate,
1798 	.get_turbo = atom_get_turbo_pstate,
1799 	.get_val = atom_get_val,
1800 	.get_scaling = airmont_get_scaling,
1801 	.get_vid = atom_get_vid,
1802 };
1803 
1804 static const struct pstate_funcs knl_funcs = {
1805 	.get_max = core_get_max_pstate,
1806 	.get_max_physical = core_get_max_pstate_physical,
1807 	.get_min = core_get_min_pstate,
1808 	.get_turbo = knl_get_turbo_pstate,
1809 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1810 	.get_scaling = core_get_scaling,
1811 	.get_val = core_get_val,
1812 };
1813 
1814 #define ICPU(model, policy) \
1815 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1816 			(unsigned long)&policy }
1817 
1818 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1819 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1820 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1821 	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1822 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1823 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1824 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1825 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1826 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1827 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1828 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1829 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1830 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1831 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1832 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1833 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1834 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1835 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1836 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1837 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1838 	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1839 	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1840 	{}
1841 };
1842 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1843 
1844 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1845 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1846 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1847 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1848 	{}
1849 };
1850 
1851 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1852 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1853 	{}
1854 };
1855 
1856 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1857 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1858 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1859 	{}
1860 };
1861 
1862 static int intel_pstate_init_cpu(unsigned int cpunum)
1863 {
1864 	struct cpudata *cpu;
1865 
1866 	cpu = all_cpu_data[cpunum];
1867 
1868 	if (!cpu) {
1869 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1870 		if (!cpu)
1871 			return -ENOMEM;
1872 
1873 		all_cpu_data[cpunum] = cpu;
1874 
1875 		cpu->epp_default = -EINVAL;
1876 		cpu->epp_powersave = -EINVAL;
1877 		cpu->epp_saved = -EINVAL;
1878 	}
1879 
1880 	cpu = all_cpu_data[cpunum];
1881 
1882 	cpu->cpu = cpunum;
1883 
1884 	if (hwp_active) {
1885 		const struct x86_cpu_id *id;
1886 
1887 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1888 		if (id)
1889 			intel_pstate_disable_ee(cpunum);
1890 
1891 		intel_pstate_hwp_enable(cpu);
1892 
1893 		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1894 		if (id && intel_pstate_acpi_pm_profile_server())
1895 			hwp_boost = true;
1896 	}
1897 
1898 	intel_pstate_get_cpu_pstates(cpu);
1899 
1900 	pr_debug("controlling: cpu %d\n", cpunum);
1901 
1902 	return 0;
1903 }
1904 
1905 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1906 {
1907 	struct cpudata *cpu = all_cpu_data[cpu_num];
1908 
1909 	if (hwp_active && !hwp_boost)
1910 		return;
1911 
1912 	if (cpu->update_util_set)
1913 		return;
1914 
1915 	/* Prevent intel_pstate_update_util() from using stale data. */
1916 	cpu->sample.time = 0;
1917 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1918 				     (hwp_active ?
1919 				      intel_pstate_update_util_hwp :
1920 				      intel_pstate_update_util));
1921 	cpu->update_util_set = true;
1922 }
1923 
1924 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1925 {
1926 	struct cpudata *cpu_data = all_cpu_data[cpu];
1927 
1928 	if (!cpu_data->update_util_set)
1929 		return;
1930 
1931 	cpufreq_remove_update_util_hook(cpu);
1932 	cpu_data->update_util_set = false;
1933 	synchronize_sched();
1934 }
1935 
1936 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1937 {
1938 	return global.turbo_disabled || global.no_turbo ?
1939 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1940 }
1941 
1942 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1943 					    struct cpudata *cpu)
1944 {
1945 	int max_freq = intel_pstate_get_max_freq(cpu);
1946 	int32_t max_policy_perf, min_policy_perf;
1947 	int max_state, turbo_max;
1948 
1949 	/*
1950 	 * HWP needs some special consideration, because on BDX the
1951 	 * HWP_REQUEST uses abstract value to represent performance
1952 	 * rather than pure ratios.
