1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Freescale Semiconductor, Inc. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/cpu.h> 8 #include <linux/cpufreq.h> 9 #include <linux/err.h> 10 #include <linux/module.h> 11 #include <linux/nvmem-consumer.h> 12 #include <linux/of.h> 13 #include <linux/of_address.h> 14 #include <linux/pm_opp.h> 15 #include <linux/platform_device.h> 16 #include <linux/regulator/consumer.h> 17 #include <linux/mfd/syscon.h> 18 #include <linux/regmap.h> 19 20 #define PU_SOC_VOLTAGE_NORMAL 1250000 21 #define PU_SOC_VOLTAGE_HIGH 1275000 22 #define FREQ_1P2_GHZ 1200000000 23 24 static struct regulator *arm_reg; 25 static struct regulator *pu_reg; 26 static struct regulator *soc_reg; 27 28 enum IMX6_CPUFREQ_CLKS { 29 ARM, 30 PLL1_SYS, 31 STEP, 32 PLL1_SW, 33 PLL2_PFD2_396M, 34 /* MX6UL requires two more clks */ 35 PLL2_BUS, 36 SECONDARY_SEL, 37 }; 38 #define IMX6Q_CPUFREQ_CLK_NUM 5 39 #define IMX6UL_CPUFREQ_CLK_NUM 7 40 41 static int num_clks; 42 static struct clk_bulk_data clks[] = { 43 { .id = "arm" }, 44 { .id = "pll1_sys" }, 45 { .id = "step" }, 46 { .id = "pll1_sw" }, 47 { .id = "pll2_pfd2_396m" }, 48 { .id = "pll2_bus" }, 49 { .id = "secondary_sel" }, 50 }; 51 52 static struct device *cpu_dev; 53 static struct cpufreq_frequency_table *freq_table; 54 static unsigned int max_freq; 55 static unsigned int transition_latency; 56 57 static u32 *imx6_soc_volt; 58 static u32 soc_opp_count; 59 60 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index) 61 { 62 struct dev_pm_opp *opp; 63 unsigned long freq_hz, volt, volt_old; 64 unsigned int old_freq, new_freq; 65 bool pll1_sys_temp_enabled = false; 66 int ret; 67 68 new_freq = freq_table[index].frequency; 69 freq_hz = new_freq * 1000; 70 old_freq = clk_get_rate(clks[ARM].clk) / 1000; 71 72 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); 73 if (IS_ERR(opp)) { 74 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); 75 return PTR_ERR(opp); 76 } 77 78 volt = dev_pm_opp_get_voltage(opp); 79 dev_pm_opp_put(opp); 80 81 volt_old = regulator_get_voltage(arm_reg); 82 83 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", 84 old_freq / 1000, volt_old / 1000, 85 new_freq / 1000, volt / 1000); 86 87 /* scaling up? scale voltage before frequency */ 88 if (new_freq > old_freq) { 89 if (!IS_ERR(pu_reg)) { 90 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); 91 if (ret) { 92 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret); 93 return ret; 94 } 95 } 96 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); 97 if (ret) { 98 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret); 99 return ret; 100 } 101 ret = regulator_set_voltage_tol(arm_reg, volt, 0); 102 if (ret) { 103 dev_err(cpu_dev, 104 "failed to scale vddarm up: %d\n", ret); 105 return ret; 106 } 107 } 108 109 /* 110 * The setpoints are selected per PLL/PDF frequencies, so we need to 111 * reprogram PLL for frequency scaling. The procedure of reprogramming 112 * PLL1 is as below. 113 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change 114 * flow is slightly different from other i.MX6 OSC. 115 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below: 116 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it 117 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it 118 * - Disable pll2_pfd2_396m_clk 119 */ 120 if (of_machine_is_compatible("fsl,imx6ul") || 121 of_machine_is_compatible("fsl,imx6ull")) { 122 /* 123 * When changing pll1_sw_clk's parent to pll1_sys_clk, 124 * CPU may run at higher than 528MHz, this will lead to 125 * the system unstable if the voltage is lower than the 126 * voltage of 528MHz, so lower the CPU frequency to one 127 * half before changing CPU frequency. 