xref: /linux/drivers/cpufreq/intel_pstate.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31 
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36 
37 #define BYT_RATIOS		0x66a
38 #define BYT_VIDS		0x66b
39 #define BYT_TURBO_RATIOS	0x66c
40 #define BYT_TURBO_VIDS		0x66d
41 
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45 
46 
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51 
52 static inline int32_t div_fp(s64 x, s64 y)
53 {
54 	return div64_s64((int64_t)x << FRAC_BITS, y);
55 }
56 
57 static inline int ceiling_fp(int32_t x)
58 {
59 	int mask, ret;
60 
61 	ret = fp_toint(x);
62 	mask = (1 << FRAC_BITS) - 1;
63 	if (x & mask)
64 		ret += 1;
65 	return ret;
66 }
67 
68 struct sample {
69 	int32_t core_pct_busy;
70 	u64 aperf;
71 	u64 mperf;
72 	u64 tsc;
73 	int freq;
74 	ktime_t time;
75 };
76 
77 struct pstate_data {
78 	int	current_pstate;
79 	int	min_pstate;
80 	int	max_pstate;
81 	int	scaling;
82 	int	turbo_pstate;
83 };
84 
85 struct vid_data {
86 	int min;
87 	int max;
88 	int turbo;
89 	int32_t ratio;
90 };
91 
92 struct _pid {
93 	int setpoint;
94 	int32_t integral;
95 	int32_t p_gain;
96 	int32_t i_gain;
97 	int32_t d_gain;
98 	int deadband;
99 	int32_t last_err;
100 };
101 
102 struct cpudata {
103 	int cpu;
104 
105 	struct timer_list timer;
106 
107 	struct pstate_data pstate;
108 	struct vid_data vid;
109 	struct _pid pid;
110 
111 	ktime_t last_sample_time;
112 	u64	prev_aperf;
113 	u64	prev_mperf;
114 	u64	prev_tsc;
115 	struct sample sample;
116 };
117 
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120 	int sample_rate_ms;
121 	int deadband;
122 	int setpoint;
123 	int p_gain_pct;
124 	int d_gain_pct;
125 	int i_gain_pct;
126 };
127 
128 struct pstate_funcs {
129 	int (*get_max)(void);
130 	int (*get_min)(void);
131 	int (*get_turbo)(void);
132 	int (*get_scaling)(void);
133 	void (*set)(struct cpudata*, int pstate);
134 	void (*get_vid)(struct cpudata *);
135 };
136 
137 struct cpu_defaults {
138 	struct pstate_adjust_policy pid_policy;
139 	struct pstate_funcs funcs;
140 };
141 
142 static struct pstate_adjust_policy pid_params;
143 static struct pstate_funcs pstate_funcs;
144 static int hwp_active;
145 
146 struct perf_limits {
147 	int no_turbo;
148 	int turbo_disabled;
149 	int max_perf_pct;
150 	int min_perf_pct;
151 	int32_t max_perf;
152 	int32_t min_perf;
153 	int max_policy_pct;
154 	int max_sysfs_pct;
155 	int min_policy_pct;
156 	int min_sysfs_pct;
157 };
158 
159 static struct perf_limits limits = {
160 	.no_turbo = 0,
161 	.turbo_disabled = 0,
162 	.max_perf_pct = 100,
163 	.max_perf = int_tofp(1),
164 	.min_perf_pct = 0,
165 	.min_perf = 0,
166 	.max_policy_pct = 100,
167 	.max_sysfs_pct = 100,
168 	.min_policy_pct = 0,
169 	.min_sysfs_pct = 0,
170 };
171 
172 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173 			     int deadband, int integral) {
174 	pid->setpoint = setpoint;
175 	pid->deadband  = deadband;
176 	pid->integral  = int_tofp(integral);
177 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
178 }
179 
180 static inline void pid_p_gain_set(struct _pid *pid, int percent)
181 {
182 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
183 }
184 
185 static inline void pid_i_gain_set(struct _pid *pid, int percent)
186 {
187 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
188 }
189 
190 static inline void pid_d_gain_set(struct _pid *pid, int percent)
191 {
192 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
193 }
194 
195 static signed int pid_calc(struct _pid *pid, int32_t busy)
196 {
197 	signed int result;
198 	int32_t pterm, dterm, fp_error;
199 	int32_t integral_limit;
200 
201 	fp_error = int_tofp(pid->setpoint) - busy;
202 
203 	if (abs(fp_error) <= int_tofp(pid->deadband))
204 		return 0;
205 
206 	pterm = mul_fp(pid->p_gain, fp_error);
207 
208 	pid->integral += fp_error;
209 
210 	/*
211 	 * We limit the integral here so that it will never
212 	 * get higher than 30.  This prevents it from becoming
213 	 * too large an input over long periods of time and allows
214 	 * it to get factored out sooner.
