xref: /linux/drivers/cpufreq/imx6q-cpufreq.c (revision a224bd36bf5ccc72d0f12ab11216706762133177)
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18 
19 #define PU_SOC_VOLTAGE_NORMAL	1250000
20 #define PU_SOC_VOLTAGE_HIGH	1275000
21 #define FREQ_1P2_GHZ		1200000000
22 
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26 
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32 
33 static struct device *cpu_dev;
34 static struct cpufreq_frequency_table *freq_table;
35 static unsigned int transition_latency;
36 
37 static int imx6q_verify_speed(struct cpufreq_policy *policy)
38 {
39 	return cpufreq_frequency_table_verify(policy, freq_table);
40 }
41 
42 static unsigned int imx6q_get_speed(unsigned int cpu)
43 {
44 	return clk_get_rate(arm_clk) / 1000;
45 }
46 
47 static int imx6q_set_target(struct cpufreq_policy *policy,
48 			    unsigned int target_freq, unsigned int relation)
49 {
50 	struct cpufreq_freqs freqs;
51 	struct opp *opp;
52 	unsigned long freq_hz, volt, volt_old;
53 	unsigned int index;
54 	int ret;
55 
56 	ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
57 					     relation, &index);
58 	if (ret) {
59 		dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
60 			target_freq, ret);
61 		return ret;
62 	}
63 
64 	freqs.new = freq_table[index].frequency;
65 	freq_hz = freqs.new * 1000;
66 	freqs.old = clk_get_rate(arm_clk) / 1000;
67 
68 	if (freqs.old == freqs.new)
69 		return 0;
70 
71 	rcu_read_lock();
72 	opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
73 	if (IS_ERR(opp)) {
74 		rcu_read_unlock();
75 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
76 		return PTR_ERR(opp);
77 	}
78 
79 	volt = opp_get_voltage(opp);
80 	rcu_read_unlock();
81 	volt_old = regulator_get_voltage(arm_reg);
82 
83 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
84 		freqs.old / 1000, volt_old / 1000,
85 		freqs.new / 1000, volt / 1000);
86 
87 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
88 
89 	/* scaling up?  scale voltage before frequency */
90 	if (freqs.new > freqs.old) {
91 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
92 		if (ret) {
93 			dev_err(cpu_dev,
94 				"failed to scale vddarm up: %d\n", ret);
95 			freqs.new = freqs.old;
96 			goto post_notify;
97 		}
98 
99 		/*
100 		 * Need to increase vddpu and vddsoc for safety
101 		 * if we are about to run at 1.2 GHz.
102 		 */
103 		if (freqs.new == FREQ_1P2_GHZ / 1000) {
104 			regulator_set_voltage_tol(pu_reg,
105 					PU_SOC_VOLTAGE_HIGH, 0);
106 			regulator_set_voltage_tol(soc_reg,
107 					PU_SOC_VOLTAGE_HIGH, 0);
108 		}
109 	}
110 
111 	/*
112 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
113 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
114 	 * PLL1 is as below.
115 	 *
116 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
117 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
118 	 *  - Disable pll2_pfd2_396m_clk
119 	 */
120 	clk_set_parent(step_clk, pll2_pfd2_396m_clk);
121 	clk_set_parent(pll1_sw_clk, step_clk);
122 	if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
123 		clk_set_rate(pll1_sys_clk, freqs.new * 1000);
124 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
125 	}
126 
127 	/* Ensure the arm clock divider is what we expect */
128 	ret = clk_set_rate(arm_clk, freqs.new * 1000);
129 	if (ret) {
130 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
131 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
132 		freqs.new = freqs.old;
133 		goto post_notify;
134 	}
135 
136 	/* scaling down?  scale voltage after frequency */
137 	if (freqs.new < freqs.old) {
138 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
139 		if (ret) {
140 			dev_warn(cpu_dev,
141 				 "failed to scale vddarm down: %d\n", ret);
142 			ret = 0;
143 		}
144 
145 		if (freqs.old == FREQ_1P2_GHZ / 1000) {
146 			regulator_set_voltage_tol(pu_reg,
147 					PU_SOC_VOLTAGE_NORMAL, 0);
148 			regulator_set_voltage_tol(soc_reg,
149 					PU_SOC_VOLTAGE_NORMAL, 0);
150 		}
151 	}
152 
153 post_notify:
154 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
155 
156 	return ret;
157 }
158 
159 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
160 {
161 	int ret;
162 
163 	ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
164 	if (ret) {
165 		dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
166 		return ret;
167 	}
168 
169 	policy->cpuinfo.transition_latency = transition_latency;
