1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/sched/smt.h> 20 #include <linux/list.h> 21 #include <linux/cpu.h> 22 #include <linux/cpufreq.h> 23 #include <linux/sysfs.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/acpi.h> 27 #include <linux/vmalloc.h> 28 #include <linux/pm_qos.h> 29 #include <linux/bitfield.h> 30 #include <trace/events/power.h> 31 #include <linux/units.h> 32 33 #include <asm/cpu.h> 34 #include <asm/div64.h> 35 #include <asm/msr.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/cpufeature.h> 38 #include <asm/intel-family.h> 39 #include "../drivers/thermal/intel/thermal_interrupt.h" 40 41 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 42 43 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 44 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 45 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 46 47 #ifdef CONFIG_ACPI 48 #include <acpi/processor.h> 49 #include <acpi/cppc_acpi.h> 50 #endif 51 52 #define FRAC_BITS 8 53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 54 #define fp_toint(X) ((X) >> FRAC_BITS) 55 56 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 57 58 #define EXT_BITS 6 59 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 60 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 61 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 62 63 static inline int32_t mul_fp(int32_t x, int32_t y) 64 { 65 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 66 } 67 68 static inline int32_t div_fp(s64 x, s64 y) 69 { 70 return div64_s64((int64_t)x << FRAC_BITS, y); 71 } 72 73 static inline int ceiling_fp(int32_t x) 74 { 75 int mask, ret; 76 77 ret = fp_toint(x); 78 mask = (1 << FRAC_BITS) - 1; 79 if (x & mask) 80 ret += 1; 81 return ret; 82 } 83 84 static inline u64 mul_ext_fp(u64 x, u64 y) 85 { 86 return (x * y) >> EXT_FRAC_BITS; 87 } 88 89 static inline u64 div_ext_fp(u64 x, u64 y) 90 { 91 return div64_u64(x << EXT_FRAC_BITS, y); 92 } 93 94 /** 95 * struct sample - Store performance sample 96 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 97 * performance during last sample period 98 * @busy_scaled: Scaled busy value which is used to calculate next 99 * P state. This can be different than core_avg_perf 100 * to account for cpu idle period 101 * @aperf: Difference of actual performance frequency clock count 102 * read from APERF MSR between last and current sample 103 * @mperf: Difference of maximum performance frequency clock count 104 * read from MPERF MSR between last and current sample 105 * @tsc: Difference of time stamp counter between last and 106 * current sample 107 * @time: Current time from scheduler 108 * 109 * This structure is used in the cpudata structure to store performance sample 110 * data for choosing next P State. 111 */ 112 struct sample { 113 int32_t core_avg_perf; 114 int32_t busy_scaled; 115 u64 aperf; 116 u64 mperf; 117 u64 tsc; 118 u64 time; 119 }; 120 121 /** 122 * struct pstate_data - Store P state data 123 * @current_pstate: Current requested P state 124 * @min_pstate: Min P state possible for this platform 125 * @max_pstate: Max P state possible for this platform 126 * @max_pstate_physical:This is physical Max P state for a processor 127 * This can be higher than the max_pstate which can 128 * be limited by platform thermal design power limits 129 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor 130 * @scaling: Scaling factor between performance and frequency 131 * @turbo_pstate: Max Turbo P state possible for this platform 132 * @min_freq: @min_pstate frequency in cpufreq units 133 * @max_freq: @max_pstate frequency in cpufreq units 134 * @turbo_freq: @turbo_pstate frequency in cpufreq units 135 * 136 * Stores the per cpu model P state limits and current P state. 137 */ 138 struct pstate_data { 139 int current_pstate; 140 int min_pstate; 141 int max_pstate; 142 int max_pstate_physical; 143 int perf_ctl_scaling; 144 int scaling; 145 int turbo_pstate; 146 unsigned int min_freq; 147 unsigned int max_freq; 148 unsigned int turbo_freq; 149 }; 150 151 /** 152 * struct vid_data - Stores voltage information data 153 * @min: VID data for this platform corresponding to 154 * the lowest P state 155 * @max: VID data corresponding to the highest P State. 156 * @turbo: VID data for turbo P state 157 * @ratio: Ratio of (vid max - vid min) / 158 * (max P state - Min P State) 159 * 160 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 161 * This data is used in Atom platforms, where in addition to target P state, 162 * the voltage data needs to be specified to select next P State. 163 */ 164 struct vid_data { 165 int min; 166 int max; 167 int turbo; 168 int32_t ratio; 169 }; 170 171 /** 172 * struct global_params - Global parameters, mostly tunable via sysfs. 173 * @no_turbo: Whether or not to use turbo P-states. 174 * @turbo_disabled: Whether or not turbo P-states are available at all, 175 * based on the MSR_IA32_MISC_ENABLE value and whether or 176 * not the maximum reported turbo P-state is different from 177 * the maximum reported non-turbo one. 178 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 179 * P-state capacity. 180 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 181 * P-state capacity. 182 */ 183 struct global_params { 184 bool no_turbo; 185 bool turbo_disabled; 186 int max_perf_pct; 187 int min_perf_pct; 188 }; 189 190 /** 191 * struct cpudata - Per CPU instance data storage 192 * @cpu: CPU number for this instance data 193 * @policy: CPUFreq policy value 194 * @update_util: CPUFreq utility callback information 195 * @update_util_set: CPUFreq utility callback is set 196 * @iowait_boost: iowait-related boost fraction 197 * @last_update: Time of the last update. 198 * @pstate: Stores P state limits for this CPU 199 * @vid: Stores VID limits for this CPU 200 * @last_sample_time: Last Sample time 201 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 202 * @prev_aperf: Last APERF value read from APERF MSR 203 * @prev_mperf: Last MPERF value read from MPERF MSR 204 * @prev_tsc: Last timestamp counter (TSC) value 205 * @sample: Storage for storing last Sample data 206 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 207 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 208 * @acpi_perf_data: Stores ACPI perf information read from _PSS 209 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 210 * @epp_powersave: Last saved HWP energy performance preference 211 * (EPP) or energy performance bias (EPB), 212 * when policy switched to performance 213 * @epp_policy: Last saved policy used to set EPP/EPB 214 * @epp_default: Power on default HWP energy performance 215 * preference/bias 216 * @epp_cached: Cached HWP energy-performance preference value 217 * @hwp_req_cached: Cached value of the last HWP Request MSR 218 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 219 * @last_io_update: Last time when IO wake flag was set 220 * @capacity_perf: Highest perf used for scale invariance 221 * @sched_flags: Store scheduler flags for possible cross CPU update 222 * @hwp_boost_min: Last HWP boosted min performance 223 * @suspended: Whether or not the driver has been suspended. 224 * @pd_registered: Set when a perf domain is registered for this CPU. 225 * @hwp_notify_work: workqueue for HWP notifications. 226 * 227 * This structure stores per CPU instance data for all CPUs. 228 */ 229 struct cpudata { 230 int cpu; 231 232 unsigned int policy; 233 struct update_util_data update_util; 234 bool update_util_set; 235 236 struct pstate_data pstate; 237 struct vid_data vid; 238 239 u64 last_update; 240 u64 last_sample_time; 241 u64 aperf_mperf_shift; 242 u64 prev_aperf; 243 u64 prev_mperf; 244 u64 prev_tsc; 245 struct sample sample; 246 int32_t min_perf_ratio; 247 int32_t max_perf_ratio; 248 #ifdef CONFIG_ACPI 249 struct acpi_processor_performance acpi_perf_data; 250 bool valid_pss_table; 251 #endif 252 unsigned int iowait_boost; 253 s16 epp_powersave; 254 s16 epp_policy; 255 s16 epp_default; 256 s16 epp_cached; 257 u64 hwp_req_cached; 258 u64 hwp_cap_cached; 259 u64 last_io_update; 260 unsigned int capacity_perf; 261 unsigned int sched_flags; 262 u32 hwp_boost_min; 263 bool suspended; 264 #ifdef CONFIG_ENERGY_MODEL 265 bool pd_registered; 266 #endif 267 struct delayed_work hwp_notify_work; 268 }; 269 270 static struct cpudata **all_cpu_data; 271 272 /** 273 * struct pstate_funcs - Per CPU model specific callbacks 274 * @get_max: Callback to get maximum non turbo effective P state 275 * @get_max_physical: Callback to get maximum non turbo physical P state 276 * @get_min: Callback to get minimum P state 277 * @get_turbo: Callback to get turbo P state 278 * @get_scaling: Callback to get frequency scaling factor 279 * @get_cpu_scaling: Get frequency scaling factor for a given cpu 280 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 281 * @get_val: Callback to convert P state to actual MSR write value 282 * @get_vid: Callback to get VID data for Atom platforms 283 * 284 * Core and Atom CPU models have different way to get P State limits. This 285 * structure is used to store those callbacks. 286 */ 287 struct pstate_funcs { 288 int (*get_max)(int cpu); 289 int (*get_max_physical)(int cpu); 290 int (*get_min)(int cpu); 291 int (*get_turbo)(int cpu); 292 int (*get_scaling)(void); 293 int (*get_cpu_scaling)(int cpu); 294 int (*get_aperf_mperf_shift)(void); 295 u64 (*get_val)(struct cpudata*, int pstate); 296 void (*get_vid)(struct cpudata *); 297 }; 298 299 static struct pstate_funcs pstate_funcs __read_mostly; 300 301 static bool hwp_active __ro_after_init; 302 static int hwp_mode_bdw __ro_after_init; 303 static bool per_cpu_limits __ro_after_init; 304 static bool hwp_forced __ro_after_init; 305 static bool hwp_boost __read_mostly; 306 static bool hwp_is_hybrid; 307 308 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 309 310 #define INTEL_PSTATE_CORE_SCALING 100000 311 #define HYBRID_SCALING_FACTOR_ADL 78741 312 #define HYBRID_SCALING_FACTOR_MTL 80000 313 #define HYBRID_SCALING_FACTOR_LNL 86957 314 315 static int hybrid_scaling_factor; 316 317 static inline int core_get_scaling(void) 318 { 319 return INTEL_PSTATE_CORE_SCALING; 320 } 321 322 #ifdef CONFIG_ACPI 323 static bool acpi_ppc; 324 #endif 325 326 static struct global_params global; 327 328 static DEFINE_MUTEX(intel_pstate_driver_lock); 329 static DEFINE_MUTEX(intel_pstate_limits_lock); 330 331 #ifdef CONFIG_ACPI 332 333 static bool intel_pstate_acpi_pm_profile_server(void) 334 { 335 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 336 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 337 return true; 338 339 return false; 340 } 341 342 static bool intel_pstate_get_ppc_enable_status(void) 343 { 344 if (intel_pstate_acpi_pm_profile_server()) 345 return true; 346 347 return acpi_ppc; 348 } 349 350 #ifdef CONFIG_ACPI_CPPC_LIB 351 352 /* The work item is needed to avoid CPU hotplug locking issues */ 353 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 354 { 355 sched_set_itmt_support(); 356 } 357 358 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 359 360 #define CPPC_MAX_PERF U8_MAX 361 362 static void intel_pstate_set_itmt_prio(int cpu) 363 { 364 struct cppc_perf_caps cppc_perf; 365 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 366 int ret; 367 368 ret = cppc_get_perf_caps(cpu, &cppc_perf); 369 /* 370 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0]. 371 * 372 * Also, on some systems with overclocking enabled, CPPC.highest_perf is 373 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT. 374 * Fall back to MSR_HWP_CAPABILITIES then too. 375 */ 376 if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF) 377 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached)); 378 379 /* 380 * The priorities can be set regardless of whether or not 381 * sched_set_itmt_support(true) has been called and it is valid to 382 * update them at any time after it has been called. 383 */ 384 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 385 386 if (max_highest_perf <= min_highest_perf) { 387 if (cppc_perf.highest_perf > max_highest_perf) 388 max_highest_perf = cppc_perf.highest_perf; 389 390 if (cppc_perf.highest_perf < min_highest_perf) 391 min_highest_perf = cppc_perf.highest_perf; 392 393 if (max_highest_perf > min_highest_perf) { 394 /* 395 * This code can be run during CPU online under the 396 * CPU hotplug locks, so sched_set_itmt_support() 397 * cannot be called from here. Queue up a work item 398 * to invoke it. 399 */ 400 schedule_work(&sched_itmt_work); 401 } 402 } 403 } 404 405 static int intel_pstate_get_cppc_guaranteed(int cpu) 406 { 407 struct cppc_perf_caps cppc_perf; 408 int ret; 409 410 ret = cppc_get_perf_caps(cpu, &cppc_perf); 411 if (ret) 412 return ret; 413 414 if (cppc_perf.guaranteed_perf) 415 return cppc_perf.guaranteed_perf; 416 417 return cppc_perf.nominal_perf; 418 } 419 420 static int intel_pstate_cppc_get_scaling(int cpu) 421 { 422 struct cppc_perf_caps cppc_perf; 423 424 /* 425 * Compute the perf-to-frequency scaling factor for the given CPU if 426 * possible, unless it would be 0. 427 */ 428 if (!cppc_get_perf_caps(cpu, &cppc_perf) && 429 cppc_perf.nominal_perf && cppc_perf.nominal_freq) 430 return div_u64(cppc_perf.nominal_freq * KHZ_PER_MHZ, 431 cppc_perf.nominal_perf); 432 433 return core_get_scaling(); 434 } 435 436 #else /* CONFIG_ACPI_CPPC_LIB */ 437 static inline void intel_pstate_set_itmt_prio(int cpu) 438 { 439 } 440 #endif /* CONFIG_ACPI_CPPC_LIB */ 441 442 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 443 { 444 struct cpudata *cpu; 445 int ret; 446 int i; 447 448 if (hwp_active) { 449 intel_pstate_set_itmt_prio(policy->cpu); 450 return; 451 } 452 453 if (!intel_pstate_get_ppc_enable_status()) 454 return; 455 456 cpu = all_cpu_data[policy->cpu]; 457 458 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 459 policy->cpu); 460 if (ret) 461 return; 462 463 /* 464 * Check if the control value in _PSS is for PERF_CTL MSR, which should 465 * guarantee that the states returned by it map to the states in our 466 * list directly. 