128 */ 129 clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000); 130 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); 131 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) 132 clk_set_parent(clks[SECONDARY_SEL].clk, 133 clks[PLL2_BUS].clk); 134 else 135 clk_set_parent(clks[SECONDARY_SEL].clk, 136 clks[PLL2_PFD2_396M].clk); 137 clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk); 138 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk); 139 if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) { 140 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000); 141 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); 142 } 143 } else { 144 clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk); 145 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk); 146 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) { 147 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000); 148 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); 149 } else { 150 /* pll1_sys needs to be enabled for divider rate change to work. */ 151 pll1_sys_temp_enabled = true; 152 clk_prepare_enable(clks[PLL1_SYS].clk); 153 } 154 } 155 156 /* Ensure the arm clock divider is what we expect */ 157 ret = clk_set_rate(clks[ARM].clk, new_freq * 1000); 158 if (ret) { 159 int ret1; 160 161 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); 162 ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0); 163 if (ret1) 164 dev_warn(cpu_dev, 165 "failed to restore vddarm voltage: %d\n", ret1); 166 return ret; 167 } 168 169 /* PLL1 is only needed until after ARM-PODF is set. */ 170 if (pll1_sys_temp_enabled) 171 clk_disable_unprepare(clks[PLL1_SYS].clk); 172 173 /* scaling down? scale voltage after frequency */ 174 if (new_freq < old_freq) { 175 ret = regulator_set_voltage_tol(arm_reg, volt, 0); 176 if (ret) 177 dev_warn(cpu_dev, 178 "failed to scale vddarm down: %d\n", ret); 179 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); 180 if (ret) 181 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret); 182 if (!IS_ERR(pu_reg)) { 183 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); 184 if (ret) 185 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret); 186 } 187 } 188 189 return 0; 190 } 191 192 static int imx6q_cpufreq_init(struct cpufreq_policy *policy) 193 { 194 policy->clk = clks[ARM].clk; 195 cpufreq_generic_init(policy, freq_table, transition_latency); 196 policy->suspend_freq = max_freq; 197 198 return 0; 199 } 200 201 static struct cpufreq_driver imx6q_cpufreq_driver = { 202 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK | 203 CPUFREQ_IS_COOLING_DEV, 204 .verify = cpufreq_generic_frequency_table_verify, 205 .target_index = imx6q_set_target, 206 .get = cpufreq_generic_get, 207 .init = imx6q_cpufreq_init, 208 .register_em = cpufreq_register_em_with_opp, 209 .name = "imx6q-cpufreq", 210 .attr = cpufreq_generic_attr, 211 .suspend = cpufreq_generic_suspend, 212 }; 213 214 static void imx6x_disable_freq_in_opp(struct device *dev, unsigned long freq) 215 { 216 int ret = dev_pm_opp_disable(dev, freq); 217 218 if (ret < 0 && ret != -ENODEV) 219 dev_warn(dev, "failed to disable %ldMHz OPP\n", freq / 1000000); 220 } 221 222 #define OCOTP_CFG3 0x440 223 #define OCOTP_CFG3_SPEED_SHIFT 16 224 #define OCOTP_CFG3_SPEED_1P2GHZ 0x3 225 #define OCOTP_CFG3_SPEED_996MHZ 0x2 226 #define OCOTP_CFG3_SPEED_852MHZ 0x1 227 228 static int imx6q_opp_check_speed_grading(struct device *dev) 229 { 230 u32 val; 231 int ret; 232 233 if (of_property_present(dev->of_node, "nvmem-cells")) { 234 ret = nvmem_cell_read_u32(dev, "speed_grade", &val); 235 if (ret) 236 return ret; 237 } else { 238 struct regmap *ocotp; 239 240 ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6q-ocotp"); 241 if (IS_ERR(ocotp)) 242 return -ENOENT; 243 244 /* 245 * SPEED_GRADING[1:0] defines the max speed of ARM: 246 * 2b'11: 1200000000Hz; 247 * 2b'10: 996000000Hz; 248 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz. 249 * 2b'00: 792000000Hz; 250 * We need to set the max speed of ARM according to fuse map. 251 */ 252 regmap_read(ocotp, OCOTP_CFG3, &val); 253 } 254 255 val >>= OCOTP_CFG3_SPEED_SHIFT; 256 val &= 0x3; 257 258 if (val < OCOTP_CFG3_SPEED_996MHZ) 259 imx6x_disable_freq_in_opp(dev, 996000000); 260 261 if (of_machine_is_compatible("fsl,imx6q") || 262 of_machine_is_compatible("fsl,imx6qp")) { 263 if (val != OCOTP_CFG3_SPEED_852MHZ) 264 imx6x_disable_freq_in_opp(dev, 852000000); 265 266 if (val != OCOTP_CFG3_SPEED_1P2GHZ) 267 imx6x_disable_freq_in_opp(dev, 1200000000); 268 } 269 270 return 0; 271 } 272 273 #define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2 274 #define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2 275 #define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3 276 277 static int imx6ul_opp_check_speed_grading(struct device *dev) 278 { 279 u32 val; 280 int ret = 0; 281 282 if (of_property_present(dev->of_node, "nvmem-cells")) { 283 ret = nvmem_cell_read_u32(dev, "speed_grade", &val); 284 if (ret) 285 return ret; 286 } else { 287 struct regmap *ocotp; 288 289 ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ul-ocotp"); 290 if (IS_ERR(ocotp)) 291 ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ull-ocotp"); 292 293 if (IS_ERR(ocotp)) 294 return -ENOENT; 295 296 regmap_read(ocotp, OCOTP_CFG3, &val); 297 } 298 299 /* 300 * Speed GRADING[1:0] defines the max speed of ARM: 301 * 2b'00: Reserved; 302 * 2b'01: 528000000Hz; 303 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL; 304 * 2b'11: 900000000Hz on i.MX6ULL only; 305 * We need to set the max speed of ARM according to fuse map. 306 */ 307 val >>= OCOTP_CFG3_SPEED_SHIFT; 308 val &= 0x3; 309 310 if (of_machine_is_compatible("fsl,imx6ul")) 311 if (val != OCOTP_CFG3_6UL_SPEED_696MHZ) 312 imx6x_disable_freq_in_opp(dev, 696000000); 313 314 if (of_machine_is_compatible("fsl,imx6ull")) { 315 if (val < OCOTP_CFG3_6ULL_SPEED_792MHZ) 316 imx6x_disable_freq_in_opp(dev, 792000000); 317 318 if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ) 319 imx6x_disable_freq_in_opp(dev, 900000000); 320 } 321 322 return ret; 323 } 324 325 static int imx6q_cpufreq_probe(struct platform_device *pdev) 326 { 327 struct device_node *np; 328 struct dev_pm_opp *opp; 329 unsigned long min_volt, max_volt; 330 int num, ret; 331 const struct property *prop; 332 const __be32 *val; 333 u32 nr, i, j; 334 335 cpu_dev = get_cpu_device(0); 336 if (!cpu_dev) { 337 pr_err("failed to get cpu0 device\n"); 338 return -ENODEV; 339 } 340 341 np = of_node_get(cpu_dev->of_node); 342 if (!np) { 343 dev_err(cpu_dev, "failed to find cpu0 node\n"); 344 return -ENOENT; 345 } 346 347 if (of_machine_is_compatible("fsl,imx6ul") || 348 of_machine_is_compatible("fsl,imx6ull")) 349 num_clks = IMX6UL_CPUFREQ_CLK_NUM; 350 else 351 num_clks = IMX6Q_CPUFREQ_CLK_NUM; 352 353 ret = clk_bulk_get(cpu_dev, num_clks, clks); 354 if (ret) 355 goto put_node; 356 357 arm_reg = regulator_get(cpu_dev, "arm"); 358 pu_reg = regulator_get_optional(cpu_dev, "pu"); 359 soc_reg = regulator_get(cpu_dev, "soc"); 360 if (PTR_ERR(arm_reg) == -EPROBE_DEFER || 361 PTR_ERR(soc_reg) == -EPROBE_DEFER || 362 PTR_ERR(pu_reg) == -EPROBE_DEFER) { 363 ret = -EPROBE_DEFER; 364 dev_dbg(cpu_dev, "regulators not ready, defer\n"); 365 goto put_reg; 366 } 367 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) { 368 dev_err(cpu_dev, "failed to get regulators\n"); 369 ret = -ENOENT; 370 goto