170 	policy->cur = clk_get_rate(arm_clk) / 1000;
171 	cpumask_setall(policy->cpus);
172 	cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
173 
174 	return 0;
175 }
176 
177 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
178 {
179 	cpufreq_frequency_table_put_attr(policy->cpu);
180 	return 0;
181 }
182 
183 static struct freq_attr *imx6q_cpufreq_attr[] = {
184 	&cpufreq_freq_attr_scaling_available_freqs,
185 	NULL,
186 };
187 
188 static struct cpufreq_driver imx6q_cpufreq_driver = {
189 	.verify = imx6q_verify_speed,
190 	.target = imx6q_set_target,
191 	.get = imx6q_get_speed,
192 	.init = imx6q_cpufreq_init,
193 	.exit = imx6q_cpufreq_exit,
194 	.name = "imx6q-cpufreq",
195 	.attr = imx6q_cpufreq_attr,
196 };
197 
198 static int imx6q_cpufreq_probe(struct platform_device *pdev)
199 {
200 	struct device_node *np;
201 	struct opp *opp;
202 	unsigned long min_volt, max_volt;
203 	int num, ret;
204 
205 	cpu_dev = &pdev->dev;
206 
207 	np = of_node_get(cpu_dev->of_node);
208 	if (!np) {
209 		dev_err(cpu_dev, "failed to find cpu0 node\n");
210 		return -ENOENT;
211 	}
212 
213 	arm_clk = devm_clk_get(cpu_dev, "arm");
214 	pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
215 	pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
216 	step_clk = devm_clk_get(cpu_dev, "step");
217 	pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
218 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
219 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
220 		dev_err(cpu_dev, "failed to get clocks\n");
221 		ret = -ENOENT;
222 		goto put_node;
223 	}
224 
225 	arm_reg = devm_regulator_get(cpu_dev, "arm");
226 	pu_reg = devm_regulator_get(cpu_dev, "pu");
227 	soc_reg = devm_regulator_get(cpu_dev, "soc");
228 	if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
229 		dev_err(cpu_dev, "failed to get regulators\n");
230 		ret = -ENOENT;
231 		goto put_node;
232 	}
233 
234 	/* We expect an OPP table supplied by platform */
235 	num = opp_get_opp_count(cpu_dev);
236 	if (num < 0) {
237 		ret = num;
238 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
239 		goto put_node;
240 	}
241 
242 	ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
243 	if (ret) {
244 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
245 		goto put_node;
246 	}
247 
248 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
249 		transition_latency = CPUFREQ_ETERNAL;
250 
251 	/*
252 	 * OPP is maintained in order of increasing frequency, and
253 	 * freq_table initialised from OPP is therefore sorted in the
254 	 * same order.
255 	 */
256 	rcu_read_lock();
257 	opp = opp_find_freq_exact(cpu_dev,
258 				  freq_table[0].frequency * 1000, true);
259 	min_volt = opp_get_voltage(opp);
260 	opp = opp_find_freq_exact(cpu_dev,
261 				  freq_table[--num].frequency * 1000, true);
262 	max_volt = opp_get_voltage(opp);
263 	rcu_read_unlock();
264 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
265 	if (ret > 0)
266 		transition_latency += ret * 1000;
267 
268 	/* Count vddpu and vddsoc latency in for 1.2 GHz support */
269 	if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
270 		ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
271 						 PU_SOC_VOLTAGE_HIGH);
272 		if (ret > 0)
273 			transition_latency += ret * 1000;
274 		ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
275 						 PU_SOC_VOLTAGE_HIGH);
276 		if (ret > 0)
277 			transition_latency += ret * 1000;
278 	}
279 
280 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
281 	if (ret) {
282 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
283 		goto free_freq_table;
284 	}
285 
286 	of_node_put(np);
287 	return 0;
288 
289 free_freq_table:
290 	opp_free_cpufreq_table(cpu_dev, &freq_table);
291 put_node:
292 	of_node_put(np);
293 	return ret;
294 }
295 
296 static int imx6q_cpufreq_remove(struct platform_device *pdev)
297 {
298 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
299 	opp_free_cpufreq_table(cpu_dev, &freq_table);
300 
301 	return 0;
302 }
303 
304 static struct platform_driver imx6q_cpufreq_platdrv = {
305 	.driver = {
306 		.name	= "imx6q-cpufreq",
307 		.owner	= THIS_MODULE,
308 	},
309 	.probe		= imx6q_cpufreq_probe,
310 	.remove		= imx6q_cpufreq_remove,
311 };
312 module_platform_driver(imx6q_cpufreq_platdrv);
313 
314 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
315 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
316 MODULE_LICENSE("GPL");
317