467 */ 468 if (cpu->acpi_perf_data.control_register.space_id != 469 ACPI_ADR_SPACE_FIXED_HARDWARE) 470 goto err; 471 472 /* 473 * If there is only one entry _PSS, simply ignore _PSS and continue as 474 * usual without taking _PSS into account 475 */ 476 if (cpu->acpi_perf_data.state_count < 2) 477 goto err; 478 479 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 480 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 481 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 482 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 483 (u32) cpu->acpi_perf_data.states[i].core_frequency, 484 (u32) cpu->acpi_perf_data.states[i].power, 485 (u32) cpu->acpi_perf_data.states[i].control); 486 } 487 488 cpu->valid_pss_table = true; 489 pr_debug("_PPC limits will be enforced\n"); 490 491 return; 492 493 err: 494 cpu->valid_pss_table = false; 495 acpi_processor_unregister_performance(policy->cpu); 496 } 497 498 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 499 { 500 struct cpudata *cpu; 501 502 cpu = all_cpu_data[policy->cpu]; 503 if (!cpu->valid_pss_table) 504 return; 505 506 acpi_processor_unregister_performance(policy->cpu); 507 } 508 #else /* CONFIG_ACPI */ 509 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 510 { 511 } 512 513 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 514 { 515 } 516 517 static inline bool intel_pstate_acpi_pm_profile_server(void) 518 { 519 return false; 520 } 521 #endif /* CONFIG_ACPI */ 522 523 #ifndef CONFIG_ACPI_CPPC_LIB 524 static inline int intel_pstate_get_cppc_guaranteed(int cpu) 525 { 526 return -ENOTSUPP; 527 } 528 529 static int intel_pstate_cppc_get_scaling(int cpu) 530 { 531 return core_get_scaling(); 532 } 533 #endif /* CONFIG_ACPI_CPPC_LIB */ 534 535 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq, 536 unsigned int relation) 537 { 538 if (freq == cpu->pstate.turbo_freq) 539 return cpu->pstate.turbo_pstate; 540 541 if (freq == cpu->pstate.max_freq) 542 return cpu->pstate.max_pstate; 543 544 switch (relation) { 545 case CPUFREQ_RELATION_H: 546 return freq / cpu->pstate.scaling; 547 case CPUFREQ_RELATION_C: 548 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling); 549 } 550 551 return DIV_ROUND_UP(freq, cpu->pstate.scaling); 552 } 553 554 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq) 555 { 556 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L); 557 } 558 559 /** 560 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels. 561 * @cpu: Target CPU. 562 * 563 * On hybrid processors, HWP may expose more performance levels than there are 564 * P-states accessible through the PERF_CTL interface. If that happens, the 565 * scaling factor between HWP performance levels and CPU frequency will be less 566 * than the scaling factor between P-state values and CPU frequency. 567 * 568 * In that case, adjust the CPU parameters used in computations accordingly. 569 */ 570 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu) 571 { 572 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical; 573 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 574 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu); 575 int scaling = cpu->pstate.scaling; 576 int freq; 577 578 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys); 579 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo); 580 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling); 581 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate); 582 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate); 583 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling); 584 585 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling, 586 perf_ctl_scaling); 587 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling, 588 perf_ctl_scaling); 589 590 freq = perf_ctl_max_phys * perf_ctl_scaling; 591 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq); 592 593 freq = cpu->pstate.min_pstate * perf_ctl_scaling; 594 cpu->pstate.min_freq = freq; 595 /* 596 * Cast the min P-state value retrieved via pstate_funcs.get_min() to 597 * the effective range of HWP performance levels. 598 */ 599 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq); 600 } 601 602 static bool turbo_is_disabled(void) 603 { 604 u64 misc_en; 605 606 if (!cpu_feature_enabled(X86_FEATURE_IDA)) 607 return true; 608 609 rdmsrq(MSR_IA32_MISC_ENABLE, misc_en); 610 611 return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 612 } 613 614 static int min_perf_pct_min(void) 615 { 616 struct cpudata *cpu = all_cpu_data[0]; 617 int turbo_pstate = cpu->pstate.turbo_pstate; 618 619 return turbo_pstate ? 620 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 621 } 622 623 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 624 { 625 u64 epb; 626 int ret; 627 628 if (!boot_cpu_has(X86_FEATURE_EPB)) 629 return -ENXIO; 630 631 ret = rdmsrq_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 632 if (ret) 633 return (s16)ret; 634 635 return (s16)(epb & 0x0f); 636 } 637 638 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 639 { 640 s16 epp; 641 642 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 643 /* 644 * When hwp_req_data is 0, means that caller didn't read 645 * MSR_HWP_REQUEST, so need to read and get EPP. 646 */ 647 if (!hwp_req_data) { 648 epp = rdmsrq_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 649 &hwp_req_data); 650 if (epp) 651 return epp; 652 } 653 epp = (hwp_req_data >> 24) & 0xff; 654 } else { 655 /* When there is no EPP present, HWP uses EPB settings */ 656 epp = intel_pstate_get_epb(cpu_data); 657 } 658 659 return epp; 660 } 661 662 static int intel_pstate_set_epb(int cpu, s16 pref) 663 { 664 u64 epb; 665 int ret; 666 667 if (!boot_cpu_has(X86_FEATURE_EPB)) 668 return -ENXIO; 669 670 ret = rdmsrq_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 671 if (ret) 672 return ret; 673 674 epb = (epb & ~0x0f) | pref; 675 wrmsrq_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 676 677 return 0; 678 } 679 680 /* 681 * EPP/EPB display strings corresponding to EPP index in the 682 * energy_perf_strings[] 683 * index String 684 *------------------------------------- 685 * 0 default 686 * 1 performance 687 * 2 balance_performance 688 * 3 balance_power 689 * 4 power 690 */ 691 692 enum energy_perf_value_index { 693 EPP_INDEX_DEFAULT = 0, 694 EPP_INDEX_PERFORMANCE, 695 EPP_INDEX_BALANCE_PERFORMANCE, 696 EPP_INDEX_BALANCE_POWERSAVE, 697 EPP_INDEX_POWERSAVE, 698 }; 699 700 static const char * const energy_perf_strings[] = { 701 [EPP_INDEX_DEFAULT] = "default", 702 [EPP_INDEX_PERFORMANCE] = "performance", 703 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", 704 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", 705 [EPP_INDEX_POWERSAVE] = "power", 706 NULL 707 }; 708 static unsigned int epp_values[] = { 709 [EPP_INDEX_DEFAULT] = 0, /* Unused index */ 710 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE, 711 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE, 712 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE, 713 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE, 714 }; 715 716 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 717 { 718 s16 epp; 719 int index = -EINVAL; 720 721 *raw_epp = 0; 722 epp = intel_pstate_get_epp(cpu_data, 0); 723 if (epp < 0) 724 return epp; 725 726 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 727 if (epp == epp_values[EPP_INDEX_PERFORMANCE]) 728 return EPP_INDEX_PERFORMANCE; 729 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE]) 730 return EPP_INDEX_BALANCE_PERFORMANCE; 731 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE]) 732 return EPP_INDEX_BALANCE_POWERSAVE; 733 if (epp == epp_values[EPP_INDEX_POWERSAVE]) 734 return EPP_INDEX_POWERSAVE; 735 *raw_epp = epp; 736 return 0; 737 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 738 /* 739 * Range: 740 * 0x00-0x03 : Performance 741 * 0x04-0x07 : Balance performance 742 * 0x08-0x0B : Balance power 743 * 0x0C-0x0F : Power 744 * The EPB is a 4 bit value, but our ranges restrict the 745 * value which can be set. Here only using top two bits 746 * effectively. 747 */ 748 index = (epp >> 2) + 1; 749 } 750 751 return index; 752 } 753 754 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) 755 { 756 int ret; 757 758 /* 759 * Use the cached HWP Request MSR value, because in the active mode the 760 * register itself may be updated by intel_pstate_hwp_boost_up() or 761 * intel_pstate_hwp_boost_down() at any time. 762 */ 763 u64 value = READ_ONCE(cpu->hwp_req_cached); 764 765 value &= ~GENMASK_ULL(31, 24); 766 value |= (u64)epp << 24; 767 /* 768 * The only other updater of hwp_req_cached in the active mode, 769 * intel_pstate_hwp_set(), is called under the same lock as this 770 * function, so it cannot run in parallel with the update below. 771 */ 772 WRITE_ONCE(cpu->hwp_req_cached, value); 773 ret = wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 774 if (!ret) 775 cpu->epp_cached = epp; 776 777 return ret; 778 } 779 780 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 781 int pref_index, bool use_raw, 782 u32 raw_epp) 783 { 784 int epp = -EINVAL; 785 int ret; 786 787 if (!pref_index) 788 epp = cpu_data->epp_default; 789 790 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 791 if (use_raw) 792 epp = raw_epp; 793 else if (epp == -EINVAL) 794 epp = epp_values[pref_index]; 795 796 /* 797 * To avoid confusion, refuse to set EPP to any values different 798 * from 0 (performance) if the current policy is "performance", 799 * because those values would be overridden. 800 */ 801 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 802 return -EBUSY; 803 804 ret = intel_pstate_set_epp(cpu_data, epp); 805 } else { 806 if (epp == -EINVAL) 807 epp = (pref_index - 1) << 2; 808 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 809 } 810 811 return ret; 812 } 813 814 static ssize_t show_energy_performance_available_preferences( 815 struct cpufreq_policy *policy, char *buf) 816 { 817 int i = 0; 818 int ret = 0; 819 820 while (energy_perf_strings[i] != NULL) 821 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 822 823 ret += sprintf(&buf[ret], "\n"); 824 825 return ret; 826 } 827 828 cpufreq_freq_attr_ro(energy_performance_available_preferences); 829 830 static struct cpufreq_driver intel_pstate; 831 832 static ssize_t store_energy_performance_preference( 833 struct cpufreq_policy *policy, const char *buf, size_t count) 834 { 835 struct cpudata *cpu = all_cpu_data[policy->cpu]; 836 char str_preference[21]; 837 bool raw = false; 838 ssize_t ret; 839 u32 epp = 0; 840 841 ret = sscanf(buf, "%20s", str_preference); 842 if (ret != 1) 843 return -EINVAL; 844 845 ret = match_string(energy_perf_strings, -1, str_preference); 846 if (ret < 0) { 847 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 848 return ret; 849 850 ret = kstrtouint(buf, 10, &epp); 851 if (ret) 852 return ret; 853 854 if (epp > 255) 855 return -EINVAL; 856 857 raw = true; 858 } 859 860 /* 861 * This function runs with the policy R/W semaphore held, which 862 * guarantees that the driver pointer will not change while it is 863 * running. 864 */ 865 if (!intel_pstate_driver) 866 return -EAGAIN; 867 868 mutex_lock(&intel_pstate_limits_lock); 869 870 if (intel_pstate_driver == &intel_pstate) { 871 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); 872 } else { 873 /* 874 * In the passive mode the governor needs to be stopped on the 875 * target CPU before the EPP update and restarted after it, 876 * which is super-heavy-weight, so make sure it is worth doing 877 * upfront. 878 */ 879 if (!raw) 880 epp = ret ? epp_values[ret] : cpu->epp_default; 881 882 if (cpu->epp_cached != epp) { 883 int err; 884 885 cpufreq_stop_governor(policy); 886 ret = intel_pstate_set_epp(cpu, epp); 887 err = cpufreq_start_governor(policy); 888 if (!ret) 889 ret = err; 890 } else { 891 ret = 0; 892 } 893 } 894 895 mutex_unlock(&intel_pstate_limits_lock); 896 897 return ret ?: count; 898 } 899 900 static ssize_t show_energy_performance_preference( 901 struct cpufreq_policy *policy, char *buf) 902 { 903 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 904 int preference, raw_epp; 905 906 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 907 if (preference < 0) 908 return preference; 909 910 if (raw_epp) 911 return sprintf(buf, "%d\n", raw_epp); 912 else 913 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 914 } 915 916 cpufreq_freq_attr_rw(energy_performance_preference); 917 918 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 919 { 920 struct cpudata *cpu = all_cpu_data[policy->cpu]; 921 int ratio, freq; 922 923 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu); 924 if (ratio <= 0) { 925 u64 cap; 926 927 rdmsrq_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 928 ratio = HWP_GUARANTEED_PERF(cap); 929 } 930 931 freq = ratio * cpu->pstate.scaling; 932 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling) 933 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling); 934 935 return sprintf(buf, "%d\n", freq); 936 } 937 938 cpufreq_freq_attr_ro(base_frequency); 939 940 static struct freq_attr *hwp_cpufreq_attrs[] = { 941 &energy_performance_preference, 942 &energy_performance_available_preferences, 943 &base_frequency, 944 NULL, 945 }; 946 947 static bool no_cas __ro_after_init; 948 949 static struct cpudata *hybrid_max_perf_cpu __read_mostly; 950 /* 951 * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata, 952 * and the x86 arch scale-invariance information from concurrent updates. 953 */ 954 static DEFINE_MUTEX(hybrid_capacity_lock); 955 956 #ifdef CONFIG_ENERGY_MODEL 957 #define HYBRID_EM_STATE_COUNT 4 958 959 static int hybrid_active_power(struct device *dev, unsigned long *power, 960 unsigned long *freq) 961 { 962 /* 963 * Create "utilization bins" of 0-40%, 40%-60%, 60%-80%, and 80%-100% 964 * of the maximum capacity such that two CPUs of the same type will be 965 * regarded as equally attractive if the utilization of each of them 966 * falls into the same bin, which should prevent tasks from being 967 * migrated between them too often. 968 * 969 * For this purpose, return the "frequency" of 2 for the first 970 * performance level and otherwise leave the value set by the caller. 971 */ 972 if (!*freq) 973 *freq = 2; 974 975 /* No power information. */ 976 *power = EM_MAX_POWER; 977 978 return 0; 979 } 980 981 static int hybrid_get_cost(struct device *dev, unsigned long freq, 982 unsigned long *cost) 983 { 984 struct pstate_data *pstate = &all_cpu_data[dev->id]->pstate; 985 struct cpu_cacheinfo *cacheinfo = get_cpu_cacheinfo(dev->id); 986 987 /* 988 * The smaller the perf-to-frequency scaling factor, the larger the IPC 989 * ratio between the given CPU and the least capable CPU in the system. 