215 	 *
216 	 * The value of 30 was chosen through experimentation.
217 	 */
218 	integral_limit = int_tofp(30);
219 	if (pid->integral > integral_limit)
220 		pid->integral = integral_limit;
221 	if (pid->integral < -integral_limit)
222 		pid->integral = -integral_limit;
223 
224 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
225 	pid->last_err = fp_error;
226 
227 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228 	result = result + (1 << (FRAC_BITS-1));
229 	return (signed int)fp_toint(result);
230 }
231 
232 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
233 {
234 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
235 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
236 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237 
238 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239 }
240 
241 static inline void intel_pstate_reset_all_pid(void)
242 {
243 	unsigned int cpu;
244 
245 	for_each_online_cpu(cpu) {
246 		if (all_cpu_data[cpu])
247 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
248 	}
249 }
250 
251 static inline void update_turbo_state(void)
252 {
253 	u64 misc_en;
254 	struct cpudata *cpu;
255 
256 	cpu = all_cpu_data[0];
257 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
258 	limits.turbo_disabled =
259 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
260 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
261 }
262 
263 #define PCT_TO_HWP(x) (x * 255 / 100)
264 static void intel_pstate_hwp_set(void)
265 {
266 	int min, max, cpu;
267 	u64 value, freq;
268 
269 	get_online_cpus();
270 
271 	for_each_online_cpu(cpu) {
272 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
273 		min = PCT_TO_HWP(limits.min_perf_pct);
274 		value &= ~HWP_MIN_PERF(~0L);
275 		value |= HWP_MIN_PERF(min);
276 
277 		max = PCT_TO_HWP(limits.max_perf_pct);
278 		if (limits.no_turbo) {
279 			rdmsrl( MSR_HWP_CAPABILITIES, freq);
280 			max = HWP_GUARANTEED_PERF(freq);
281 		}
282 
283 		value &= ~HWP_MAX_PERF(~0L);
284 		value |= HWP_MAX_PERF(max);
285 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
286 	}
287 
288 	put_online_cpus();
289 }
290 
291 /************************** debugfs begin ************************/
292 static int pid_param_set(void *data, u64 val)
293 {
294 	*(u32 *)data = val;
295 	intel_pstate_reset_all_pid();
296 	return 0;
297 }
298 
299 static int pid_param_get(void *data, u64 *val)
300 {
301 	*val = *(u32 *)data;
302 	return 0;
303 }
304 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
305 
306 struct pid_param {
307 	char *name;
308 	void *value;
309 };
310 
311 static struct pid_param pid_files[] = {
312 	{"sample_rate_ms", &pid_params.sample_rate_ms},
313 	{"d_gain_pct", &pid_params.d_gain_pct},
314 	{"i_gain_pct", &pid_params.i_gain_pct},
315 	{"deadband", &pid_params.deadband},
316 	{"setpoint", &pid_params.setpoint},
317 	{"p_gain_pct", &pid_params.p_gain_pct},
318 	{NULL, NULL}
319 };
320 
321 static void __init intel_pstate_debug_expose_params(void)
322 {
323 	struct dentry *debugfs_parent;
324 	int i = 0;
325 
326 	if (hwp_active)
327 		return;
328 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
329 	if (IS_ERR_OR_NULL(debugfs_parent))
330 		return;
331 	while (pid_files[i].name) {
332 		debugfs_create_file(pid_files[i].name, 0660,
333 				    debugfs_parent, pid_files[i].value,
334 				    &fops_pid_param);
335 		i++;
336 	}
337 }
338 
339 /************************** debugfs end ************************/
340 
341 /************************** sysfs begin ************************/
342 #define show_one(file_name, object)					\
343 	static ssize_t show_##file_name					\
344 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
345 	{								\
346 		return sprintf(buf, "%u\n", limits.object);		\
347 	}
348 
349 static ssize_t show_turbo_pct(struct kobject *kobj,
350 				struct attribute *attr, char *buf)
351 {
352 	struct cpudata *cpu;
353 	int total, no_turbo, turbo_pct;
354 	uint32_t turbo_fp;
355 
356 	cpu = all_cpu_data[0];
357 
358 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
359 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