1953 	 */
1954 	if (hwp_active) {
1955 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1956 	} else {
1957 		max_state = intel_pstate_get_base_pstate(cpu);
1958 		turbo_max = cpu->pstate.turbo_pstate;
1959 	}
1960 
1961 	max_policy_perf = max_state * policy->max / max_freq;
1962 	if (policy->max == policy->min) {
1963 		min_policy_perf = max_policy_perf;
1964 	} else {
1965 		min_policy_perf = max_state * policy->min / max_freq;
1966 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1967 					  0, max_policy_perf);
1968 	}
1969 
1970 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1971 		 policy->cpu, max_state,
1972 		 min_policy_perf, max_policy_perf);
1973 
1974 	/* Normalize user input to [min_perf, max_perf] */
1975 	if (per_cpu_limits) {
1976 		cpu->min_perf_ratio = min_policy_perf;
1977 		cpu->max_perf_ratio = max_policy_perf;
1978 	} else {
1979 		int32_t global_min, global_max;
1980 
1981 		/* Global limits are in percent of the maximum turbo P-state. */
1982 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1983 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1984 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1985 
1986 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1987 			 global_min, global_max);
1988 
1989 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1990 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1991 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
1992 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1993 
1994 		/* Make sure min_perf <= max_perf */
1995 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1996 					  cpu->max_perf_ratio);
1997 
1998 	}
1999 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2000 		 cpu->max_perf_ratio,
2001 		 cpu->min_perf_ratio);
2002 }
2003 
2004 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2005 {
2006 	struct cpudata *cpu;
2007 
2008 	if (!policy->cpuinfo.max_freq)
2009 		return -ENODEV;
2010 
2011 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2012 		 policy->cpuinfo.max_freq, policy->max);
2013 
2014 	cpu = all_cpu_data[policy->cpu];
2015 	cpu->policy = policy->policy;
2016 
2017 	mutex_lock(&intel_pstate_limits_lock);
2018 
2019 	intel_pstate_update_perf_limits(policy, cpu);
2020 
2021 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2022 		/*
2023 		 * NOHZ_FULL CPUs need this as the governor callback may not
2024 		 * be invoked on them.
2025 		 */
2026 		intel_pstate_clear_update_util_hook(policy->cpu);
2027 		intel_pstate_max_within_limits(cpu);
2028 	} else {
2029 		intel_pstate_set_update_util_hook(policy->cpu);
2030 	}
2031 
2032 	if (hwp_active) {
2033 		/*
2034 		 * When hwp_boost was active before and dynamically it
2035 		 * was turned off, in that case we need to clear the
2036 		 * update util hook.
2037 		 */
2038 		if (!hwp_boost)
2039 			intel_pstate_clear_update_util_hook(policy->cpu);
2040 		intel_pstate_hwp_set(policy->cpu);
2041 	}
2042 
2043 	mutex_unlock(&intel_pstate_limits_lock);
2044 
2045 	return 0;
2046 }
2047 
2048 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2049 					 struct cpudata *cpu)
2050 {
2051 	if (!hwp_active &&
2052 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2053 	    policy->max < policy->cpuinfo.max_freq &&
2054 	    policy->max > cpu->pstate.max_freq) {
2055 		pr_debug("policy->max > max non turbo frequency\n");
2056 		policy->max = policy->cpuinfo.max_freq;
2057 	}
2058 }
2059 
2060 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2061 {
2062 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2063 
2064 	update_turbo_state();
2065 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2066 				     intel_pstate_get_max_freq(cpu));
2067 
2068 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2069 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2070 		return -EINVAL;
2071 
2072 	intel_pstate_adjust_policy_max(policy, cpu);
2073 
2074 	return 0;
2075 }
2076 
2077 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2078 {
2079 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2080 }
2081 
2082 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2083 {
2084 	pr_debug("CPU %d exiting\n", policy->cpu);
2085 
2086 	intel_pstate_clear_update_util_hook(policy->cpu);
2087 	if (hwp_active)
2088 		intel_pstate_hwp_save_state(policy);
2089 	else
2090 		intel_cpufreq_stop_cpu(policy);
2091 }
2092 
2093 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2094 {
2095 	intel_pstate_exit_perf_limits(policy);
2096 
2097 	policy->fast_switch_possible = false;
2098 
2099 	return 0;
2100 }
2101 
2102 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2103 {
2104 	struct cpudata *cpu;
2105 	int rc;
2106 
2107 	rc = intel_pstate_init_cpu(policy->cpu);
2108 	if (rc)
2109 		return rc;
2110 
2111 	cpu = all_cpu_data[policy->cpu];
2112 
2113 	cpu->max_perf_ratio = 0xFF;
2114 	cpu->min_perf_ratio = 0;
2115 
2116 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2117 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2118 
2119 	/* cpuinfo and default policy values */
2120 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121 	update_turbo_state();
2122 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2123 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2124 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2125 
2126 	if (hwp_active) {
2127 		unsigned int max_freq;
2128 
2129 		max_freq = global.turbo_disabled ?