990 * Regard that IPC ratio as the primary cost component and assume that 991 * the scaling factors for different CPU types will differ by at least 992 * 5% and they will not be above INTEL_PSTATE_CORE_SCALING. 993 * 994 * Add the freq value to the cost, so that the cost of running on CPUs 995 * of the same type in different "utilization bins" is different. 996 */ 997 *cost = div_u64(100ULL * INTEL_PSTATE_CORE_SCALING, pstate->scaling) + freq; 998 /* 999 * Increase the cost slightly for CPUs able to access L3 to avoid 1000 * touching it in case some other CPUs of the same type can do the work 1001 * without it. 1002 */ 1003 if (cacheinfo) { 1004 unsigned int i; 1005 1006 /* Check if L3 cache is there. */ 1007 for (i = 0; i < cacheinfo->num_leaves; i++) { 1008 if (cacheinfo->info_list[i].level == 3) { 1009 *cost += 2; 1010 break; 1011 } 1012 } 1013 } 1014 1015 return 0; 1016 } 1017 1018 static bool hybrid_register_perf_domain(unsigned int cpu) 1019 { 1020 static const struct em_data_callback cb 1021 = EM_ADV_DATA_CB(hybrid_active_power, hybrid_get_cost); 1022 struct cpudata *cpudata = all_cpu_data[cpu]; 1023 struct device *cpu_dev; 1024 1025 /* 1026 * Registering EM perf domains without enabling asymmetric CPU capacity 1027 * support is not really useful and one domain should not be registered 1028 * more than once. 1029 */ 1030 if (!hybrid_max_perf_cpu || cpudata->pd_registered) 1031 return false; 1032 1033 cpu_dev = get_cpu_device(cpu); 1034 if (!cpu_dev) 1035 return false; 1036 1037 if (em_dev_register_perf_domain(cpu_dev, HYBRID_EM_STATE_COUNT, &cb, 1038 cpumask_of(cpu), false)) 1039 return false; 1040 1041 cpudata->pd_registered = true; 1042 1043 return true; 1044 } 1045 1046 static void hybrid_register_all_perf_domains(void) 1047 { 1048 unsigned int cpu; 1049 1050 for_each_online_cpu(cpu) 1051 hybrid_register_perf_domain(cpu); 1052 } 1053 1054 static void hybrid_update_perf_domain(struct cpudata *cpu) 1055 { 1056 if (cpu->pd_registered) 1057 em_adjust_cpu_capacity(cpu->cpu); 1058 } 1059 #else /* !CONFIG_ENERGY_MODEL */ 1060 static inline bool hybrid_register_perf_domain(unsigned int cpu) { return false; } 1061 static inline void hybrid_register_all_perf_domains(void) {} 1062 static inline void hybrid_update_perf_domain(struct cpudata *cpu) {} 1063 #endif /* CONFIG_ENERGY_MODEL */ 1064 1065 static void hybrid_set_cpu_capacity(struct cpudata *cpu) 1066 { 1067 arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf, 1068 hybrid_max_perf_cpu->capacity_perf, 1069 cpu->capacity_perf, 1070 cpu->pstate.max_pstate_physical); 1071 hybrid_update_perf_domain(cpu); 1072 1073 topology_set_cpu_scale(cpu->cpu, arch_scale_cpu_capacity(cpu->cpu)); 1074 1075 pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu, 1076 cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf, 1077 cpu->pstate.max_pstate_physical); 1078 } 1079 1080 static void hybrid_clear_cpu_capacity(unsigned int cpunum) 1081 { 1082 arch_set_cpu_capacity(cpunum, 1, 1, 1, 1); 1083 } 1084 1085 static void hybrid_get_capacity_perf(struct cpudata *cpu) 1086 { 1087 if (READ_ONCE(global.no_turbo)) { 1088 cpu->capacity_perf = cpu->pstate.max_pstate_physical; 1089 return; 1090 } 1091 1092 cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); 1093 } 1094 1095 static void hybrid_set_capacity_of_cpus(void) 1096 { 1097 int cpunum; 1098 1099 for_each_online_cpu(cpunum) { 1100 struct cpudata *cpu = all_cpu_data[cpunum]; 1101 1102 if (cpu) 1103 hybrid_set_cpu_capacity(cpu); 1104 } 1105 } 1106 1107 static void hybrid_update_cpu_capacity_scaling(void) 1108 { 1109 struct cpudata *max_perf_cpu = NULL; 1110 unsigned int max_cap_perf = 0; 1111 int cpunum; 1112 1113 for_each_online_cpu(cpunum) { 1114 struct cpudata *cpu = all_cpu_data[cpunum]; 1115 1116 if (!cpu) 1117 continue; 1118 1119 /* 1120 * During initialization, CPU performance at full capacity needs 1121 * to be determined. 1122 */ 1123 if (!hybrid_max_perf_cpu) 1124 hybrid_get_capacity_perf(cpu); 1125 1126 /* 1127 * If hybrid_max_perf_cpu is not NULL at this point, it is 1128 * being replaced, so don't take it into account when looking 1129 * for the new one. 1130 */ 1131 if (cpu == hybrid_max_perf_cpu) 1132 continue; 1133 1134 if (cpu->capacity_perf > max_cap_perf) { 1135 max_cap_perf = cpu->capacity_perf; 1136 max_perf_cpu = cpu; 1137 } 1138 } 1139 1140 if (max_perf_cpu) { 1141 hybrid_max_perf_cpu = max_perf_cpu; 1142 hybrid_set_capacity_of_cpus(); 1143 } else { 1144 pr_info("Found no CPUs with nonzero maximum performance\n"); 1145 /* Revert to the flat CPU capacity structure. */ 1146 for_each_online_cpu(cpunum) 1147 hybrid_clear_cpu_capacity(cpunum); 1148 } 1149 } 1150 1151 static void __hybrid_refresh_cpu_capacity_scaling(void) 1152 { 1153 hybrid_max_perf_cpu = NULL; 1154 hybrid_update_cpu_capacity_scaling(); 1155 } 1156 1157 static void hybrid_refresh_cpu_capacity_scaling(void) 1158 { 1159 guard(mutex)(&hybrid_capacity_lock); 1160 1161 __hybrid_refresh_cpu_capacity_scaling(); 1162 /* 1163 * Perf domains are not registered before setting hybrid_max_perf_cpu, 1164 * so register them all after setting up CPU capacity scaling. 1165 */ 1166 hybrid_register_all_perf_domains(); 1167 } 1168 1169 static void hybrid_init_cpu_capacity_scaling(bool refresh) 1170 { 1171 /* Bail out if enabling capacity-aware scheduling is prohibited. */ 1172 if (no_cas) 1173 return; 1174 1175 /* 1176 * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity 1177 * scaling has been enabled already and the driver is just changing the 1178 * operation mode. 1179 */ 1180 if (refresh) { 1181 hybrid_refresh_cpu_capacity_scaling(); 1182 return; 1183 } 1184 1185 /* 1186 * On hybrid systems, use asym capacity instead of ITMT, but because 1187 * the capacity of SMT threads is not deterministic even approximately, 1188 * do not do that when SMT is in use. 1189 */ 1190 if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) { 1191 hybrid_refresh_cpu_capacity_scaling(); 1192 /* 1193 * Disabling ITMT causes sched domains to be rebuilt to disable asym 1194 * packing and enable asym capacity and EAS. 1195 */ 1196 sched_clear_itmt_support(); 1197 } 1198 } 1199 1200 static bool hybrid_clear_max_perf_cpu(void) 1201 { 1202 bool ret; 1203 1204 guard(mutex)(&hybrid_capacity_lock); 1205 1206 ret = !!hybrid_max_perf_cpu; 1207 hybrid_max_perf_cpu = NULL; 1208 1209 return ret; 1210 } 1211 1212 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) 1213 { 1214 u64 cap; 1215 1216 rdmsrq_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); 1217 WRITE_ONCE(cpu->hwp_cap_cached, cap); 1218 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); 1219 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); 1220 } 1221 1222 static void intel_pstate_get_hwp_cap(struct cpudata *cpu) 1223 { 1224 int scaling = cpu->pstate.scaling; 1225 1226 __intel_pstate_get_hwp_cap(cpu); 1227 1228 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling; 1229 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; 1230 if (scaling != cpu->pstate.perf_ctl_scaling) { 1231 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 1232 1233 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq, 1234 perf_ctl_scaling); 1235 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq, 1236 perf_ctl_scaling); 1237 } 1238 } 1239 1240 static void hybrid_update_capacity(struct cpudata *cpu) 1241 { 1242 unsigned int max_cap_perf; 1243 1244 mutex_lock(&hybrid_capacity_lock); 1245 1246 if (!hybrid_max_perf_cpu) 1247 goto unlock; 1248 1249 /* 1250 * The maximum performance of the CPU may have changed, but assume 1251 * that the performance of the other CPUs has not changed. 1252 */ 1253 max_cap_perf = hybrid_max_perf_cpu->capacity_perf; 1254 1255 intel_pstate_get_hwp_cap(cpu); 1256 1257 hybrid_get_capacity_perf(cpu); 1258 /* Should hybrid_max_perf_cpu be replaced by this CPU? */ 1259 if (cpu->capacity_perf > max_cap_perf) { 1260 hybrid_max_perf_cpu = cpu; 1261 hybrid_set_capacity_of_cpus(); 1262 goto unlock; 1263 } 1264 1265 /* If this CPU is hybrid_max_perf_cpu, should it be replaced? */ 1266 if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) { 1267 hybrid_update_cpu_capacity_scaling(); 1268 goto unlock; 1269 } 1270 1271 hybrid_set_cpu_capacity(cpu); 1272 /* 1273 * If the CPU was offline to start with and it is going online for the 1274 * first time, a perf domain needs to be registered for it if hybrid 1275 * capacity scaling has been enabled already. In that case, sched 1276 * domains need to be rebuilt to take the new perf domain into account. 1277 */ 1278 if (hybrid_register_perf_domain(cpu->cpu)) 1279 em_rebuild_sched_domains(); 1280 1281 unlock: 1282 mutex_unlock(&hybrid_capacity_lock); 1283 } 1284 1285 static void intel_pstate_hwp_set(unsigned int cpu) 1286 { 1287 struct cpudata *cpu_data = all_cpu_data[cpu]; 1288 int max, min; 1289 u64 value; 1290 s16 epp; 1291 1292 max = cpu_data->max_perf_ratio; 1293 min = cpu_data->min_perf_ratio; 1294 1295 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 1296 min = max; 1297 1298 rdmsrq_on_cpu(cpu, MSR_HWP_REQUEST, &value); 1299 1300 value &= ~HWP_MIN_PERF(~0L); 1301 value |= HWP_MIN_PERF(min); 1302 1303 value &= ~HWP_MAX_PERF(~0L); 1304 value |= HWP_MAX_PERF(max); 1305 1306 if (cpu_data->epp_policy == cpu_data->policy) 1307 goto skip_epp; 1308 1309 cpu_data->epp_policy = cpu_data->policy; 1310 1311 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 1312 epp = intel_pstate_get_epp(cpu_data, value); 1313 cpu_data->epp_powersave = epp; 1314 /* If EPP read was failed, then don't try to write */ 1315 if (epp < 0) 1316 goto skip_epp; 1317 1318 epp = 0; 1319 } else { 1320 /* skip setting EPP, when saved value is invalid */ 1321 if (cpu_data->epp_powersave < 0) 1322 goto skip_epp; 1323 1324 /* 1325 * No need to restore EPP when it is not zero. This 1326 * means: 1327 * - Policy is not changed 1328 * - user has manually changed 1329 * - Error reading EPB 1330 */ 1331 epp = intel_pstate_get_epp(cpu_data, value); 1332 if (epp) 1333 goto skip_epp; 1334 1335 epp = cpu_data->epp_powersave; 1336 } 1337 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1338 value &= ~GENMASK_ULL(31, 24); 1339 value |= (u64)epp << 24; 1340 } else { 1341 intel_pstate_set_epb(cpu, epp); 1342 } 1343 skip_epp: 1344 WRITE_ONCE(cpu_data->hwp_req_cached, value); 1345 wrmsrq_on_cpu(cpu, MSR_HWP_REQUEST, value); 1346 } 1347 1348 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata); 1349 1350 static void intel_pstate_hwp_offline(struct cpudata *cpu) 1351 { 1352 u64 value = READ_ONCE(cpu->hwp_req_cached); 1353 int min_perf; 1354 1355 intel_pstate_disable_hwp_interrupt(cpu); 1356 1357 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1358 /* 1359 * In case the EPP has been set to "performance" by the 1360 * active mode "performance" scaling algorithm, replace that 1361 * temporary value with the cached EPP one. 1362 */ 1363 value &= ~GENMASK_ULL(31, 24); 1364 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); 1365 /* 1366 * However, make sure that EPP will be set to "performance" when 1367 * the CPU is brought back online again and the "performance" 1368 * scaling algorithm is still in effect. 1369 */ 1370 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; 1371 } 1372 1373 /* 1374 * Clear the desired perf field in the cached HWP request value to 1375 * prevent nonzero desired values from being leaked into the active 1376 * mode. 1377 */ 1378 value &= ~HWP_DESIRED_PERF(~0L); 1379 WRITE_ONCE(cpu->hwp_req_cached, value); 1380 1381 value &= ~GENMASK_ULL(31, 0); 1382 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); 1383 1384 /* Set hwp_max = hwp_min */ 1385 value |= HWP_MAX_PERF(min_perf); 1386 value |= HWP_MIN_PERF(min_perf); 1387 1388 /* Set EPP to min */ 1389 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 1390 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 1391 1392 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 1393 1394 mutex_lock(&hybrid_capacity_lock); 1395 1396 if (!hybrid_max_perf_cpu) { 1397 mutex_unlock(&hybrid_capacity_lock); 1398 1399 return; 1400 } 1401 1402 if (hybrid_max_perf_cpu == cpu) 1403 hybrid_update_cpu_capacity_scaling(); 1404 1405 mutex_unlock(&hybrid_capacity_lock); 1406 1407 /* Reset the capacity of the CPU going offline to the initial value. */ 1408 hybrid_clear_cpu_capacity(cpu->cpu); 1409 } 1410 1411 #define POWER_CTL_EE_ENABLE 1 1412 #define POWER_CTL_EE_DISABLE 2 1413 1414 static int power_ctl_ee_state; 1415 1416 static void set_power_ctl_ee_state(bool input) 1417 { 1418 u64 power_ctl; 1419 1420 mutex_lock(&intel_pstate_driver_lock); 1421 rdmsrq(MSR_IA32_POWER_CTL, power_ctl); 1422 if (input) { 1423 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 1424 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 1425 } else { 1426 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1427 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 1428 } 1429 wrmsrq(MSR_IA32_POWER_CTL, power_ctl); 1430 mutex_unlock(&intel_pstate_driver_lock); 1431 } 1432 1433 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 1434 1435 static void intel_pstate_hwp_reenable(struct cpudata *cpu) 1436 { 1437 intel_pstate_hwp_enable(cpu); 1438 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); 1439 } 1440 1441 static int intel_pstate_suspend(struct cpufreq_policy *policy) 1442 { 1443 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1444 1445 pr_debug("CPU %d suspending\n", cpu->cpu); 1446 1447 cpu->suspended = true; 1448 1449 /* disable HWP interrupt and cancel any pending work */ 1450 intel_pstate_disable_hwp_interrupt(cpu); 1451 1452 return 0; 1453 } 1454 1455 static int intel_pstate_resume(struct cpufreq_policy *policy) 1456 { 1457 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1458 1459 pr_debug("CPU %d resuming\n", cpu->cpu); 1460 1461 /* Only restore if the system default is changed */ 1462 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 1463 set_power_ctl_ee_state(true); 1464 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 1465 set_power_ctl_ee_state(false); 1466 1467 if (cpu->suspended && hwp_active) { 1468 mutex_lock(&intel_pstate_limits_lock); 1469 1470 /* Re-enable HWP, because "online" has not done that. */ 1471 intel_pstate_hwp_reenable(cpu); 1472 1473 mutex_unlock(&intel_pstate_limits_lock); 1474 } 1475 1476 cpu->suspended = false; 1477 1478 return 0; 1479 } 1480 1481 static void intel_pstate_update_policies(void) 1482 { 1483 int cpu; 1484 1485 for_each_possible_cpu(cpu) 1486 cpufreq_update_policy(cpu); 1487 } 1488 1489 static void __intel_pstate_update_max_freq(struct cpufreq_policy *policy, 1490 struct cpudata *cpudata) 1491 { 1492 guard(cpufreq_policy_write)(policy); 1493 1494 if (hwp_active) 1495 intel_pstate_get_hwp_cap(cpudata); 1496 1497 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ? 