360 	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
361 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
362 	return sprintf(buf, "%u\n", turbo_pct);
363 }
364 
365 static ssize_t show_num_pstates(struct kobject *kobj,
366 				struct attribute *attr, char *buf)
367 {
368 	struct cpudata *cpu;
369 	int total;
370 
371 	cpu = all_cpu_data[0];
372 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
373 	return sprintf(buf, "%u\n", total);
374 }
375 
376 static ssize_t show_no_turbo(struct kobject *kobj,
377 			     struct attribute *attr, char *buf)
378 {
379 	ssize_t ret;
380 
381 	update_turbo_state();
382 	if (limits.turbo_disabled)
383 		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
384 	else
385 		ret = sprintf(buf, "%u\n", limits.no_turbo);
386 
387 	return ret;
388 }
389 
390 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
391 			      const char *buf, size_t count)
392 {
393 	unsigned int input;
394 	int ret;
395 
396 	ret = sscanf(buf, "%u", &input);
397 	if (ret != 1)
398 		return -EINVAL;
399 
400 	update_turbo_state();
401 	if (limits.turbo_disabled) {
402 		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
403 		return -EPERM;
404 	}
405 
406 	limits.no_turbo = clamp_t(int, input, 0, 1);
407 
408 	if (hwp_active)
409 		intel_pstate_hwp_set();
410 
411 	return count;
412 }
413 
414 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
415 				  const char *buf, size_t count)
416 {
417 	unsigned int input;
418 	int ret;
419 
420 	ret = sscanf(buf, "%u", &input);
421 	if (ret != 1)
422 		return -EINVAL;
423 
424 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
425 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
426 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
427 
428 	if (hwp_active)
429 		intel_pstate_hwp_set();
430 	return count;
431 }
432 
433 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
434 				  const char *buf, size_t count)
435 {
436 	unsigned int input;
437 	int ret;
438 
439 	ret = sscanf(buf, "%u", &input);
440 	if (ret != 1)
441 		return -EINVAL;
442 
443 	limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
444 	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
445 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
446 
447 	if (hwp_active)
448 		intel_pstate_hwp_set();
449 	return count;
450 }
451 
452 show_one(max_perf_pct, max_perf_pct);
453 show_one(min_perf_pct, min_perf_pct);
454 
455 define_one_global_rw(no_turbo);
456 define_one_global_rw(max_perf_pct);
457 define_one_global_rw(min_perf_pct);
458 define_one_global_ro(turbo_pct);
459 define_one_global_ro(num_pstates);
460 
461 static struct attribute *intel_pstate_attributes[] = {
462 	&no_turbo.attr,
463 	&max_perf_pct.attr,
464 	&min_perf_pct.attr,
465 	&turbo_pct.attr,
466 	&num_pstates.attr,
467 	NULL
468 };
469 
470 static struct attribute_group intel_pstate_attr_group = {
471 	.attrs = intel_pstate_attributes,
472 };
473 
474 static void __init intel_pstate_sysfs_expose_params(void)
475 {
476 	struct kobject *intel_pstate_kobject;
477 	int rc;
478 
479 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
480 						&cpu_subsys.dev_root->kobj);
481 	BUG_ON(!intel_pstate_kobject);
482 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
483 	BUG_ON(rc);
484 }
485 /************************** sysfs end ************************/
486 
487 static void intel_pstate_hwp_enable(void)
488 {
489 	hwp_active++;
490 	pr_info("intel_pstate: HWP enabled\n");
491 
492 	wrmsrl( MSR_PM_ENABLE, 0x1);
493 }
494 
495 static int byt_get_min_pstate(void)
496 {
497 	u64 value;
498 
499 	rdmsrl(BYT_RATIOS, value);
500 	return (value >> 8) & 0x7F;
501 }
502 
503 static int byt_get_max_pstate(void)
504 {
505 	u64 value;
506 
507 	rdmsrl(BYT_RATIOS, value);
508 	return (value >> 16) & 0x7F;
509 }
510 
511 static int byt_get_turbo_pstate(void)
512 {
513 	u64 value;
514 
515 	rdmsrl(BYT_TURBO_RATIOS, value);
516 	return value & 0x7F;
517 }
518 
519 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
520 {
521 	u64 val;
522 	int32_t vid_fp;
523 	u32 vid;
524 
525 	val = pstate << 8;
526 	if (limits.no_turbo && !limits.turbo_disabled)
527 		val |= (u64)1 << 32;