2130 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2131 		if (max_freq < policy->cpuinfo.max_freq)
2132 			policy->cpuinfo.max_freq = max_freq;
2133 	}
2134 
2135 	intel_pstate_init_acpi_perf_limits(policy);
2136 
2137 	policy->fast_switch_possible = true;
2138 
2139 	return 0;
2140 }
2141 
2142 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2143 {
2144 	int ret = __intel_pstate_cpu_init(policy);
2145 
2146 	if (ret)
2147 		return ret;
2148 
2149 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2150 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2151 	else
2152 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2153 
2154 	return 0;
2155 }
2156 
2157 static struct cpufreq_driver intel_pstate = {
2158 	.flags		= CPUFREQ_CONST_LOOPS,
2159 	.verify		= intel_pstate_verify_policy,
2160 	.setpolicy	= intel_pstate_set_policy,
2161 	.suspend	= intel_pstate_hwp_save_state,
2162 	.resume		= intel_pstate_resume,
2163 	.init		= intel_pstate_cpu_init,
2164 	.exit		= intel_pstate_cpu_exit,
2165 	.stop_cpu	= intel_pstate_stop_cpu,
2166 	.name		= "intel_pstate",
2167 };
2168 
2169 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2170 {
2171 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2172 
2173 	update_turbo_state();
2174 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2175 				     intel_pstate_get_max_freq(cpu));
2176 
2177 	intel_pstate_adjust_policy_max(policy, cpu);
2178 
2179 	intel_pstate_update_perf_limits(policy, cpu);
2180 
2181 	return 0;
2182 }
2183 
2184 /* Use of trace in passive mode:
2185  *
2186  * In passive mode the trace core_busy field (also known as the
2187  * performance field, and lablelled as such on the graphs; also known as
2188  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2189  * driver call was via the normal or fast switch path. Various graphs
2190  * output from the intel_pstate_tracer.py utility that include core_busy
2191  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2192  * so we use 10 to indicate the the normal path through the driver, and
2193  * 90 to indicate the fast switch path through the driver.
2194  * The scaled_busy field is not used, and is set to 0.
2195  */
2196 
2197 #define	INTEL_PSTATE_TRACE_TARGET 10
2198 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2199 
2200 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2201 {
2202 	struct sample *sample;
2203 
2204 	if (!trace_pstate_sample_enabled())
2205 		return;
2206 
2207 	if (!intel_pstate_sample(cpu, ktime_get()))
2208 		return;
2209 
2210 	sample = &cpu->sample;
2211 	trace_pstate_sample(trace_type,
2212 		0,
2213 		old_pstate,
2214 		cpu->pstate.current_pstate,
2215 		sample->mperf,
2216 		sample->aperf,
2217 		sample->tsc,
2218 		get_avg_frequency(cpu),
2219 		fp_toint(cpu->iowait_boost * 100));
2220 }
2221 
2222 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2223 				unsigned int target_freq,
2224 				unsigned int relation)
2225 {
2226 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2227 	struct cpufreq_freqs freqs;
2228 	int target_pstate, old_pstate;
2229 
2230 	update_turbo_state();
2231 
2232 	freqs.old = policy->cur;
2233 	freqs.new = target_freq;
2234 
2235 	cpufreq_freq_transition_begin(policy, &freqs);
2236 	switch (relation) {
2237 	case CPUFREQ_RELATION_L:
2238 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2239 		break;
2240 	case CPUFREQ_RELATION_H:
2241 		target_pstate = freqs.new / cpu->pstate.scaling;
2242 		break;
2243 	default:
2244 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2245 		break;