1498 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 1499 1500 refresh_frequency_limits(policy); 1501 } 1502 1503 static bool intel_pstate_update_max_freq(struct cpudata *cpudata) 1504 { 1505 struct cpufreq_policy *policy __free(put_cpufreq_policy); 1506 1507 policy = cpufreq_cpu_get(cpudata->cpu); 1508 if (!policy) 1509 return false; 1510 1511 __intel_pstate_update_max_freq(policy, cpudata); 1512 1513 return true; 1514 } 1515 1516 static void intel_pstate_update_limits(struct cpufreq_policy *policy) 1517 { 1518 struct cpudata *cpudata = all_cpu_data[policy->cpu]; 1519 1520 __intel_pstate_update_max_freq(policy, cpudata); 1521 1522 hybrid_update_capacity(cpudata); 1523 } 1524 1525 static void intel_pstate_update_limits_for_all(void) 1526 { 1527 int cpu; 1528 1529 for_each_possible_cpu(cpu) 1530 intel_pstate_update_max_freq(all_cpu_data[cpu]); 1531 1532 mutex_lock(&hybrid_capacity_lock); 1533 1534 if (hybrid_max_perf_cpu) 1535 __hybrid_refresh_cpu_capacity_scaling(); 1536 1537 mutex_unlock(&hybrid_capacity_lock); 1538 } 1539 1540 /************************** sysfs begin ************************/ 1541 #define show_one(file_name, object) \ 1542 static ssize_t show_##file_name \ 1543 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 1544 { \ 1545 return sprintf(buf, "%u\n", global.object); \ 1546 } 1547 1548 static ssize_t intel_pstate_show_status(char *buf); 1549 static int intel_pstate_update_status(const char *buf, size_t size); 1550 1551 static ssize_t show_status(struct kobject *kobj, 1552 struct kobj_attribute *attr, char *buf) 1553 { 1554 ssize_t ret; 1555 1556 mutex_lock(&intel_pstate_driver_lock); 1557 ret = intel_pstate_show_status(buf); 1558 mutex_unlock(&intel_pstate_driver_lock); 1559 1560 return ret; 1561 } 1562 1563 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1564 const char *buf, size_t count) 1565 { 1566 char *p = memchr(buf, '\n', count); 1567 int ret; 1568 1569 mutex_lock(&intel_pstate_driver_lock); 1570 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1571 mutex_unlock(&intel_pstate_driver_lock); 1572 1573 return ret < 0 ? ret : count; 1574 } 1575 1576 static ssize_t show_turbo_pct(struct kobject *kobj, 1577 struct kobj_attribute *attr, char *buf) 1578 { 1579 struct cpudata *cpu; 1580 int total, no_turbo, turbo_pct; 1581 uint32_t turbo_fp; 1582 1583 mutex_lock(&intel_pstate_driver_lock); 1584 1585 if (!intel_pstate_driver) { 1586 mutex_unlock(&intel_pstate_driver_lock); 1587 return -EAGAIN; 1588 } 1589 1590 cpu = all_cpu_data[0]; 1591 1592 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1593 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1594 turbo_fp = div_fp(no_turbo, total); 1595 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1596 1597 mutex_unlock(&intel_pstate_driver_lock); 1598 1599 return sprintf(buf, "%u\n", turbo_pct); 1600 } 1601 1602 static ssize_t show_num_pstates(struct kobject *kobj, 1603 struct kobj_attribute *attr, char *buf) 1604 { 1605 struct cpudata *cpu; 1606 int total; 1607 1608 mutex_lock(&intel_pstate_driver_lock); 1609 1610 if (!intel_pstate_driver) { 1611 mutex_unlock(&intel_pstate_driver_lock); 1612 return -EAGAIN; 1613 } 1614 1615 cpu = all_cpu_data[0]; 1616 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1617 1618 mutex_unlock(&intel_pstate_driver_lock); 1619 1620 return sprintf(buf, "%u\n", total); 1621 } 1622 1623 static ssize_t show_no_turbo(struct kobject *kobj, 1624 struct kobj_attribute *attr, char *buf) 1625 { 1626 ssize_t ret; 1627 1628 mutex_lock(&intel_pstate_driver_lock); 1629 1630 if (!intel_pstate_driver) { 1631 mutex_unlock(&intel_pstate_driver_lock); 1632 return -EAGAIN; 1633 } 1634 1635 ret = sprintf(buf, "%u\n", global.no_turbo); 1636 1637 mutex_unlock(&intel_pstate_driver_lock); 1638 1639 return ret; 1640 } 1641 1642 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1643 const char *buf, size_t count) 1644 { 1645 unsigned int input; 1646 bool no_turbo; 1647 1648 if (sscanf(buf, "%u", &input) != 1) 1649 return -EINVAL; 1650 1651 mutex_lock(&intel_pstate_driver_lock); 1652 1653 if (!intel_pstate_driver) { 1654 count = -EAGAIN; 1655 goto unlock_driver; 1656 } 1657 1658 no_turbo = !!clamp_t(int, input, 0, 1); 1659 1660 WRITE_ONCE(global.turbo_disabled, turbo_is_disabled()); 1661 if (global.turbo_disabled && !no_turbo) { 1662 pr_notice("Turbo disabled by BIOS or unavailable on processor\n"); 1663 count = -EPERM; 1664 if (global.no_turbo) 1665 goto unlock_driver; 1666 else 1667 no_turbo = 1; 1668 } 1669 1670 if (no_turbo == global.no_turbo) { 1671 goto unlock_driver; 1672 } 1673 1674 WRITE_ONCE(global.no_turbo, no_turbo); 1675 1676 mutex_lock(&intel_pstate_limits_lock); 1677 1678 if (no_turbo) { 1679 struct cpudata *cpu = all_cpu_data[0]; 1680 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1681 1682 /* Squash the global minimum into the permitted range. */ 1683 if (global.min_perf_pct > pct) 1684 global.min_perf_pct = pct; 1685 } 1686 1687 mutex_unlock(&intel_pstate_limits_lock); 1688 1689 intel_pstate_update_limits_for_all(); 1690 arch_set_max_freq_ratio(no_turbo); 1691 1692 unlock_driver: 1693 mutex_unlock(&intel_pstate_driver_lock); 1694 1695 return count; 1696 } 1697 1698 static void update_qos_request(enum freq_qos_req_type type) 1699 { 1700 struct freq_qos_request *req; 1701 struct cpufreq_policy *policy; 1702 int i; 1703 1704 for_each_possible_cpu(i) { 1705 struct cpudata *cpu = all_cpu_data[i]; 1706 unsigned int freq, perf_pct; 1707 1708 policy = cpufreq_cpu_get(i); 1709 if (!policy) 1710 continue; 1711 1712 req = policy->driver_data; 1713 cpufreq_cpu_put(policy); 1714 1715 if (!req) 1716 continue; 1717 1718 if (hwp_active) 1719 intel_pstate_get_hwp_cap(cpu); 1720 1721 if (type == FREQ_QOS_MIN) { 1722 perf_pct = global.min_perf_pct; 1723 } else { 1724 req++; 1725 perf_pct = global.max_perf_pct; 1726 } 1727 1728 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); 1729 1730 if (freq_qos_update_request(req, freq) < 0) 1731 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1732 } 1733 } 1734 1735 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1736 const char *buf, size_t count) 1737 { 1738 unsigned int input; 1739 int ret; 1740 1741 ret = sscanf(buf, "%u", &input); 1742 if (ret != 1) 1743 return -EINVAL; 1744 1745 mutex_lock(&intel_pstate_driver_lock); 1746 1747 if (!intel_pstate_driver) { 1748 mutex_unlock(&intel_pstate_driver_lock); 1749 return -EAGAIN; 1750 } 1751 1752 mutex_lock(&intel_pstate_limits_lock); 1753 1754 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1755 1756 mutex_unlock(&intel_pstate_limits_lock); 1757 1758 if (intel_pstate_driver == &intel_pstate) 1759 intel_pstate_update_policies(); 1760 else 1761 update_qos_request(FREQ_QOS_MAX); 1762 1763 mutex_unlock(&intel_pstate_driver_lock); 1764 1765 return count; 1766 } 1767 1768 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1769 const char *buf, size_t count) 1770 { 1771 unsigned int input; 1772 int ret; 1773 1774 ret = sscanf(buf, "%u", &input); 1775 if (ret != 1) 1776 return -EINVAL; 1777 1778 mutex_lock(&intel_pstate_driver_lock); 1779 1780 if (!intel_pstate_driver) { 1781 mutex_unlock(&intel_pstate_driver_lock); 1782 return -EAGAIN; 1783 } 1784 1785 mutex_lock(&intel_pstate_limits_lock); 1786 1787 global.min_perf_pct = clamp_t(int, input, 1788 min_perf_pct_min(), global.max_perf_pct); 1789 1790 mutex_unlock(&intel_pstate_limits_lock); 1791 1792 if (intel_pstate_driver == &intel_pstate) 1793 intel_pstate_update_policies(); 1794 else 1795 update_qos_request(FREQ_QOS_MIN); 1796 1797 mutex_unlock(&intel_pstate_driver_lock); 1798 1799 return count; 1800 } 1801 1802 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1803 struct kobj_attribute *attr, char *buf) 1804 { 1805 return sprintf(buf, "%u\n", hwp_boost); 1806 } 1807 1808 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1809 struct kobj_attribute *b, 1810 const char *buf, size_t count) 1811 { 1812 unsigned int input; 1813 int ret; 1814 1815 ret = kstrtouint(buf, 10, &input); 1816 if (ret) 1817 return ret; 1818 1819 mutex_lock(&intel_pstate_driver_lock); 1820 hwp_boost = !!input; 1821 intel_pstate_update_policies(); 1822 mutex_unlock(&intel_pstate_driver_lock); 1823 1824 return count; 1825 } 1826 1827 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1828 char *buf) 1829 { 1830 u64 power_ctl; 1831 int enable; 1832 1833 rdmsrq(MSR_IA32_POWER_CTL, power_ctl); 1834 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1835 return sprintf(buf, "%d\n", !enable); 1836 } 1837 1838 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1839 const char *buf, size_t count) 1840 { 1841 bool input; 1842 int ret; 1843 1844 ret = kstrtobool(buf, &input); 1845 if (ret) 1846 return ret; 1847 1848 set_power_ctl_ee_state(input); 1849 1850 return count; 1851 } 1852 1853 show_one(max_perf_pct, max_perf_pct); 1854 show_one(min_perf_pct, min_perf_pct); 1855 1856 define_one_global_rw(status); 1857 define_one_global_rw(no_turbo); 1858 define_one_global_rw(max_perf_pct); 1859 define_one_global_rw(min_perf_pct); 1860 define_one_global_ro(turbo_pct); 1861 define_one_global_ro(num_pstates); 1862 define_one_global_rw(hwp_dynamic_boost); 1863 define_one_global_rw(energy_efficiency); 1864 1865 static struct attribute *intel_pstate_attributes[] = { 1866 &status.attr, 1867 &no_turbo.attr, 1868 NULL 1869 }; 1870 1871 static const struct attribute_group intel_pstate_attr_group = { 1872 .attrs = intel_pstate_attributes, 1873 }; 1874 1875 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1876 1877 static struct kobject *intel_pstate_kobject; 1878 1879 static void __init intel_pstate_sysfs_expose_params(void) 1880 { 1881 struct device *dev_root = bus_get_dev_root(&cpu_subsys); 1882 int rc; 1883 1884 if (dev_root) { 1885 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj); 1886 put_device(dev_root); 1887 } 1888 if (WARN_ON(!intel_pstate_kobject)) 1889 return; 1890 1891 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1892 if (WARN_ON(rc)) 1893 return; 1894 1895 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1896 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr); 1897 WARN_ON(rc); 1898 1899 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr); 1900 WARN_ON(rc); 1901 } 1902 1903 /* 1904 * If per cpu limits are enforced there are no global limits, so 1905 * return without creating max/min_perf_pct attributes 1906 */ 1907 if (per_cpu_limits) 1908 return; 1909 1910 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1911 WARN_ON(rc); 1912 1913 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1914 WARN_ON(rc); 1915 1916 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1917 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1918 WARN_ON(rc); 1919 } 1920 } 1921 1922 static void __init intel_pstate_sysfs_remove(void) 1923 { 1924 if (!intel_pstate_kobject) 1925 return; 1926 1927 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); 1928 1929 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1930 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr); 1931 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr); 1932 } 1933 1934 if (!per_cpu_limits) { 1935 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); 1936 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); 1937 1938 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) 1939 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); 1940 } 1941 1942 kobject_put(intel_pstate_kobject); 1943 } 1944 1945 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) 1946 { 1947 int rc; 1948 1949 if (!hwp_active) 1950 return; 1951 1952 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1953 WARN_ON_ONCE(rc); 1954 } 1955 1956 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) 1957 { 1958 if (!hwp_active) 1959 return; 1960 1961 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1962 } 1963 1964 /************************** sysfs end ************************/ 1965 1966 static void intel_pstate_notify_work(struct work_struct *work) 1967 { 1968 struct cpudata *cpudata = 1969 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work); 1970 1971 if (intel_pstate_update_max_freq(cpudata)) { 1972 /* 1973 * The driver will not be unregistered while this function is 1974 * running, so update the capacity without acquiring the driver 1975 * lock. 1976 */ 1977 hybrid_update_capacity(cpudata); 1978 } 1979 1980 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1981 } 1982 1983 static DEFINE_RAW_SPINLOCK(hwp_notify_lock); 1984 static cpumask_t hwp_intr_enable_mask; 1985 1986 #define HWP_GUARANTEED_PERF_CHANGE_STATUS BIT(0) 1987 #define HWP_HIGHEST_PERF_CHANGE_STATUS BIT(3) 1988 1989 void notify_hwp_interrupt(void) 1990 { 1991 unsigned int this_cpu = smp_processor_id(); 1992 u64 value, status_mask; 1993 unsigned long flags; 1994 1995 if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY)) 1996 return; 1997 1998 status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS; 1999 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE)) 2000 status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS; 2001 2002 rdmsrq_safe(MSR_HWP_STATUS, &value); 2003 if (!