528 
529 	vid_fp = cpudata->vid.min + mul_fp(
530 		int_tofp(pstate - cpudata->pstate.min_pstate),
531 		cpudata->vid.ratio);
532 
533 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
534 	vid = ceiling_fp(vid_fp);
535 
536 	if (pstate > cpudata->pstate.max_pstate)
537 		vid = cpudata->vid.turbo;
538 
539 	val |= vid;
540 
541 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
542 }
543 
544 #define BYT_BCLK_FREQS 5
545 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
546 
547 static int byt_get_scaling(void)
548 {
549 	u64 value;
550 	int i;
551 
552 	rdmsrl(MSR_FSB_FREQ, value);
553 	i = value & 0x3;
554 
555 	BUG_ON(i > BYT_BCLK_FREQS);
556 
557 	return byt_freq_table[i] * 100;
558 }
559 
560 static void byt_get_vid(struct cpudata *cpudata)
561 {
562 	u64 value;
563 
564 	rdmsrl(BYT_VIDS, value);
565 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
566 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
567 	cpudata->vid.ratio = div_fp(
568 		cpudata->vid.max - cpudata->vid.min,
569 		int_tofp(cpudata->pstate.max_pstate -
570 			cpudata->pstate.min_pstate));
571 
572 	rdmsrl(BYT_TURBO_VIDS, value);
573 	cpudata->vid.turbo = value & 0x7f;
574 }
575 
576 static int core_get_min_pstate(void)
577 {
578 	u64 value;
579 
580 	rdmsrl(MSR_PLATFORM_INFO, value);
581 	return (value >> 40) & 0xFF;
582 }
583 
584 static int core_get_max_pstate(void)
585 {
586 	u64 value;
587 
588 	rdmsrl(MSR_PLATFORM_INFO, value);
589 	return (value >> 8) & 0xFF;
590 }
591 
592 static int core_get_turbo_pstate(void)
593 {
594 	u64 value;
595 	int nont, ret;
596 
597 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
598 	nont = core_get_max_pstate();
599 	ret = (value) & 255;
600 	if (ret <= nont)
601 		ret = nont;
602 	return ret;
603 }
604 
605 static inline int core_get_scaling(void)
606 {
607 	return 100000;
608 }
609 
610 static void core_set_pstate(struct cpudata *cpudata, int pstate)
611 {
612 	u64 val;
613 
614 	val = pstate << 8;
615 	if (limits.no_turbo && !limits.turbo_disabled)
616 		val |= (u64)1 << 32;
617 
618 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
619 }
620 
621 static int knl_get_turbo_pstate(void)
622 {
623 	u64 value;
624 	int nont, ret;
625 
626 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
627 	nont = core_get_max_pstate();
628 	ret = (((value) >> 8) & 0xFF);
629 	if (ret <= nont)
630 		ret = nont;
631 	return ret;
632 }
633 
634 static struct cpu_defaults core_params = {
635 	.pid_policy = {
636 		.sample_rate_ms = 10,
637 		.deadband = 0,
638 		.setpoint = 97,
639 		.p_gain_pct = 20,
640 		.d_gain_pct = 0,
641 		.i_gain_pct = 0,
642 	},
643 	.funcs = {
644 		.get_max = core_get_max_pstate,
645 		.get_min = core_get_min_pstate,
646 		.get_turbo = core_get_turbo_pstate,
647 		.get_scaling = core_get_scaling,
648 		.set = core_set_pstate,
649 	},
650 };
651 
652 static struct cpu_defaults byt_params = {
653 	.pid_policy = {
654 		.sample_rate_ms = 10,
655 		.deadband = 0,
656 		.setpoint = 60,
657 		.p_gain_pct = 14,
658 		.d_gain_pct = 0,
659 		.i_gain_pct = 4,
660 	},
661 	.funcs = {
662 		.get_max = byt_get_max_pstate,
663 		.get_min = byt_get_min_pstate,
664 		.get_turbo = byt_get_turbo_pstate,
665 		.set = byt_set_pstate,
666 		.get_scaling = byt_get_scaling,
667 		.get_vid = byt_get_vid,
668 	},
669 };
670 
671 static struct cpu_defaults knl_params = {
672 	.pid_policy = {
673 		.sample_rate_ms = 10,
674 		.deadband = 0,
675 		.setpoint = 97,
676 		.p_gain_pct = 20,
677 		.d_gain_pct = 0,
678 		.i_gain_pct = 0,
679 	},
680 	.funcs = {
681 		.get_max = core_get_max_pstate,
682 		.get_min = core_get_min_pstate,
683 		.get_turbo = knl_get_turbo_pstate,
684 		.set = core_set_pstate,
685 	},
686 };
687 
688 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
689 {
690 	int max_perf = cpu->pstate.turbo_pstate;
691 	int max_perf_adj;
692 	int min_perf;
693 
694 	if (limits.no_turbo || limits.turbo_disabled)
695 		max_perf = cpu->pstate.max_pstate;
696 
697 	/*
698 	 * performance can be limited by user through sysfs, by cpufreq
699 	 * policy, or by cpu specific default values determined through
700 	 * experimentation.