2246 	}
2247 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2248 	old_pstate = cpu->pstate.current_pstate;
2249 	if (target_pstate != cpu->pstate.current_pstate) {
2250 		cpu->pstate.current_pstate = target_pstate;
2251 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2252 			      pstate_funcs.get_val(cpu, target_pstate));
2253 	}
2254 	freqs.new = target_pstate * cpu->pstate.scaling;
2255 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2256 	cpufreq_freq_transition_end(policy, &freqs, false);
2257 
2258 	return 0;
2259 }
2260 
2261 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2262 					      unsigned int target_freq)
2263 {
2264 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2265 	int target_pstate, old_pstate;
2266 
2267 	update_turbo_state();
2268 
2269 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2270 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2271 	old_pstate = cpu->pstate.current_pstate;
2272 	intel_pstate_update_pstate(cpu, target_pstate);
2273 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2274 	return target_pstate * cpu->pstate.scaling;
2275 }
2276 
2277 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2278 {
2279 	int ret = __intel_pstate_cpu_init(policy);
2280 
2281 	if (ret)
2282 		return ret;
2283 
2284 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2285 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2286 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2287 	policy->cur = policy->cpuinfo.min_freq;
2288 
2289 	return 0;
2290 }
2291 
2292 static struct cpufreq_driver intel_cpufreq = {
2293 	.flags		= CPUFREQ_CONST_LOOPS,
2294 	.verify		= intel_cpufreq_verify_policy,
2295 	.target		= intel_cpufreq_target,
2296 	.fast_switch	= intel_cpufreq_fast_switch,
2297 	.init		= intel_cpufreq_cpu_init,
2298 	.exit		= intel_pstate_cpu_exit,
2299 	.stop_cpu	= intel_cpufreq_stop_cpu,
2300 	.name		= "intel_cpufreq",
2301 };
2302 
2303 static struct cpufreq_driver *default_driver = &intel_pstate;
2304 
2305 static void intel_pstate_driver_cleanup(void)
2306 {
2307 	unsigned int cpu;
2308 
2309 	get_online_cpus();
2310 	for_each_online_cpu(cpu) {
2311 		if (all_cpu_data[cpu]) {
2312 			if (intel_pstate_driver == &intel_pstate)
2313 				intel_pstate_clear_update_util_hook(cpu);
2314 
2315 			kfree(all_cpu_data[cpu]);
2316 			all_cpu_data[cpu] = NULL;
2317 		}
2318 	}
2319 	put_online_cpus();
2320 	intel_pstate_driver = NULL;
2321 }
2322 
2323 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2324 {
2325 	int ret;
2326 
2327 	memset(&global, 0, sizeof(global));
2328 	global.max_perf_pct = 100;
2329 
2330 	intel_pstate_driver = driver;
2331 	ret = cpufreq_register_driver(intel_pstate_driver);
2332 	if (ret) {
2333 		intel_pstate_driver_cleanup();
2334 		return ret;
2335 	}
2336 
2337 	global.min_perf_pct = min_perf_pct_min();
2338 
2339 	return 0;
2340 }
2341 
2342 static int intel_pstate_unregister_driver(void)
2343 {
2344 	if (hwp_active)
2345 		return -EBUSY;
2346 
2347 	cpufreq_unregister_driver(intel_pstate_driver);
2348 	intel_pstate_driver_cleanup();
2349 
2350 	return 0;
2351 }
2352 
2353 static ssize_t intel_pstate_show_status(char *buf)
2354 {
2355 	if (!intel_pstate_driver)
2356 		return sprintf(buf, "off\n");
2357 
2358 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2359 					"active" : "passive");
2360 }
2361 
2362 static int intel_pstate_update_status(const char *buf, size_t size)
2363 {
2364 	int ret;
2365 
2366 	if (size == 3 && !strncmp(buf, "off", size))
2367 		return intel_pstate_driver ?