(value & status_mask)) 2004 return; 2005 2006 raw_spin_lock_irqsave(&hwp_notify_lock, flags); 2007 2008 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask)) 2009 goto ack_intr; 2010 2011 schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work, 2012 msecs_to_jiffies(10)); 2013 2014 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags); 2015 2016 return; 2017 2018 ack_intr: 2019 wrmsrq_safe(MSR_HWP_STATUS, 0); 2020 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags); 2021 } 2022 2023 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata) 2024 { 2025 bool cancel_work; 2026 2027 if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY)) 2028 return; 2029 2030 /* wrmsrq_on_cpu has to be outside spinlock as this can result in IPC */ 2031 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 2032 2033 raw_spin_lock_irq(&hwp_notify_lock); 2034 cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask); 2035 raw_spin_unlock_irq(&hwp_notify_lock); 2036 2037 if (cancel_work) 2038 cancel_delayed_work_sync(&cpudata->hwp_notify_work); 2039 } 2040 2041 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0) 2042 #define HWP_HIGHEST_PERF_CHANGE_REQ BIT(2) 2043 2044 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata) 2045 { 2046 /* Enable HWP notification interrupt for performance change */ 2047 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) { 2048 u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ; 2049 2050 raw_spin_lock_irq(&hwp_notify_lock); 2051 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work); 2052 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask); 2053 raw_spin_unlock_irq(&hwp_notify_lock); 2054 2055 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE)) 2056 interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ; 2057 2058 /* wrmsrq_on_cpu has to be outside spinlock as this can result in IPC */ 2059 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask); 2060 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 2061 } 2062 } 2063 2064 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata) 2065 { 2066 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 2067 2068 /* 2069 * If the EPP is set by firmware, which means that firmware enabled HWP 2070 * - Is equal or less than 0x80 (default balance_perf EPP) 2071 * - But less performance oriented than performance EPP 2072 * then use this as new balance_perf EPP. 2073 */ 2074 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE && 2075 cpudata->epp_default > HWP_EPP_PERFORMANCE) { 2076 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default; 2077 return; 2078 } 2079 2080 /* 2081 * If this CPU gen doesn't call for change in balance_perf 2082 * EPP return. 2083 */ 2084 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) 2085 return; 2086 2087 /* 2088 * Use hard coded value per gen to update the balance_perf 2089 * and default EPP. 2090 */ 2091 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE]; 2092 intel_pstate_set_epp(cpudata, cpudata->epp_default); 2093 } 2094 2095 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 2096 { 2097 /* First disable HWP notification interrupt till we activate again */ 2098 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 2099 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 2100 2101 wrmsrq_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 2102 2103 intel_pstate_enable_hwp_interrupt(cpudata); 2104 2105 if (cpudata->epp_default >= 0) 2106 return; 2107 2108 intel_pstate_update_epp_defaults(cpudata); 2109 } 2110 2111 static int atom_get_min_pstate(int not_used) 2112 { 2113 u64 value; 2114 2115 rdmsrq(MSR_ATOM_CORE_RATIOS, value); 2116 return (value >> 8) & 0x7F; 2117 } 2118 2119 static int atom_get_max_pstate(int not_used) 2120 { 2121 u64 value; 2122 2123 rdmsrq(MSR_ATOM_CORE_RATIOS, value); 2124 return (value >> 16) & 0x7F; 2125 } 2126 2127 static int atom_get_turbo_pstate(int not_used) 2128 { 2129 u64 value; 2130 2131 rdmsrq(MSR_ATOM_CORE_TURBO_RATIOS, value); 2132 return value & 0x7F; 2133 } 2134 2135 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 2136 { 2137 u64 val; 2138 int32_t vid_fp; 2139 u32 vid; 2140 2141 val = (u64)pstate << 8; 2142 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled)) 2143 val |= (u64)1 << 32; 2144 2145 vid_fp = cpudata->vid.min + mul_fp( 2146 int_tofp(pstate - cpudata->pstate.min_pstate), 2147 cpudata->vid.ratio); 2148 2149 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 2150 vid = ceiling_fp(vid_fp); 2151 2152 if (pstate > cpudata->pstate.max_pstate) 2153 vid = cpudata->vid.turbo; 2154 2155 return val | vid; 2156 } 2157 2158 static int silvermont_get_scaling(void) 2159 { 2160 u64 value; 2161 int i; 2162 /* Defined in Table 35-6 from SDM (Sept 2015) */ 2163 static int silvermont_freq_table[] = { 2164 83300, 100000, 133300, 116700, 80000}; 2165 2166 rdmsrq(MSR_FSB_FREQ, value); 2167 i = value & 0x7; 2168 WARN_ON(i > 4); 2169 2170 return silvermont_freq_table[i]; 2171 } 2172 2173 static int airmont_get_scaling(void) 2174 { 2175 u64 value; 2176 int i; 2177 /* Defined in Table 35-10 from SDM (Sept 2015) */ 2178 static int airmont_freq_table[] = { 2179 83300, 100000, 133300, 116700, 80000, 2180 93300, 90000, 88900, 87500}; 2181 2182 rdmsrq(MSR_FSB_FREQ, value); 2183 i = value & 0xF; 2184 WARN_ON(i > 8); 2185 2186 return airmont_freq_table[i]; 2187 } 2188 2189 static void atom_get_vid(struct cpudata *cpudata) 2190 { 2191 u64 value; 2192 2193 rdmsrq(MSR_ATOM_CORE_VIDS, value); 2194 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 2195 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 2196 cpudata->vid.ratio = div_fp( 2197 cpudata->vid.max - cpudata->vid.min, 2198 int_tofp(cpudata->pstate.max_pstate - 2199 cpudata->pstate.min_pstate)); 2200 2201 rdmsrq(MSR_ATOM_CORE_TURBO_VIDS, value); 2202 cpudata->vid.turbo = value & 0x7f; 2203 } 2204 2205 static int core_get_min_pstate(int cpu) 2206 { 2207 u64 value; 2208 2209 rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 2210 return (value >> 40) & 0xFF; 2211 } 2212 2213 static int core_get_max_pstate_physical(int cpu) 2214 { 2215 u64 value; 2216 2217 rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 2218 return (value >> 8) & 0xFF; 2219 } 2220 2221 static int core_get_tdp_ratio(int cpu, u64 plat_info) 2222 { 2223 /* Check how many TDP levels present */ 2224 if (plat_info & 0x600000000) { 2225 u64 tdp_ctrl; 2226 u64 tdp_ratio; 2227 int tdp_msr; 2228 int err; 2229 2230 /* Get the TDP level (0, 1, 2) to get ratios */ 2231 err = rdmsrq_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 2232 if (err) 2233 return err; 2234 2235 /* TDP MSR are continuous starting at 0x648 */ 2236 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 2237 err = rdmsrq_safe_on_cpu(cpu, tdp_msr, &tdp_ratio); 2238 if (err) 2239 return err; 2240 2241 /* For level 1 and 2, bits[23:16] contain the ratio */ 2242 if (tdp_ctrl & 0x03) 2243 tdp_ratio >>= 16; 2244 2245 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 2246 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 2247 2248 return (int)tdp_ratio; 2249 } 2250 2251 return -ENXIO; 2252 } 2253 2254 static int core_get_max_pstate(int cpu) 2255 { 2256 u64 tar; 2257 u64 plat_info; 2258 int max_pstate; 2259 int tdp_ratio; 2260 int err; 2261 2262 rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info); 2263 max_pstate = (plat_info >> 8) & 0xFF; 2264 2265 tdp_ratio = core_get_tdp_ratio(cpu, plat_info); 2266 if (tdp_ratio <= 0) 2267 return max_pstate; 2268 2269 if (hwp_active) { 2270 /* Turbo activation ratio is not used on HWP platforms */ 2271 return tdp_ratio; 2272 } 2273 2274 err = rdmsrq_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar); 2275 if (!err) { 2276 int tar_levels; 2277 2278 /* Do some sanity checking for safety */ 2279 tar_levels = tar & 0xff; 2280 if (tdp_ratio - 1 == tar_levels) { 2281 max_pstate = tar_levels; 2282 pr_debug("max_pstate=TAC %x\n", max_pstate); 2283 } 2284 } 2285 2286 return max_pstate; 2287 } 2288 2289 static int core_get_turbo_pstate(int cpu) 2290 { 2291 u64 value; 2292 int nont, ret; 2293 2294 rdmsrq_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 2295 nont = core_get_max_pstate(cpu); 2296 ret = (value) & 255; 2297 if (ret <= nont) 2298 ret = nont; 2299 return ret; 2300 } 2301 2302 static u64 core_get_val(struct cpudata *cpudata, int pstate) 2303 { 2304 u64 val; 2305 2306 val = (u64)pstate << 8; 2307 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled)) 2308 val |= (u64)1 << 32; 2309 2310 return val; 2311 } 2312 2313 static int knl_get_aperf_mperf_shift(void) 2314 { 2315 return 10; 2316 } 2317 2318 static int knl_get_turbo_pstate(int cpu) 2319 { 2320 u64 value; 2321 int nont, ret; 2322 2323 rdmsrq_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 2324 nont = core_get_max_pstate(cpu); 2325 ret = (((value) >> 8) & 0xFF); 2326 if (ret <= nont) 2327 ret = nont; 2328 return ret; 2329 } 2330 2331 static int hwp_get_cpu_scaling(int cpu) 2332 { 2333 if (hybrid_scaling_factor) { 2334 struct cpuinfo_x86 *c = &cpu_data(cpu); 2335 u8 cpu_type = c->topo.intel_type; 2336 2337 /* 2338 * Return the hybrid scaling factor for P-cores and use the 2339 * default core scaling for E-cores. 2340 */ 2341 if (cpu_type == INTEL_CPU_TYPE_CORE) 2342 return hybrid_scaling_factor; 2343 2344 if (cpu_type == INTEL_CPU_TYPE_ATOM) 2345 return core_get_scaling(); 2346 } 2347 2348 /* Use core scaling on non-hybrid systems. */ 2349 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) 2350 return core_get_scaling(); 2351 2352 /* 2353 * The system is hybrid, but the hybrid scaling factor is not known or 2354 * the CPU type is not one of the above, so use CPPC to compute the 2355 * scaling factor for this CPU. 2356 */ 2357 return intel_pstate_cppc_get_scaling(cpu); 2358 } 2359 2360 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 2361 { 2362 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 2363 cpu->pstate.current_pstate = pstate; 2364 /* 2365 * Generally, there is no guarantee that this code will always run on 2366 * the CPU being updated, so force the register update to run on the 2367 * right CPU. 2368 */ 2369 wrmsrq_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2370 pstate_funcs.get_val(cpu, pstate)); 2371 } 2372 2373 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 2374 { 2375 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 2376 } 2377 2378 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 2379 { 2380 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu); 2381 int perf_ctl_scaling = pstate_funcs.get_scaling(); 2382 2383 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu); 2384 cpu->pstate.max_pstate_physical = perf_ctl_max_phys; 2385 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling; 2386 2387 if (hwp_active && !hwp_mode_bdw) { 2388 __intel_pstate_get_hwp_cap(cpu); 2389 2390 if (pstate_funcs.get_cpu_scaling) { 2391 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu); 2392 if (cpu->pstate.scaling != perf_ctl_scaling) { 2393 intel_pstate_hybrid_hwp_adjust(cpu); 2394 hwp_is_hybrid = true; 2395 } 2396 } else { 2397 cpu->pstate.scaling = perf_ctl_scaling; 2398 } 2399 /* 2400 * If the CPU is going online for the first time and it was 2401 * offline initially, asym capacity scaling needs to be updated. 2402 */ 2403 hybrid_update_capacity(cpu); 2404 } else { 2405 cpu->pstate.scaling = perf_ctl_scaling; 2406 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu); 2407 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu); 2408 } 2409 2410 if (cpu->pstate.scaling == perf_ctl_scaling) { 2411 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 2412 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling; 2413 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling; 2414 } 2415 2416 if (pstate_funcs.get_aperf_mperf_shift) 2417 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 2418 2419 if (pstate_funcs.get_vid) 2420 pstate_funcs.get_vid(cpu); 2421 2422 intel_pstate_set_min_pstate(cpu); 2423 } 2424 2425 /* 2426 * Long hold time will keep high perf limits for long time, 2427 * which negatively impacts perf/watt for some workloads, 2428 * like specpower. 3ms is based on experiements on some 2429 * workoads. 2430 */ 2431 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 2432 2433 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 2434 { 2435 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 2436 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2437 u32 max_limit = (hwp_req & 0xff00) >> 8; 2438 u32 min_limit = (hwp_req & 0xff); 2439 u32 boost_level1; 2440 2441 /* 2442 * Cases to consider (User changes via sysfs or boot time): 2443 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 2444 * No boost, return. 2445 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 2446 * Should result in one level boost only for P0. 2447 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 2448 * Should result in two level boost: 2449 * (min + p1)/2 and P1. 2450 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 2451 * Should result in three level boost: 2452 * (min + p1)/2, P1 and P0. 2453 */ 2454 2455 /* If max and min are equal or already at max, nothing to boost */ 2456 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 2457 return; 2458 2459 if (!cpu->hwp_boost_min) 2460 cpu->hwp_boost_min = min_limit; 2461 2462 /* level at half way mark between min and guranteed */ 2463 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; 2464 2465 if (cpu->hwp_boost_min < boost_level1) 2466 cpu->hwp_boost_min = boost_level1; 2467 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) 2468 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); 2469 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && 2470 max_limit != HWP_GUARANTEED_PERF(hwp_cap)) 2471 cpu->hwp_boost_min = max_limit; 2472 else 2473 return; 2474 2475 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 2476 wrmsrq(MSR_HWP_REQUEST, hwp_req); 2477 cpu->last_update = cpu->sample.time; 2478 } 2479 2480 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 2481 { 2482 if (cpu->hwp_boost_min) { 2483 bool expired; 2484 2485 /* Check if we are idle for hold time to boost down */ 2486 expired = time_after64(cpu->sample.time, cpu->last_update + 2487 hwp_boost_hold_time_ns); 2488 if (expired) { 2489 wrmsrq(MSR_HWP_REQUEST, cpu->hwp_req_cached); 2490 cpu->hwp_boost_min = 0; 2491 } 2492 } 2493 cpu->last_update = cpu->sample.time; 2494 } 2495 2496 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 2497 u64 time) 2498 { 2499 cpu->sample.time = time; 2500 2501 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 2502 bool do_io = false; 2503 2504 cpu->sched_flags = 0; 2505 /* 2506 * Set iowait_boost flag and update time. Since IO WAIT flag 2507 * is set all the time, we can't just conclude that there is 2508 * some IO bound activity is scheduled on this CPU with just 2509 * one occurrence. If we receive at least two in two 2510 * consecutive ticks, then we treat as boost candidate. 