701 	 */
702 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
703 	*max = clamp_t(int, max_perf_adj,
704 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
705 
706 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
707 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
708 }
709 
710 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
711 {
712 	int max_perf, min_perf;
713 
714 	if (force) {
715 		update_turbo_state();
716 
717 		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
718 
719 		pstate = clamp_t(int, pstate, min_perf, max_perf);
720 
721 		if (pstate == cpu->pstate.current_pstate)
722 			return;
723 	}
724 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
725 
726 	cpu->pstate.current_pstate = pstate;
727 
728 	pstate_funcs.set(cpu, pstate);
729 }
730 
731 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
732 {
733 	cpu->pstate.min_pstate = pstate_funcs.get_min();
734 	cpu->pstate.max_pstate = pstate_funcs.get_max();
735 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
736 	cpu->pstate.scaling = pstate_funcs.get_scaling();
737 
738 	if (pstate_funcs.get_vid)
739 		pstate_funcs.get_vid(cpu);
740 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
741 }
742 
743 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
744 {
745 	struct sample *sample = &cpu->sample;
746 	int64_t core_pct;
747 
748 	core_pct = int_tofp(sample->aperf) * int_tofp(100);
749 	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
750 
751 	sample->freq = fp_toint(
752 		mul_fp(int_tofp(
753 			cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
754 			core_pct));
755 
756 	sample->core_pct_busy = (int32_t)core_pct;
757 }
758 
759 static inline void intel_pstate_sample(struct cpudata *cpu)
760 {
761 	u64 aperf, mperf;
762 	unsigned long flags;
763 	u64 tsc;
764 
765 	local_irq_save(flags);
766 	rdmsrl(MSR_IA32_APERF, aperf);
767 	rdmsrl(MSR_IA32_MPERF, mperf);
768 	tsc = native_read_tsc();
769 	local_irq_restore(flags);
770 
771 	cpu->last_sample_time = cpu->sample.time;
772 	cpu->sample.time = ktime_get();
773 	cpu->sample.aperf = aperf;
774 	cpu->sample.mperf = mperf;
775 	cpu->sample.tsc =  tsc;
776 	cpu->sample.aperf -= cpu->prev_aperf;
777 	cpu->sample.mperf -= cpu->prev_mperf;
778 	cpu->sample.tsc -= cpu->prev_tsc;
779 
780 	intel_pstate_calc_busy(cpu);
781 
782 	cpu->prev_aperf = aperf;
783 	cpu->prev_mperf = mperf;
784 	cpu->prev_tsc = tsc;
785 }
786 
787 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
788 {
789 	int delay;
790 
791 	delay = msecs_to_jiffies(50);
792 	mod_timer_pinned(&cpu->timer, jiffies + delay);
793 }
794 
795 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
796 {
797 	int delay;
798 
799 	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
800 	mod_timer_pinned(&cpu->timer, jiffies + delay);
801 }
802 
803 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
804 {
805 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
806 	s64 duration_us;
807 	u32 sample_time;
808 
809 	/*
810 	 * core_busy is the ratio of actual performance to max
811 	 * max_pstate is the max non turbo pstate available
812 	 * current_pstate was the pstate that was requested during
813 	 * 	the last sample period.
814 	 *
815 	 * We normalize core_busy, which was our actual percent
816 	 * performance to what we requested during the last sample
817 	 * period. The result will be a percentage of busy at a
818 	 * specified pstate.
819 	 */
820 	core_busy = cpu->sample.core_pct_busy;
821 	max_pstate = int_tofp(cpu->pstate.max_pstate);
822 	current_pstate = int_tofp(cpu->pstate.current_pstate);
823 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
824 
825 	/*
826 	 * Since we have a deferred timer, it will not fire unless
827 	 * we are in C0.  So, determine if the actual elapsed time
828 	 * is significantly greater (3x) than our sample interval.  If it
829 	 * is, then we were idle for a long enough period of time
830 	 * to adjust our busyness.