2368 			intel_pstate_unregister_driver() : -EINVAL;
2369 
2370 	if (size == 6 && !strncmp(buf, "active", size)) {
2371 		if (intel_pstate_driver) {
2372 			if (intel_pstate_driver == &intel_pstate)
2373 				return 0;
2374 
2375 			ret = intel_pstate_unregister_driver();
2376 			if (ret)
2377 				return ret;
2378 		}
2379 
2380 		return intel_pstate_register_driver(&intel_pstate);
2381 	}
2382 
2383 	if (size == 7 && !strncmp(buf, "passive", size)) {
2384 		if (intel_pstate_driver) {
2385 			if (intel_pstate_driver == &intel_cpufreq)
2386 				return 0;
2387 
2388 			ret = intel_pstate_unregister_driver();
2389 			if (ret)
2390 				return ret;
2391 		}
2392 
2393 		return intel_pstate_register_driver(&intel_cpufreq);
2394 	}
2395 
2396 	return -EINVAL;
2397 }
2398 
2399 static int no_load __initdata;
2400 static int no_hwp __initdata;
2401 static int hwp_only __initdata;
2402 static unsigned int force_load __initdata;
2403 
2404 static int __init intel_pstate_msrs_not_valid(void)
2405 {
2406 	if (!pstate_funcs.get_max() ||
2407 	    !pstate_funcs.get_min() ||
2408 	    !pstate_funcs.get_turbo())
2409 		return -ENODEV;
2410 
2411 	return 0;
2412 }
2413 
2414 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2415 {
2416 	pstate_funcs.get_max   = funcs->get_max;
2417 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2418 	pstate_funcs.get_min   = funcs->get_min;
2419 	pstate_funcs.get_turbo = funcs->get_turbo;
2420 	pstate_funcs.get_scaling = funcs->get_scaling;
2421 	pstate_funcs.get_val   = funcs->get_val;
2422 	pstate_funcs.get_vid   = funcs->get_vid;
2423 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2424 }
2425 
2426 #ifdef CONFIG_ACPI
2427 
2428 static bool __init intel_pstate_no_acpi_pss(void)
2429 {
2430 	int i;
2431 
2432 	for_each_possible_cpu(i) {
2433 		acpi_status status;
2434 		union acpi_object *pss;
2435 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2436 		struct acpi_processor *pr = per_cpu(processors, i);
2437 
2438 		if (!pr)
2439 			continue;
2440 
2441 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2442 		if (ACPI_FAILURE(status))
2443 			continue;
2444 
2445 		pss = buffer.pointer;
2446 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2447 			kfree(pss);
2448 			return false;
2449 		}
2450 
2451 		kfree(pss);
2452 	}
2453 
2454 	return true;
2455 }
2456 
2457 static bool __init intel_pstate_no_acpi_pcch(void)
2458 {
2459 	acpi_status status;
2460 	acpi_handle handle;
2461 
2462 	status = acpi_get_handle(NULL, "\\_SB", &handle);
2463 	if (ACPI_FAILURE(status))
2464 		return true;
2465 
2466 	return !acpi_has_method(handle, "PCCH");
2467 }
2468 
2469 static bool __init intel_pstate_has_acpi_ppc(void)
2470 {
2471 	int i;
2472 
2473 	for_each_possible_cpu(i) {
2474 		struct acpi_processor *pr = per_cpu(processors, i);
2475 
2476 		if (!pr)
2477 			continue;
2478 		if (acpi_has_method(pr->handle, "_PPC"))
2479 			return true;
2480 	}
2481 	return false;
2482 }
2483 
2484 enum {
2485 	PSS,
2486 	PPC,
2487 };
2488 
2489 /* Hardware vendor-specific info that has its own power management modes */
2490 static struct acpi_platform_list plat_info[] __initdata = {
2491 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2492 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2493 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2494 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2495 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2496 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2497 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2498 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2499 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2500 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2501 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2502 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2503 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2504 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2505 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2506 	{ } /* End */
2507 };
2508 
2509 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2510 {
2511 	const struct x86_cpu_id *id;
2512 	u64 misc_pwr;
2513 	int idx;
2514 
2515 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2516 	if (id) {
2517 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2518 		if ( misc_pwr & (1 << 8))
2519 			return true;
2520 	}
2521 
2522 	idx = acpi_match_platform_list(plat_info);
2523 	if (idx < 0)
2524 		return false;
2525 
2526 	switch (plat_info[idx].data) {
2527 	case PSS:
2528 		if (!intel_pstate_no_acpi_pss())
2529 			return false;
2530 
2531 		return intel_pstate_no_acpi_pcch();
2532 	case PPC:
2533 		return intel_pstate_has_acpi_ppc() && !force_load;
2534 	}
2535 
2536 	return false;
2537 }
2538 
2539 static void intel_pstate_request_control_from_smm(void)
2540 {
2541 	/*
2542 	 * It may be unsafe to request P-states control from SMM if _PPC support
2543 	 * has not been enabled.