2511 */ 2512 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 2513 do_io = true; 2514 2515 cpu->last_io_update = time; 2516 2517 if (do_io) 2518 intel_pstate_hwp_boost_up(cpu); 2519 2520 } else { 2521 intel_pstate_hwp_boost_down(cpu); 2522 } 2523 } 2524 2525 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 2526 u64 time, unsigned int flags) 2527 { 2528 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2529 2530 cpu->sched_flags |= flags; 2531 2532 if (smp_processor_id() == cpu->cpu) 2533 intel_pstate_update_util_hwp_local(cpu, time); 2534 } 2535 2536 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 2537 { 2538 struct sample *sample = &cpu->sample; 2539 2540 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 2541 } 2542 2543 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 2544 { 2545 u64 aperf, mperf; 2546 unsigned long flags; 2547 u64 tsc; 2548 2549 local_irq_save(flags); 2550 rdmsrq(MSR_IA32_APERF, aperf); 2551 rdmsrq(MSR_IA32_MPERF, mperf); 2552 tsc = rdtsc(); 2553 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 2554 local_irq_restore(flags); 2555 return false; 2556 } 2557 local_irq_restore(flags); 2558 2559 cpu->last_sample_time = cpu->sample.time; 2560 cpu->sample.time = time; 2561 cpu->sample.aperf = aperf; 2562 cpu->sample.mperf = mperf; 2563 cpu->sample.tsc = tsc; 2564 cpu->sample.aperf -= cpu->prev_aperf; 2565 cpu->sample.mperf -= cpu->prev_mperf; 2566 cpu->sample.tsc -= cpu->prev_tsc; 2567 2568 cpu->prev_aperf = aperf; 2569 cpu->prev_mperf = mperf; 2570 cpu->prev_tsc = tsc; 2571 /* 2572 * First time this function is invoked in a given cycle, all of the 2573 * previous sample data fields are equal to zero or stale and they must 2574 * be populated with meaningful numbers for things to work, so assume 2575 * that sample.time will always be reset before setting the utilization 2576 * update hook and make the caller skip the sample then. 2577 */ 2578 if (cpu->last_sample_time) { 2579 intel_pstate_calc_avg_perf(cpu); 2580 return true; 2581 } 2582 return false; 2583 } 2584 2585 static inline int32_t get_avg_frequency(struct cpudata *cpu) 2586 { 2587 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 2588 } 2589 2590 static inline int32_t get_avg_pstate(struct cpudata *cpu) 2591 { 2592 return mul_ext_fp(cpu->pstate.max_pstate_physical, 2593 cpu->sample.core_avg_perf); 2594 } 2595 2596 static inline int32_t get_target_pstate(struct cpudata *cpu) 2597 { 2598 struct sample *sample = &cpu->sample; 2599 int32_t busy_frac; 2600 int target, avg_pstate; 2601 2602 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 2603 sample->tsc); 2604 2605 if (busy_frac < cpu->iowait_boost) 2606 busy_frac = cpu->iowait_boost; 2607 2608 sample->busy_scaled = busy_frac * 100; 2609 2610 target = READ_ONCE(global.no_turbo) ? 2611 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2612 target += target >> 2; 2613 target = mul_fp(target, busy_frac); 2614 if (target < cpu->pstate.min_pstate) 2615 target = cpu->pstate.min_pstate; 2616 2617 /* 2618 * If the average P-state during the previous cycle was higher than the 2619 * current target, add 50% of the difference to the target to reduce 2620 * possible performance oscillations and offset possible performance 2621 * loss related to moving the workload from one CPU to another within 2622 * a package/module. 2623 */ 2624 avg_pstate = get_avg_pstate(cpu); 2625 if (avg_pstate > target) 2626 target += (avg_pstate - target) >> 1; 2627 2628 return target; 2629 } 2630 2631 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 2632 { 2633 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 2634 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 2635 2636 return clamp_t(int, pstate, min_pstate, max_pstate); 2637 } 2638 2639 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 2640 { 2641 if (pstate == cpu->pstate.current_pstate) 2642 return; 2643 2644 cpu->pstate.current_pstate = pstate; 2645 wrmsrq(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 2646 } 2647 2648 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 2649 { 2650 int from = cpu->pstate.current_pstate; 2651 struct sample *sample; 2652 int target_pstate; 2653 2654 target_pstate = get_target_pstate(cpu); 2655 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2656 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 2657 intel_pstate_update_pstate(cpu, target_pstate); 2658 2659 sample = &cpu->sample; 2660 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 2661 fp_toint(sample->busy_scaled), 2662 from, 2663 cpu->pstate.current_pstate, 2664 sample->mperf, 2665 sample->aperf, 2666 sample->tsc, 2667 get_avg_frequency(cpu), 2668 fp_toint(cpu->iowait_boost * 100)); 2669 } 2670 2671 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 2672 unsigned int flags) 2673 { 2674 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2675 u64 delta_ns; 2676 2677 /* Don't allow remote callbacks */ 2678 if (smp_processor_id() != cpu->cpu) 2679 return; 2680 2681 delta_ns = time - cpu->last_update; 2682 if (flags & SCHED_CPUFREQ_IOWAIT) { 2683 /* Start over if the CPU may have been idle. */ 2684 if (delta_ns > TICK_NSEC) { 2685 cpu->iowait_boost = ONE_EIGHTH_FP; 2686 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 2687 cpu->iowait_boost <<= 1; 2688 if (cpu->iowait_boost > int_tofp(1)) 2689 cpu->iowait_boost = int_tofp(1); 2690 } else { 2691 cpu->iowait_boost = ONE_EIGHTH_FP; 2692 } 2693 } else if (cpu->iowait_boost) { 2694 /* Clear iowait_boost if the CPU may have been idle. */ 2695 if (delta_ns > TICK_NSEC) 2696 cpu->iowait_boost = 0; 2697 else 2698 cpu->iowait_boost >>= 1; 2699 } 2700 cpu->last_update = time; 2701 delta_ns = time - cpu->sample.time; 2702 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 2703 return; 2704 2705 if (intel_pstate_sample(cpu, time)) 2706 intel_pstate_adjust_pstate(cpu); 2707 } 2708 2709 static struct pstate_funcs core_funcs = { 2710 .get_max = core_get_max_pstate, 2711 .get_max_physical = core_get_max_pstate_physical, 2712 .get_min = core_get_min_pstate, 2713 .get_turbo = core_get_turbo_pstate, 2714 .get_scaling = core_get_scaling, 2715 .get_val = core_get_val, 2716 }; 2717 2718 static const struct pstate_funcs silvermont_funcs = { 2719 .get_max = atom_get_max_pstate, 2720 .get_max_physical = atom_get_max_pstate, 2721 .get_min = atom_get_min_pstate, 2722 .get_turbo = atom_get_turbo_pstate, 2723 .get_val = atom_get_val, 2724 .get_scaling = silvermont_get_scaling, 2725 .get_vid = atom_get_vid, 2726 }; 2727 2728 static const struct pstate_funcs airmont_funcs = { 2729 .get_max = atom_get_max_pstate, 2730 .get_max_physical = atom_get_max_pstate, 2731 .get_min = atom_get_min_pstate, 2732 .get_turbo = atom_get_turbo_pstate, 2733 .get_val = atom_get_val, 2734 .get_scaling = airmont_get_scaling, 2735 .get_vid = atom_get_vid, 2736 }; 2737 2738 static const struct pstate_funcs knl_funcs = { 2739 .get_max = core_get_max_pstate, 2740 .get_max_physical = core_get_max_pstate_physical, 2741 .get_min = core_get_min_pstate, 2742 .get_turbo = knl_get_turbo_pstate, 2743 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 2744 .get_scaling = core_get_scaling, 2745 .get_val = core_get_val, 2746 }; 2747 2748 #define X86_MATCH(vfm, policy) \ 2749 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy) 2750 2751 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 2752 X86_MATCH(INTEL_SANDYBRIDGE, core_funcs), 2753 X86_MATCH(INTEL_SANDYBRIDGE_X, core_funcs), 2754 X86_MATCH(INTEL_ATOM_SILVERMONT, silvermont_funcs), 2755 X86_MATCH(INTEL_IVYBRIDGE, core_funcs), 2756 X86_MATCH(INTEL_HASWELL, core_funcs), 2757 X86_MATCH(INTEL_BROADWELL, core_funcs), 2758 X86_MATCH(INTEL_IVYBRIDGE_X, core_funcs), 2759 X86_MATCH(INTEL_HASWELL_X, core_funcs), 2760 X86_MATCH(INTEL_HASWELL_L, core_funcs), 2761 X86_MATCH(INTEL_HASWELL_G, core_funcs), 2762 X86_MATCH(INTEL_BROADWELL_G, core_funcs), 2763 X86_MATCH(INTEL_ATOM_AIRMONT, airmont_funcs), 2764 X86_MATCH(INTEL_SKYLAKE_L, core_funcs), 2765 X86_MATCH(INTEL_BROADWELL_X, core_funcs), 2766 X86_MATCH(INTEL_SKYLAKE, core_funcs), 2767 X86_MATCH(INTEL_BROADWELL_D, core_funcs), 2768 X86_MATCH(INTEL_XEON_PHI_KNL, knl_funcs), 2769 X86_MATCH(INTEL_XEON_PHI_KNM, knl_funcs), 2770 X86_MATCH(INTEL_ATOM_GOLDMONT, core_funcs), 2771 X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS, core_funcs), 2772 X86_MATCH(INTEL_SKYLAKE_X, core_funcs), 2773 X86_MATCH(INTEL_COMETLAKE, core_funcs), 2774 X86_MATCH(INTEL_ICELAKE_X, core_funcs), 2775 X86_MATCH(INTEL_TIGERLAKE, core_funcs), 2776 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs), 2777 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs), 2778 {} 2779 }; 2780 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2781 2782 #ifdef CONFIG_ACPI 2783 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2784 X86_MATCH(INTEL_BROADWELL_D, core_funcs), 2785 X86_MATCH(INTEL_BROADWELL_X, core_funcs), 2786 X86_MATCH(INTEL_SKYLAKE_X, core_funcs), 2787 X86_MATCH(INTEL_ICELAKE_X, core_funcs), 2788 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs), 2789 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs), 2790 X86_MATCH(INTEL_GRANITERAPIDS_D, core_funcs), 2791 X86_MATCH(INTEL_GRANITERAPIDS_X, core_funcs), 2792 X86_MATCH(INTEL_ATOM_CRESTMONT, core_funcs), 2793 X86_MATCH(INTEL_ATOM_CRESTMONT_X, core_funcs), 2794 {} 2795 }; 2796 #endif 2797 2798 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2799 X86_MATCH(INTEL_KABYLAKE, core_funcs), 2800 {} 2801 }; 2802 2803 static int intel_pstate_init_cpu(unsigned int cpunum) 2804 { 2805 struct cpudata *cpu; 2806 2807 cpu = all_cpu_data[cpunum]; 2808 2809 if (!cpu) { 2810 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2811 if (!cpu) 2812 return -ENOMEM; 2813 2814 WRITE_ONCE(all_cpu_data[cpunum], cpu); 2815 2816 cpu->cpu = cpunum; 2817 2818 cpu->epp_default = -EINVAL; 2819 2820 if (hwp_active) { 2821 intel_pstate_hwp_enable(cpu); 2822 2823 if (intel_pstate_acpi_pm_profile_server()) 2824 hwp_boost = true; 2825 } 2826 } else if (hwp_active) { 2827 /* 2828 * Re-enable HWP in case this happens after a resume from ACPI 2829 * S3 if the CPU was offline during the whole system/resume 2830 * cycle. 2831 */ 2832 intel_pstate_hwp_reenable(cpu); 2833 } 2834 2835 cpu->epp_powersave = -EINVAL; 2836 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; 2837 2838 intel_pstate_get_cpu_pstates(cpu); 2839 2840 pr_debug("controlling: cpu %d\n", cpunum); 2841 2842 return 0; 2843 } 2844 2845 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2846 { 2847 struct cpudata *cpu = all_cpu_data[cpu_num]; 2848 2849 if (hwp_active && !hwp_boost) 2850 return; 2851 2852 if (cpu->update_util_set) 2853 return; 2854 2855 /* Prevent intel_pstate_update_util() from using stale data. */ 2856 cpu->sample.time = 0; 2857 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2858 (hwp_active ? 2859 intel_pstate_update_util_hwp : 2860 intel_pstate_update_util)); 2861 cpu->update_util_set = true; 2862 } 2863 2864 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2865 { 2866 struct cpudata *cpu_data = all_cpu_data[cpu]; 2867 2868 if (!cpu_data->update_util_set) 2869 return; 2870 2871 cpufreq_remove_update_util_hook(cpu); 2872 cpu_data->update_util_set = false; 2873 synchronize_rcu(); 2874 } 2875 2876 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2877 { 2878 return READ_ONCE(global.no_turbo) ? 2879 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2880 } 2881 2882 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2883 unsigned int policy_min, 2884 unsigned int policy_max) 2885 { 2886 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 2887 int32_t max_policy_perf, min_policy_perf; 2888 2889 max_policy_perf = policy_max / perf_ctl_scaling; 2890 if (policy_max == policy_min) { 2891 min_policy_perf = max_policy_perf; 2892 } else { 2893 min_policy_perf = policy_min / perf_ctl_scaling; 2894 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2895 0, max_policy_perf); 2896 } 2897 2898 /* 2899 * HWP needs some special consideration, because HWP_REQUEST uses 2900 * abstract values to represent performance rather than pure ratios. 2901 */ 2902 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) { 2903 int freq; 2904 2905 freq = max_policy_perf * perf_ctl_scaling; 2906 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); 2907 freq = min_policy_perf * perf_ctl_scaling; 2908 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); 2909 } 2910 2911 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", 2912 cpu->cpu, min_policy_perf, max_policy_perf); 2913 2914 /* Normalize user input to [min_perf, max_perf] */ 2915 if (per_cpu_limits) { 2916 cpu->min_perf_ratio = min_policy_perf; 2917 cpu->max_perf_ratio = max_policy_perf; 2918 } else { 2919 int turbo_max = cpu->pstate.turbo_pstate; 2920 int32_t global_min, global_max; 2921 2922 /* Global limits are in percent of the maximum turbo P-state. */ 2923 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2924 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2925 global_min = clamp_t(int32_t, global_min, 0, global_max); 2926 2927 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2928 global_min, global_max); 2929 2930 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2931 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2932 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2933 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2934 2935 /* Make sure min_perf <= max_perf */ 2936 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2937 cpu->max_perf_ratio); 2938 2939 } 2940 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2941 cpu->max_perf_ratio, 2942 cpu->min_perf_ratio); 2943 } 2944 2945 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2946 { 2947 struct cpudata *cpu; 2948 2949 if (!policy->cpuinfo.max_freq) 2950 return -ENODEV; 2951 2952 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2953 policy->cpuinfo.max_freq, policy->max); 2954 2955 cpu = all_cpu_data[policy->cpu]; 2956 cpu->policy = policy->policy; 2957 2958 mutex_lock(&intel_pstate_limits_lock); 2959 2960 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2961 2962 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2963 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 2964 2965 /* 2966 * NOHZ_FULL CPUs need this as the governor callback may not 2967 * be invoked on them. 2968 */ 2969 intel_pstate_clear_update_util_hook(policy->cpu); 2970 intel_pstate_set_pstate(cpu, pstate); 2971 } else { 2972 intel_pstate_set_update_util_hook(policy->cpu); 2973 } 2974 2975 if (hwp_active) { 2976 /* 2977 * When hwp_boost was active before and dynamically it 2978 * was turned off, in that case we need to clear the 2979 * update util hook. 2980 */ 2981 if (!hwp_boost) 2982 intel_pstate_clear_update_util_hook(policy->cpu); 2983 intel_pstate_hwp_set(policy->cpu); 2984 } 2985 /* 2986 * policy->cur is never updated with the intel_pstate driver, but it 2987 * is used as a stale frequency value. So, keep it within limits. 