831 	 */
832 	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
833 	duration_us = ktime_us_delta(cpu->sample.time,
834 				     cpu->last_sample_time);
835 	if (duration_us > sample_time * 3) {
836 		sample_ratio = div_fp(int_tofp(sample_time),
837 				      int_tofp(duration_us));
838 		core_busy = mul_fp(core_busy, sample_ratio);
839 	}
840 
841 	return core_busy;
842 }
843 
844 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
845 {
846 	int32_t busy_scaled;
847 	struct _pid *pid;
848 	signed int ctl;
849 	int from;
850 	struct sample *sample;
851 
852 	from = cpu->pstate.current_pstate;
853 
854 	pid = &cpu->pid;
855 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
856 
857 	ctl = pid_calc(pid, busy_scaled);
858 
859 	/* Negative values of ctl increase the pstate and vice versa */
860 	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
861 
862 	sample = &cpu->sample;
863 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
864 		fp_toint(busy_scaled),
865 		from,
866 		cpu->pstate.current_pstate,
867 		sample->mperf,
868 		sample->aperf,
869 		sample->tsc,
870 		sample->freq);
871 }
872 
873 static void intel_hwp_timer_func(unsigned long __data)
874 {
875 	struct cpudata *cpu = (struct cpudata *) __data;
876 
877 	intel_pstate_sample(cpu);
878 	intel_hwp_set_sample_time(cpu);
879 }
880 
881 static void intel_pstate_timer_func(unsigned long __data)
882 {
883 	struct cpudata *cpu = (struct cpudata *) __data;
884 
885 	intel_pstate_sample(cpu);
886 
887 	intel_pstate_adjust_busy_pstate(cpu);
888 
889 	intel_pstate_set_sample_time(cpu);
890 }
891 
892 #define ICPU(model, policy) \
893 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
894 			(unsigned long)&policy }
895 
896 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
897 	ICPU(0x2a, core_params),
898 	ICPU(0x2d, core_params),
899 	ICPU(0x37, byt_params),
900 	ICPU(0x3a, core_params),
901 	ICPU(0x3c, core_params),
902 	ICPU(0x3d, core_params),
903 	ICPU(0x3e, core_params),
904 	ICPU(0x3f, core_params),
905 	ICPU(0x45, core_params),
906 	ICPU(0x46, core_params),
907 	ICPU(0x47, core_params),
908 	ICPU(0x4c, byt_params),
909 	ICPU(0x4e, core_params),
910 	ICPU(0x4f, core_params),
911 	ICPU(0x56, core_params),
912 	ICPU(0x57, knl_params),
913 	{}
914 };
915 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
916 
917 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
918 	ICPU(0x56, core_params),
919 	{}
920 };
921 
922 static int intel_pstate_init_cpu(unsigned int cpunum)
923 {
924 	struct cpudata *cpu;
925 
926 	if (!all_cpu_data[cpunum])
927 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
928 					       GFP_KERNEL);
929 	if (!all_cpu_data[cpunum])
930 		return -ENOMEM;
931 
932 	cpu = all_cpu_data[cpunum];
933 
934 	cpu->cpu = cpunum;
935 	intel_pstate_get_cpu_pstates(cpu);
936 
937 	init_timer_deferrable(&cpu->timer);
938 	cpu->timer.data = (unsigned long)cpu;
939 	cpu->timer.expires = jiffies + HZ/100;
940 
941 	if (!hwp_active)
942 		cpu->timer.function = intel_pstate_timer_func;
943 	else
944 		cpu->timer.function = intel_hwp_timer_func;
945 
946 	intel_pstate_busy_pid_reset(cpu);
947 	intel_pstate_sample(cpu);
948 
949 	add_timer_on(&cpu->timer, cpunum);
950 
951 	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
952 
953 	return 0;
954 }
955 
956 static unsigned int intel_pstate_get(unsigned int cpu_num)
957 {
958 	struct sample *sample;
959 	struct cpudata *cpu;
960 
961 	cpu = all_cpu_data[cpu_num];
962 	if (!cpu)
963 		return 0;
964 	sample = &cpu->sample;
965 	return sample->freq;
966 }
967 
968 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
969 {
970 	if (!policy->cpuinfo.max_freq)
971 		return -ENODEV;
972 
973 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
974 	    policy->max >= policy->cpuinfo.max_freq) {
975 		limits.min_policy_pct = 100;
976 		limits.min_perf_pct = 100;
977 		limits.min_perf = int_tofp(1);
978 		limits.max_policy_pct = 100;
979 		limits.max_perf_pct = 100;
980 		limits.max_perf = int_tofp(1);
981 		limits.no_turbo = 0;
982 		return 0;
983 	}
984 
985 	limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
986 	limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
987 	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
988 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