2544 	 */
2545 	if (acpi_ppc)
2546 		acpi_processor_pstate_control();
2547 }
2548 #else /* CONFIG_ACPI not enabled */
2549 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2550 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2551 static inline void intel_pstate_request_control_from_smm(void) {}
2552 #endif /* CONFIG_ACPI */
2553 
2554 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2555 
2556 #define ICPU_HWP(model, hwp_mode) \
2557 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2558 
2559 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2560 	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2561 	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2562 	ICPU_HWP(X86_MODEL_ANY, 0),
2563 	{}
2564 };
2565 
2566 static int __init intel_pstate_init(void)
2567 {
2568 	const struct x86_cpu_id *id;
2569 	int rc;
2570 
2571 	if (no_load)
2572 		return -ENODEV;
2573 
2574 	id = x86_match_cpu(hwp_support_ids);
2575 	if (id) {
2576 		copy_cpu_funcs(&core_funcs);
2577 		if (!no_hwp) {
2578 			hwp_active++;
2579 			hwp_mode_bdw = id->driver_data;
2580 			intel_pstate.attr = hwp_cpufreq_attrs;
2581 			goto hwp_cpu_matched;
2582 		}
2583 	} else {
2584 		id = x86_match_cpu(intel_pstate_cpu_ids);
2585 		if (!id)
2586 			return -ENODEV;
2587 
2588 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2589 	}
2590 
2591 	if (intel_pstate_msrs_not_valid())
2592 		return -ENODEV;
2593 
2594 hwp_cpu_matched:
2595 	/*
2596 	 * The Intel pstate driver will be ignored if the platform
2597 	 * firmware has its own power management modes.
2598 	 */
2599 	if (intel_pstate_platform_pwr_mgmt_exists())
2600 		return -ENODEV;
2601 
2602 	if (!hwp_active && hwp_only)
2603 		return -ENOTSUPP;
2604 
2605 	pr_info("Intel P-state driver initializing\n");
2606 
2607 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2608 	if (!all_cpu_data)
2609 		return -ENOMEM;
2610 
2611 	intel_pstate_request_control_from_smm();
2612 
2613 	intel_pstate_sysfs_expose_params();
2614 
2615 	mutex_lock(&intel_pstate_driver_lock);
2616 	rc = intel_pstate_register_driver(default_driver);
2617 	mutex_unlock(&intel_pstate_driver_lock);
2618 	if (rc)
2619 		return rc;
2620 
2621 	if (hwp_active)
2622 		pr_info("HWP enabled\n");
2623 
2624 	return 0;
2625 }
2626 device_initcall(intel_pstate_init);
2627 
2628 static int __init intel_pstate_setup(char *str)
2629 {
2630 	if (!str)
2631 		return -EINVAL;
2632 
2633 	if (!strcmp(str, "disable")) {
2634 		no_load = 1;
2635 	} else if (!strcmp(str, "passive")) {
2636 		pr_info("Passive mode enabled\n");
2637 		default_driver = &intel_cpufreq;
2638 		no_hwp = 1;
2639 	}
2640 	if (!strcmp(str, "no_hwp")) {
2641 		pr_info("HWP disabled\n");
2642 		no_hwp = 1;
2643 	}
2644 	if (!strcmp(str, "force"))
2645 		force_load = 1;
2646 	if (!strcmp(str, "hwp_only"))
2647 		hwp_only = 1;
2648 	if (!strcmp(str, "per_cpu_perf_limits"))
2649 		per_cpu_limits = true;
2650 
2651 #ifdef CONFIG_ACPI
2652 	if (!strcmp(str, "support_acpi_ppc"))
2653 		acpi_ppc = true;
2654 #endif
2655 
2656 	return 0;
2657 }
2658 early_param("intel_pstate", intel_pstate_setup);
2659 
2660 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2661 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2662 MODULE_LICENSE("GPL");
2663