2988 */ 2989 policy->cur = policy->min; 2990 2991 mutex_unlock(&intel_pstate_limits_lock); 2992 2993 return 0; 2994 } 2995 2996 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2997 struct cpufreq_policy_data *policy) 2998 { 2999 if (!hwp_active && 3000 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 3001 policy->max < policy->cpuinfo.max_freq && 3002 policy->max > cpu->pstate.max_freq) { 3003 pr_debug("policy->max > max non turbo frequency\n"); 3004 policy->max = policy->cpuinfo.max_freq; 3005 } 3006 } 3007 3008 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 3009 struct cpufreq_policy_data *policy) 3010 { 3011 int max_freq; 3012 3013 if (hwp_active) { 3014 intel_pstate_get_hwp_cap(cpu); 3015 max_freq = READ_ONCE(global.no_turbo) ? 3016 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 3017 } else { 3018 max_freq = intel_pstate_get_max_freq(cpu); 3019 } 3020 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); 3021 3022 intel_pstate_adjust_policy_max(cpu, policy); 3023 } 3024 3025 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 3026 { 3027 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 3028 3029 return 0; 3030 } 3031 3032 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy) 3033 { 3034 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3035 3036 pr_debug("CPU %d going offline\n", cpu->cpu); 3037 3038 if (cpu->suspended) 3039 return 0; 3040 3041 /* 3042 * If the CPU is an SMT thread and it goes offline with the performance 3043 * settings different from the minimum, it will prevent its sibling 3044 * from getting to lower performance levels, so force the minimum 3045 * performance on CPU offline to prevent that from happening. 3046 */ 3047 if (hwp_active) 3048 intel_pstate_hwp_offline(cpu); 3049 else 3050 intel_pstate_set_min_pstate(cpu); 3051 3052 intel_pstate_exit_perf_limits(policy); 3053 3054 return 0; 3055 } 3056 3057 static int intel_pstate_cpu_online(struct cpufreq_policy *policy) 3058 { 3059 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3060 3061 pr_debug("CPU %d going online\n", cpu->cpu); 3062 3063 intel_pstate_init_acpi_perf_limits(policy); 3064 3065 if (hwp_active) { 3066 /* 3067 * Re-enable HWP and clear the "suspended" flag to let "resume" 3068 * know that it need not do that. 3069 */ 3070 intel_pstate_hwp_reenable(cpu); 3071 cpu->suspended = false; 3072 3073 hybrid_update_capacity(cpu); 3074 } 3075 3076 return 0; 3077 } 3078 3079 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) 3080 { 3081 intel_pstate_clear_update_util_hook(policy->cpu); 3082 3083 return intel_cpufreq_cpu_offline(policy); 3084 } 3085 3086 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy) 3087 { 3088 pr_debug("CPU %d exiting\n", policy->cpu); 3089 3090 policy->fast_switch_possible = false; 3091 } 3092 3093 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 3094 { 3095 struct cpudata *cpu; 3096 int rc; 3097 3098 rc = intel_pstate_init_cpu(policy->cpu); 3099 if (rc) 3100 return rc; 3101 3102 cpu = all_cpu_data[policy->cpu]; 3103 3104 cpu->max_perf_ratio = 0xFF; 3105 cpu->min_perf_ratio = 0; 3106 3107 /* cpuinfo and default policy values */ 3108 policy->cpuinfo.min_freq = cpu->pstate.min_freq; 3109 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ? 3110 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 3111 3112 policy->min = policy->cpuinfo.min_freq; 3113 policy->max = policy->cpuinfo.max_freq; 3114 3115 intel_pstate_init_acpi_perf_limits(policy); 3116 3117 policy->fast_switch_possible = true; 3118 3119 return 0; 3120 } 3121 3122 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 3123 { 3124 int ret = __intel_pstate_cpu_init(policy); 3125 3126 if (ret) 3127 return ret; 3128 3129 /* 3130 * Set the policy to powersave to provide a valid fallback value in case 3131 * the default cpufreq governor is neither powersave nor performance. 3132 */ 3133 policy->policy = CPUFREQ_POLICY_POWERSAVE; 3134 3135 if (hwp_active) { 3136 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3137 3138 cpu->epp_cached = intel_pstate_get_epp(cpu, 0); 3139 } 3140 3141 return 0; 3142 } 3143 3144 static struct cpufreq_driver intel_pstate = { 3145 .flags = CPUFREQ_CONST_LOOPS, 3146 .verify = intel_pstate_verify_policy, 3147 .setpolicy = intel_pstate_set_policy, 3148 .suspend = intel_pstate_suspend, 3149 .resume = intel_pstate_resume, 3150 .init = intel_pstate_cpu_init, 3151 .exit = intel_pstate_cpu_exit, 3152 .offline = intel_pstate_cpu_offline, 3153 .online = intel_pstate_cpu_online, 3154 .update_limits = intel_pstate_update_limits, 3155 .name = "intel_pstate", 3156 }; 3157 3158 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 3159 { 3160 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3161 3162 intel_pstate_verify_cpu_policy(cpu, policy); 3163 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 3164 3165 return 0; 3166 } 3167 3168 /* Use of trace in passive mode: 3169 * 3170 * In passive mode the trace core_busy field (also known as the 3171 * performance field, and lablelled as such on the graphs; also known as 3172 * core_avg_perf) is not needed and so is re-assigned to indicate if the 3173 * driver call was via the normal or fast switch path. Various graphs 3174 * output from the intel_pstate_tracer.py utility that include core_busy 3175 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 3176 * so we use 10 to indicate the normal path through the driver, and 3177 * 90 to indicate the fast switch path through the driver. 3178 * The scaled_busy field is not used, and is set to 0. 3179 */ 3180 3181 #define INTEL_PSTATE_TRACE_TARGET 10 3182 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 3183 3184 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 3185 { 3186 struct sample *sample; 3187 3188 if (!trace_pstate_sample_enabled()) 3189 return; 3190 3191 if (!intel_pstate_sample(cpu, ktime_get())) 3192 return; 3193 3194 sample = &cpu->sample; 3195 trace_pstate_sample(trace_type, 3196 0, 3197 old_pstate, 3198 cpu->pstate.current_pstate, 3199 sample->mperf, 3200 sample->aperf, 3201 sample->tsc, 3202 get_avg_frequency(cpu), 3203 fp_toint(cpu->iowait_boost * 100)); 3204 } 3205 3206 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, 3207 u32 desired, bool fast_switch) 3208 { 3209 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; 3210 3211 value &= ~HWP_MIN_PERF(~0L); 3212 value |= HWP_MIN_PERF(min); 3213 3214 value &= ~HWP_MAX_PERF(~0L); 3215 value |= HWP_MAX_PERF(max); 3216 3217 value &= ~HWP_DESIRED_PERF(~0L); 3218 value |= HWP_DESIRED_PERF(desired); 3219 3220 if (value == prev) 3221 return; 3222 3223 WRITE_ONCE(cpu->hwp_req_cached, value); 3224 if (fast_switch) 3225 wrmsrq(MSR_HWP_REQUEST, value); 3226 else 3227 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 3228 } 3229 3230 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, 3231 u32 target_pstate, bool fast_switch) 3232 { 3233 if (fast_switch) 3234 wrmsrq(MSR_IA32_PERF_CTL, 3235 pstate_funcs.get_val(cpu, target_pstate)); 3236 else 3237 wrmsrq_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 3238 pstate_funcs.get_val(cpu, target_pstate)); 3239 } 3240 3241 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, 3242 int target_pstate, bool fast_switch) 3243 { 3244 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3245 int old_pstate = cpu->pstate.current_pstate; 3246 3247 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 3248 if (hwp_active) { 3249 int max_pstate = policy->strict_target ? 3250 target_pstate : cpu->max_perf_ratio; 3251 3252 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, 3253 fast_switch); 3254 } else if (target_pstate != old_pstate) { 3255 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); 3256 } 3257 3258 cpu->pstate.current_pstate = target_pstate; 3259 3260 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : 3261 INTEL_PSTATE_TRACE_TARGET, old_pstate); 3262 3263 return target_pstate; 3264 } 3265 3266 static int intel_cpufreq_target(struct cpufreq_policy *policy, 3267 unsigned int target_freq, 3268 unsigned int relation) 3269 { 3270 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3271 struct cpufreq_freqs freqs; 3272 int target_pstate; 3273 3274 freqs.old = policy->cur; 3275 freqs.new = target_freq; 3276 3277 cpufreq_freq_transition_begin(policy, &freqs); 3278 3279 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation); 3280 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); 3281 3282 freqs.new = target_pstate * cpu->pstate.scaling; 3283 3284 cpufreq_freq_transition_end(policy, &freqs, false); 3285 3286 return 0; 3287 } 3288 3289 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 3290 unsigned int target_freq) 3291 { 3292 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3293 int target_pstate; 3294 3295 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq); 3296 3297 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); 3298 3299 return target_pstate * cpu->pstate.scaling; 3300 } 3301 3302 static void intel_cpufreq_adjust_perf(unsigned int cpunum, 3303 unsigned long min_perf, 3304 unsigned long target_perf, 3305 unsigned long capacity) 3306 { 3307 struct cpudata *cpu = all_cpu_data[cpunum]; 3308 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 3309 int old_pstate = cpu->pstate.current_pstate; 3310 int cap_pstate, min_pstate, max_pstate, target_pstate; 3311 3312 cap_pstate = READ_ONCE(global.no_turbo) ? 3313 HWP_GUARANTEED_PERF(hwp_cap) : 3314 HWP_HIGHEST_PERF(hwp_cap); 3315 3316 /* Optimization: Avoid unnecessary divisions. */ 3317 3318 target_pstate = cap_pstate; 3319 if (target_perf < capacity) 3320 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); 3321 3322 min_pstate = cap_pstate; 3323 if (min_perf < capacity) 3324 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); 3325 3326 if (min_pstate < cpu->pstate.min_pstate) 3327 min_pstate = cpu->pstate.min_pstate; 3328 3329 if (min_pstate < cpu->min_perf_ratio) 3330 min_pstate = cpu->min_perf_ratio; 3331 3332 if (min_pstate > cpu->max_perf_ratio) 3333 min_pstate = cpu->max_perf_ratio; 3334 3335 max_pstate = min(cap_pstate, cpu->max_perf_ratio); 3336 if (max_pstate < min_pstate) 3337 max_pstate = min_pstate; 3338 3339 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); 3340 3341 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); 3342 3343 cpu->pstate.current_pstate = target_pstate; 3344 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 3345 } 3346 3347 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 3348 { 3349 struct freq_qos_request *req; 3350 struct cpudata *cpu; 3351 struct device *dev; 3352 int ret, freq; 3353 3354 dev = get_cpu_device(policy->cpu); 3355 if (!dev) 3356 return -ENODEV; 3357 3358 ret = __intel_pstate_cpu_init(policy); 3359 if (ret) 3360 return ret; 3361 3362 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 3363 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 3364 policy->cur = policy->cpuinfo.min_freq; 3365 3366 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 3367 if (!req) { 3368 ret = -ENOMEM; 3369 goto pstate_exit; 3370 } 3371 3372 cpu = all_cpu_data[policy->cpu]; 3373 3374 if (hwp_active) { 3375 u64 value; 3376 3377 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; 3378 3379 intel_pstate_get_hwp_cap(cpu); 3380 3381 rdmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); 3382 WRITE_ONCE(cpu->hwp_req_cached, value); 3383 3384 cpu->epp_cached = intel_pstate_get_epp(cpu, value); 3385 } else { 3386 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 3387 } 3388 3389 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); 3390 3391 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 3392 freq); 3393 if (ret < 0) { 3394 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 3395 goto free_req; 3396 } 3397 3398 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); 3399 3400 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 3401 freq); 3402 if (ret < 0) { 3403 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 3404 goto remove_min_req; 3405 } 3406 3407 policy->driver_data = req; 3408 3409 return 0; 3410 3411 remove_min_req: 3412 freq_qos_remove_request(req); 3413 free_req: 3414 kfree(req); 3415 pstate_exit: 3416 intel_pstate_exit_perf_limits(policy); 3417 3418 return ret; 3419 } 3420 3421 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 3422 { 3423 struct freq_qos_request *req; 3424 3425 req = policy->driver_data; 3426 3427 freq_qos_remove_request(req + 1); 3428 freq_qos_remove_request(req); 3429 kfree(req); 3430 3431 intel_pstate_cpu_exit(policy); 3432 } 3433 3434 static int intel_cpufreq_suspend(struct cpufreq_policy *policy) 3435 { 3436 intel_pstate_suspend(policy); 3437 3438 if (hwp_active) { 3439 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3440 u64 value = READ_ONCE(cpu->hwp_req_cached); 3441 3442 /* 3443 * Clear the desired perf field in MSR_HWP_REQUEST in case 3444 * intel_cpufreq_adjust_perf() is in use and the last value 3445 * written by it may not be suitable. 