989 
990 	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
991 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
992 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
993 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
994 
995 	if (hwp_active)
996 		intel_pstate_hwp_set();
997 
998 	return 0;
999 }
1000 
1001 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1002 {
1003 	cpufreq_verify_within_cpu_limits(policy);
1004 
1005 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1006 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1007 		return -EINVAL;
1008 
1009 	return 0;
1010 }
1011 
1012 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1013 {
1014 	int cpu_num = policy->cpu;
1015 	struct cpudata *cpu = all_cpu_data[cpu_num];
1016 
1017 	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1018 
1019 	del_timer_sync(&all_cpu_data[cpu_num]->timer);
1020 	if (hwp_active)
1021 		return;
1022 
1023 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1024 }
1025 
1026 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1027 {
1028 	struct cpudata *cpu;
1029 	int rc;
1030 
1031 	rc = intel_pstate_init_cpu(policy->cpu);
1032 	if (rc)
1033 		return rc;
1034 
1035 	cpu = all_cpu_data[policy->cpu];
1036 
1037 	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1038 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1039 	else
1040 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1041 
1042 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1043 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1044 
1045 	/* cpuinfo and default policy values */
1046 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1047 	policy->cpuinfo.max_freq =
1048 		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1049 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1050 	cpumask_set_cpu(policy->cpu, policy->cpus);
1051 
1052 	return 0;
1053 }
1054 
1055 static struct cpufreq_driver intel_pstate_driver = {
1056 	.flags		= CPUFREQ_CONST_LOOPS,
1057 	.verify		= intel_pstate_verify_policy,
1058 	.setpolicy	= intel_pstate_set_policy,
1059 	.get		= intel_pstate_get,
1060 	.init		= intel_pstate_cpu_init,
1061 	.stop_cpu	= intel_pstate_stop_cpu,
1062 	.name		= "intel_pstate",
1063 };
1064 
1065 static int __initdata no_load;
1066 static int __initdata no_hwp;
1067 static int __initdata hwp_only;
1068 static unsigned int force_load;
1069 
1070 static int intel_pstate_msrs_not_valid(void)
1071 {
1072 	if (!pstate_funcs.get_max() ||
1073 	    !pstate_funcs.get_min() ||
1074 	    !pstate_funcs.get_turbo())
1075 		return -ENODEV;
1076 
1077 	return 0;
1078 }
1079 
1080 static void copy_pid_params(struct pstate_adjust_policy *policy)
1081 {
1082 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1083 	pid_params.p_gain_pct = policy->p_gain_pct;
1084 	pid_params.i_gain_pct = policy->i_gain_pct;
1085 	pid_params.d_gain_pct = policy->d_gain_pct;
1086 	pid_params.deadband = policy->deadband;
1087 	pid_params.setpoint = policy->setpoint;
1088 }
1089 
1090 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1091 {
1092 	pstate_funcs.get_max   = funcs->get_max;
1093 	pstate_funcs.get_min   = funcs->get_min;
1094 	pstate_funcs.get_turbo = funcs->get_turbo;
1095 	pstate_funcs.get_scaling = funcs->get_scaling;
1096 	pstate_funcs.set       = funcs->set;
1097 	pstate_funcs.get_vid   = funcs->get_vid;
1098 }
1099 
1100 #if IS_ENABLED(CONFIG_ACPI)
1101 #include <acpi/processor.h>
1102 
1103 static bool intel_pstate_no_acpi_pss(void)
1104 {
1105 	int i;
1106 
1107 	for_each_possible_cpu(i) {
1108 		acpi_status status;
1109 		union acpi_object *pss;
1110 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1111 		struct acpi_processor *pr = per_cpu(processors, i);
1112 
1113 		if (!pr)
1114 			continue;
1115 
1116 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1117 		if (ACPI_FAILURE(status))
1118 			continue;
1119 
1120 		pss = buffer.pointer;
1121 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1122 			kfree(pss);
1123 			return false;
1124 		}
1125 
1126 		kfree(pss);
1127 	}
1128 
1129 	return true;
1130 }
1131 
1132 static bool intel_pstate_has_acpi_ppc(void)
1133 {
1134 	int i;
1135 
1136 	for_each_possible_cpu(i) {
1137 		struct acpi_processor *pr = per_cpu(processors, i);
1138 
1139 		if (!pr)
1140 			continue;
1141 		if (acpi_has_method(pr->handle, "_PPC"))
1142 			return true;
1143 	}
1144 	return false;
1145 }
1146 
1147 enum {
1148 	PSS,
1149 	PPC,
1150 };
1151 
1152 struct hw_vendor_info {
1153 	u16  valid;
1154 	char oem_id[ACPI_OEM_ID_SIZE];
1155 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1156 	int  oem_pwr_table;
1157 };
1158 
1159 /* Hardware vendor-specific info that has its own power management modes */
1160 static struct hw_vendor_info vendor_info[] = {
1161 	{1, "HP    ", "ProLiant", PSS},
1162 	{1, "ORACLE", "X4-2    ", PPC},
1163 	{1, "ORACLE", "X4-2L   ", PPC},
1164 	{1, "ORACLE", "X4-2B   ", PPC},
1165 	{1, "ORACLE", "X3-2    ", PPC},
1166 	{1, "ORACLE", "X3-2L   ", PPC},
1167 	{1, "ORACLE", "X3-2B   ", PPC},
1168 	{1, "ORACLE", "X4470M2 ", PPC},
1169 	{1, "ORACLE", "X4270M3 ", PPC},
1170 	{1, "ORACLE", "X4270M2 ", PPC},
1171 	{1, "ORACLE", "X4170M2 ", PPC},
1172 	{0, "", ""},
1173 };
1174 
1175 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1176 {
1177 	struct acpi_table_header hdr;
1178 	struct hw_vendor_info *v_info;
1179 	const struct x86_cpu_id *id;
1180 	u64 misc_pwr;
1181 
1182 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1183 	if (id) {
1184 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1185 		if ( misc_pwr & (1 << 8))
1186 			return true;
1187 	}
1188 
1189 	if (acpi_disabled ||
1190 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1191 		return false;
1192 
1193 	for (v_info = vendor_info; v_info->valid; v_info++) {
1194 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1195 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1196 						ACPI_OEM_TABLE_ID_SIZE))
1197 			switch (v_info->oem_pwr_table) {
1198 			case PSS:
1199 				return intel_pstate_no_acpi_pss();
1200 			case PPC:
1201 				return intel_pstate_has_acpi_ppc() &&
1202 					(!force_load);
1203 			}
1204 	}
1205 
1206 	return false;
1207 }
1208 #else /* CONFIG_ACPI not enabled */
1209 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1210 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1211 #endif /* CONFIG_ACPI */
1212 
1213 static int __init intel_pstate_init(void)
1214 {
1215 	int cpu, rc = 0;
1216 	const struct x86_cpu_id *id;
1217 	struct cpu_defaults *cpu_def;
1218 
1219 	if (no_load)
1220 		return -ENODEV;
1221 
1222 	id = x86_match_cpu(intel_pstate_cpu_ids);
1223 	if (!id)
1224 		return -ENODEV;
1225 
1226 	/*
1227 	 * The Intel pstate driver will be ignored if the platform
1228 	 * firmware has its own power management modes.
1229 	 */
1230 	if (intel_pstate_platform_pwr_mgmt_exists())
1231 		return -ENODEV;
1232 
1233 	cpu_def = (struct cpu_defaults *)id->driver_data;
1234 
1235 	copy_pid_params(&cpu_def->pid_policy);
1236 	copy_cpu_funcs(&cpu_def->funcs);
1237 
1238 	if (intel_pstate_msrs_not_valid())
1239 		return -ENODEV;
1240 
1241 	pr_info("Intel P-state driver initializing.\n");
1242 
1243 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1244 	if (!all_cpu_data)
1245 		return -ENOMEM;
1246 
1247 	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1248 		intel_pstate_hwp_enable();
1249 
1250 	if (!hwp_active && hwp_only)
1251 		goto out;
1252 
1253 	rc = cpufreq_register_driver(&intel_pstate_driver);
1254 	if (rc)
1255 		goto out;
1256 
1257 	intel_pstate_debug_expose_params();
1258 	intel_pstate_sysfs_expose_params();
1259 
1260 	return rc;
1261 out:
1262 	get_online_cpus();
1263 	for_each_online_cpu(cpu) {
1264 		if (all_cpu_data[cpu]) {
1265 			del_timer_sync(&all_cpu_data[cpu]->timer);
1266 			kfree(all_cpu_data[cpu]);
1267 		}
1268 	}
1269 
1270 	put_online_cpus();
1271 	vfree(all_cpu_data);
1272 	return -ENODEV;
1273 }
1274 device_initcall(intel_pstate_init);
1275 
1276 static int __init intel_pstate_setup(char *str)
1277 {
1278 	if (!str)
1279 		return -EINVAL;
1280 
1281 	if (!strcmp(str, "disable"))
1282 		no_load = 1;
1283 	if (!strcmp(str, "no_hwp"))
1284 		no_hwp = 1;
1285 	if (!strcmp(str, "force"))
1286 		force_load = 1;
1287 	if (!strcmp(str, "hwp_only"))
1288 		hwp_only = 1;
1289 	return 0;
1290 }
1291 early_param("intel_pstate", intel_pstate_setup);
1292 
1293 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1294 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1295 MODULE_LICENSE("GPL");
1296