3446 */ 3447 value &= ~HWP_DESIRED_PERF(~0L); 3448 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 3449 WRITE_ONCE(cpu->hwp_req_cached, value); 3450 } 3451 3452 return 0; 3453 } 3454 3455 static struct cpufreq_driver intel_cpufreq = { 3456 .flags = CPUFREQ_CONST_LOOPS, 3457 .verify = intel_cpufreq_verify_policy, 3458 .target = intel_cpufreq_target, 3459 .fast_switch = intel_cpufreq_fast_switch, 3460 .init = intel_cpufreq_cpu_init, 3461 .exit = intel_cpufreq_cpu_exit, 3462 .offline = intel_cpufreq_cpu_offline, 3463 .online = intel_pstate_cpu_online, 3464 .suspend = intel_cpufreq_suspend, 3465 .resume = intel_pstate_resume, 3466 .update_limits = intel_pstate_update_limits, 3467 .name = "intel_cpufreq", 3468 }; 3469 3470 static struct cpufreq_driver *default_driver; 3471 3472 static void intel_pstate_driver_cleanup(void) 3473 { 3474 unsigned int cpu; 3475 3476 cpus_read_lock(); 3477 for_each_online_cpu(cpu) { 3478 if (all_cpu_data[cpu]) { 3479 if (intel_pstate_driver == &intel_pstate) 3480 intel_pstate_clear_update_util_hook(cpu); 3481 3482 kfree(all_cpu_data[cpu]); 3483 WRITE_ONCE(all_cpu_data[cpu], NULL); 3484 } 3485 } 3486 cpus_read_unlock(); 3487 3488 intel_pstate_driver = NULL; 3489 } 3490 3491 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 3492 { 3493 bool refresh_cpu_cap_scaling; 3494 int ret; 3495 3496 if (driver == &intel_pstate) 3497 intel_pstate_sysfs_expose_hwp_dynamic_boost(); 3498 3499 memset(&global, 0, sizeof(global)); 3500 global.max_perf_pct = 100; 3501 global.turbo_disabled = turbo_is_disabled(); 3502 global.no_turbo = global.turbo_disabled; 3503 3504 arch_set_max_freq_ratio(global.turbo_disabled); 3505 3506 refresh_cpu_cap_scaling = hybrid_clear_max_perf_cpu(); 3507 3508 intel_pstate_driver = driver; 3509 ret = cpufreq_register_driver(intel_pstate_driver); 3510 if (ret) { 3511 intel_pstate_driver_cleanup(); 3512 return ret; 3513 } 3514 3515 global.min_perf_pct = min_perf_pct_min(); 3516 3517 hybrid_init_cpu_capacity_scaling(refresh_cpu_cap_scaling); 3518 3519 return 0; 3520 } 3521 3522 static ssize_t intel_pstate_show_status(char *buf) 3523 { 3524 if (!intel_pstate_driver) 3525 return sprintf(buf, "off\n"); 3526 3527 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 3528 "active" : "passive"); 3529 } 3530 3531 static int intel_pstate_update_status(const char *buf, size_t size) 3532 { 3533 if (size == 3 && !strncmp(buf, "off", size)) { 3534 if (!intel_pstate_driver) 3535 return -EINVAL; 3536 3537 if (hwp_active) 3538 return -EBUSY; 3539 3540 cpufreq_unregister_driver(intel_pstate_driver); 3541 intel_pstate_driver_cleanup(); 3542 return 0; 3543 } 3544 3545 if (size == 6 && !strncmp(buf, "active", size)) { 3546 if (intel_pstate_driver) { 3547 if (intel_pstate_driver == &intel_pstate) 3548 return 0; 3549 3550 cpufreq_unregister_driver(intel_pstate_driver); 3551 } 3552 3553 return intel_pstate_register_driver(&intel_pstate); 3554 } 3555 3556 if (size == 7 && !strncmp(buf, "passive", size)) { 3557 if (intel_pstate_driver) { 3558 if (intel_pstate_driver == &intel_cpufreq) 3559 return 0; 3560 3561 cpufreq_unregister_driver(intel_pstate_driver); 3562 intel_pstate_sysfs_hide_hwp_dynamic_boost(); 3563 } 3564 3565 return intel_pstate_register_driver(&intel_cpufreq); 3566 } 3567 3568 return -EINVAL; 3569 } 3570 3571 static int no_load __initdata; 3572 static int no_hwp __initdata; 3573 static int hwp_only __initdata; 3574 static unsigned int force_load __initdata; 3575 3576 static int __init intel_pstate_msrs_not_valid(void) 3577 { 3578 if (!pstate_funcs.get_max(0) || 3579 !pstate_funcs.get_min(0) || 3580 !pstate_funcs.get_turbo(0)) 3581 return -ENODEV; 3582 3583 return 0; 3584 } 3585 3586 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 3587 { 3588 pstate_funcs.get_max = funcs->get_max; 3589 pstate_funcs.get_max_physical = funcs->get_max_physical; 3590 pstate_funcs.get_min = funcs->get_min; 3591 pstate_funcs.get_turbo = funcs->get_turbo; 3592 pstate_funcs.get_scaling = funcs->get_scaling; 3593 pstate_funcs.get_val = funcs->get_val; 3594 pstate_funcs.get_vid = funcs->get_vid; 3595 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 3596 } 3597 3598 #ifdef CONFIG_ACPI 3599 3600 static bool __init intel_pstate_no_acpi_pss(void) 3601 { 3602 int i; 3603 3604 for_each_possible_cpu(i) { 3605 acpi_status status; 3606 union acpi_object *pss; 3607 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 3608 struct acpi_processor *pr = per_cpu(processors, i); 3609 3610 if (!pr) 3611 continue; 3612 3613 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 3614 if (ACPI_FAILURE(status)) 3615 continue; 3616 3617 pss = buffer.pointer; 3618 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 3619 kfree(pss); 3620 return false; 3621 } 3622 3623 kfree(pss); 3624 } 3625 3626 pr_debug("ACPI _PSS not found\n"); 3627 return true; 3628 } 3629 3630 static bool __init intel_pstate_no_acpi_pcch(void) 3631 { 3632 acpi_status status; 3633 acpi_handle handle; 3634 3635 status = acpi_get_handle(NULL, "\\_SB", &handle); 3636 if (ACPI_FAILURE(status)) 3637 goto not_found; 3638 3639 if (acpi_has_method(handle, "PCCH")) 3640 return false; 3641 3642 not_found: 3643 pr_debug("ACPI PCCH not found\n"); 3644 return true; 3645 } 3646 3647 static bool __init intel_pstate_has_acpi_ppc(void) 3648 { 3649 int i; 3650 3651 for_each_possible_cpu(i) { 3652 struct acpi_processor *pr = per_cpu(processors, i); 3653 3654 if (!pr) 3655 continue; 3656 if (acpi_has_method(pr->handle, "_PPC")) 3657 return true; 3658 } 3659 pr_debug("ACPI _PPC not found\n"); 3660 return false; 3661 } 3662 3663 enum { 3664 PSS, 3665 PPC, 3666 }; 3667 3668 /* Hardware vendor-specific info that has its own power management modes */ 3669 static struct acpi_platform_list plat_info[] __initdata = { 3670 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 3671 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3672 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3673 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3674 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3675 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3676 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3677 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3678 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3679 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3680 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3681 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3682 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3683 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3684 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3685 { } /* End */ 3686 }; 3687 3688 #define BITMASK_OOB (BIT(8) | BIT(18)) 3689 3690 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 3691 { 3692 const struct x86_cpu_id *id; 3693 u64 misc_pwr; 3694 int idx; 3695 3696 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 3697 if (id) { 3698 rdmsrq(MSR_MISC_PWR_MGMT, misc_pwr); 3699 if (misc_pwr & BITMASK_OOB) { 3700 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 3701 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 3702 return true; 3703 } 3704 } 3705 3706 idx = acpi_match_platform_list(plat_info); 3707 if (idx < 0) 3708 return false; 3709 3710 switch (plat_info[idx].data) { 3711 case PSS: 3712 if (!intel_pstate_no_acpi_pss()) 3713 return false; 3714 3715 return intel_pstate_no_acpi_pcch(); 3716 case PPC: 3717 return intel_pstate_has_acpi_ppc() && !force_load; 3718 } 3719 3720 return false; 3721 } 3722 3723 static void intel_pstate_request_control_from_smm(void) 3724 { 3725 /* 3726 * It may be unsafe to request P-states control from SMM if _PPC support 3727 * has not been enabled. 3728 */ 3729 if (acpi_ppc) 3730 acpi_processor_pstate_control(); 3731 } 3732 #else /* CONFIG_ACPI not enabled */ 3733 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 3734 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 3735 static inline void intel_pstate_request_control_from_smm(void) {} 3736 #endif /* CONFIG_ACPI */ 3737 3738 #define INTEL_PSTATE_HWP_BROADWELL 0x01 3739 3740 #define X86_MATCH_HWP(vfm, hwp_mode) \ 3741 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode) 3742 3743 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 3744 X86_MATCH_HWP(INTEL_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 3745 X86_MATCH_HWP(INTEL_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 3746 X86_MATCH_HWP(INTEL_ANY, 0), 3747 {} 3748 }; 3749 3750 static bool intel_pstate_hwp_is_enabled(void) 3751 { 3752 u64 value; 3753 3754 rdmsrq(MSR_PM_ENABLE, value); 3755 return !!(value & 0x1); 3756 } 3757 3758 #define POWERSAVE_MASK GENMASK(7, 0) 3759 #define BALANCE_POWER_MASK GENMASK(15, 8) 3760 #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16) 3761 #define PERFORMANCE_MASK GENMASK(31, 24) 3762 3763 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \ 3764 (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\ 3765 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\ 3766 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\ 3767 FIELD_PREP_CONST(PERFORMANCE_MASK, performance)) 3768 3769 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \ 3770 (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\ 3771 balance_perf, HWP_EPP_PERFORMANCE)) 3772 3773 static const struct x86_cpu_id intel_epp_default[] = { 3774 /* 3775 * Set EPP value as 102, this is the max suggested EPP 3776 * which can result in one core turbo frequency for 3777 * AlderLake Mobile CPUs. 3778 */ 3779 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)), 3780 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)), 3781 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)), 3782 X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)), 3783 X86_MATCH_VFM(INTEL_GRANITERAPIDS_D, HWP_SET_DEF_BALANCE_PERF_EPP(32)), 3784 X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, 3785 179, 64, 16)), 3786 X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, 3787 179, 64, 16)), 3788 {} 3789 }; 3790 3791 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = { 3792 X86_MATCH_VFM(INTEL_ALDERLAKE, HYBRID_SCALING_FACTOR_ADL), 3793 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HYBRID_SCALING_FACTOR_ADL), 3794 X86_MATCH_VFM(INTEL_RAPTORLAKE, HYBRID_SCALING_FACTOR_ADL), 3795 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, HYBRID_SCALING_FACTOR_ADL), 3796 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, HYBRID_SCALING_FACTOR_ADL), 3797 X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL), 3798 X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL), 3799 {} 3800 }; 3801 3802 static int __init intel_pstate_init(void) 3803 { 3804 static struct cpudata **_all_cpu_data; 3805 const struct x86_cpu_id *id; 3806 int rc; 3807 3808 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 3809 return -ENODEV; 3810 3811 /* 3812 * The Intel pstate driver will be ignored if the platform 3813 * firmware has its own power management modes. 3814 */ 3815 if (intel_pstate_platform_pwr_mgmt_exists()) { 3816 pr_info("P-states controlled by the platform\n"); 3817 return -ENODEV; 3818 } 3819 3820 id = x86_match_cpu(hwp_support_ids); 3821 if (id) { 3822 hwp_forced = intel_pstate_hwp_is_enabled(); 3823 3824 if (hwp_forced) 3825 pr_info("HWP enabled by BIOS\n"); 3826 else if (no_load) 3827 return -ENODEV; 3828 3829 copy_cpu_funcs(&core_funcs); 3830 /* 3831 * Avoid enabling HWP for processors without EPP support, 3832 * because that means incomplete HWP implementation which is a 3833 * corner case and supporting it is generally problematic. 3834 * 3835 * If HWP is enabled already, though, there is no choice but to 3836 * deal with it. 3837 */ 3838 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { 3839 hwp_active = true; 3840 hwp_mode_bdw = id->driver_data; 3841 intel_pstate.attr = hwp_cpufreq_attrs; 3842 intel_cpufreq.attr = hwp_cpufreq_attrs; 3843 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; 3844 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; 3845 if (!default_driver) 3846 default_driver = &intel_pstate; 3847 3848 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling; 3849 3850 goto hwp_cpu_matched; 3851 } 3852 pr_info("HWP not enabled\n"); 3853 } else { 3854 if (no_load) 3855 return -ENODEV; 3856 3857 id = x86_match_cpu(intel_pstate_cpu_ids); 3858 if (!id) { 3859 pr_info("CPU model not supported\n"); 3860 return -ENODEV; 3861 } 3862 3863 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 3864 } 3865 3866 if (intel_pstate_msrs_not_valid()) { 3867 pr_info("Invalid MSRs\n"); 3868 return -ENODEV; 3869 } 3870 /* Without HWP start in the passive mode. */ 3871 if (!default_driver) 3872 default_driver = &intel_cpufreq; 3873 3874 hwp_cpu_matched: 3875 if (!hwp_active && hwp_only) 3876 return -ENOTSUPP; 3877 3878 pr_info("Intel P-state driver initializing\n"); 3879 3880 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 3881 if (!_all_cpu_data) 3882 return -ENOMEM; 3883 3884 WRITE_ONCE(all_cpu_data, _all_cpu_data); 3885 3886 intel_pstate_request_control_from_smm(); 3887 3888 intel_pstate_sysfs_expose_params(); 3889 3890 if (hwp_active) { 3891 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default); 3892 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor); 3893 3894 if (id) { 3895 epp_values[EPP_INDEX_POWERSAVE] = 3896 FIELD_GET(POWERSAVE_MASK, id->driver_data); 3897 epp_values[EPP_INDEX_BALANCE_POWERSAVE] = 3898 FIELD_GET(BALANCE_POWER_MASK, id->driver_data); 3899 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = 3900 FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data); 3901 epp_values[EPP_INDEX_PERFORMANCE] = 3902 FIELD_GET(PERFORMANCE_MASK, id->driver_data); 3903 pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n", 3904 epp_values[EPP_INDEX_POWERSAVE], 3905 epp_values[EPP_INDEX_BALANCE_POWERSAVE], 3906 epp_values[EPP_INDEX_BALANCE_PERFORMANCE], 3907 epp_values[EPP_INDEX_PERFORMANCE]); 3908 } 3909 3910 if (hybrid_id) { 3911 hybrid_scaling_factor = hybrid_id->driver_data; 3912 pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor); 3913 } 3914 3915 } 3916 3917 mutex_lock(&intel_pstate_driver_lock); 3918 rc = intel_pstate_register_driver(default_driver); 3919 mutex_unlock(&intel_pstate_driver_lock); 3920 if (rc) { 3921 intel_pstate_sysfs_remove(); 3922 return rc; 3923 } 3924 3925 if (hwp_active) { 3926 const struct x86_cpu_id *id; 3927 3928 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 3929 if (id) { 3930 set_power_ctl_ee_state(false); 3931 pr_info("Disabling energy efficiency optimization\n"); 3932 } 3933 3934 pr_info("HWP enabled\n"); 3935 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 3936 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n"); 3937 } 3938 3939 return 0; 3940 } 3941 device_initcall(intel_pstate_init); 3942 3943 static int __init intel_pstate_setup(char *str) 3944 { 3945 if (!str) 3946 return -EINVAL; 3947 3948 if (!strcmp(str, "disable")) 3949 no_load = 1; 3950 else if (!strcmp(str, "active")) 3951 default_driver = &intel_pstate; 3952 else if (!strcmp(str, "passive")) 3953 default_driver = &intel_cpufreq; 3954 3955 if (!strcmp(str, "no_hwp")) 3956 no_hwp = 1; 3957 3958 if (!strcmp(str, "no_cas")) 3959 no_cas = true; 3960 3961 if (!strcmp(str, "force")) 3962 force_load = 1; 3963 if (!strcmp(str, "hwp_only")) 3964 hwp_only = 1; 3965 if (!strcmp(str, "per_cpu_perf_limits")) 3966 per_cpu_limits = true; 3967 3968 #ifdef CONFIG_ACPI 3969 if (!strcmp(str, "support_acpi_ppc")) 3970 acpi_ppc = true; 3971 #endif 3972 3973 return 0; 3974 } 3975 early_param("intel_pstate", intel_pstate_setup); 3976 3977 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 3978 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 3979