put_reg; 371 } 372 373 ret = dev_pm_opp_of_add_table(cpu_dev); 374 if (ret < 0) { 375 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret); 376 goto put_reg; 377 } 378 379 if (of_machine_is_compatible("fsl,imx6ul") || 380 of_machine_is_compatible("fsl,imx6ull")) { 381 ret = imx6ul_opp_check_speed_grading(cpu_dev); 382 } else { 383 ret = imx6q_opp_check_speed_grading(cpu_dev); 384 } 385 if (ret) { 386 dev_err_probe(cpu_dev, ret, "failed to read ocotp\n"); 387 goto out_free_opp; 388 } 389 390 num = dev_pm_opp_get_opp_count(cpu_dev); 391 if (num < 0) { 392 ret = num; 393 dev_err(cpu_dev, "no OPP table is found: %d\n", ret); 394 goto out_free_opp; 395 } 396 397 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table); 398 if (ret) { 399 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); 400 goto out_free_opp; 401 } 402 403 /* Make imx6_soc_volt array's size same as arm opp number */ 404 imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt), 405 GFP_KERNEL); 406 if (imx6_soc_volt == NULL) { 407 ret = -ENOMEM; 408 goto free_freq_table; 409 } 410 411 prop = of_find_property(np, "fsl,soc-operating-points", NULL); 412 if (!prop || !prop->value) 413 goto soc_opp_out; 414 415 /* 416 * Each OPP is a set of tuples consisting of frequency and 417 * voltage like <freq-kHz vol-uV>. 418 */ 419 nr = prop->length / sizeof(u32); 420 if (nr % 2 || (nr / 2) < num) 421 goto soc_opp_out; 422 423 for (j = 0; j < num; j++) { 424 val = prop->value; 425 for (i = 0; i < nr / 2; i++) { 426 unsigned long freq = be32_to_cpup(val++); 427 unsigned long volt = be32_to_cpup(val++); 428 if (freq_table[j].frequency == freq) { 429 imx6_soc_volt[soc_opp_count++] = volt; 430 break; 431 } 432 } 433 } 434 435 soc_opp_out: 436 /* use fixed soc opp volt if no valid soc opp info found in dtb */ 437 if (soc_opp_count != num) { 438 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n"); 439 for (j = 0; j < num; j++) 440 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL; 441 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ) 442 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH; 443 } 444 445 if (of_property_read_u32(np, "clock-latency", &transition_latency)) 446 transition_latency = CPUFREQ_ETERNAL; 447 448 /* 449 * Calculate the ramp time for max voltage change in the 450 * VDDSOC and VDDPU regulators. 451 */ 452 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); 453 if (ret > 0) 454 transition_latency += ret * 1000; 455 if (!IS_ERR(pu_reg)) { 456 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); 457 if (ret > 0) 458 transition_latency += ret * 1000; 459 } 460 461 /* 462 * OPP is maintained in order of increasing frequency, and 463 * freq_table initialised from OPP is therefore sorted in the 464 * same order. 465 */ 466 max_freq = freq_table[--num].frequency; 467 opp = dev_pm_opp_find_freq_exact(cpu_dev, 468 freq_table[0].frequency * 1000, true); 469 min_volt = dev_pm_opp_get_voltage(opp); 470 dev_pm_opp_put(opp); 471 opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true); 472 max_volt = dev_pm_opp_get_voltage(opp); 473 dev_pm_opp_put(opp); 474 475 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); 476 if (ret > 0) 477 transition_latency += ret * 1000; 478 479 ret = cpufreq_register_driver(&imx6q_cpufreq_driver); 480 if (ret) { 481 dev_err(cpu_dev, "failed register driver: %d\n", ret); 482 goto free_freq_table; 483 } 484 485 of_node_put(np); 486 return 0; 487 488 free_freq_table: 489 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); 490 out_free_opp: 491 dev_pm_opp_of_remove_table(cpu_dev); 492 put_reg: 493 if (!IS_ERR(arm_reg)) 494 regulator_put(arm_reg); 495 if (!IS_ERR(pu_reg)) 496 regulator_put(pu_reg); 497 if (!IS_ERR(soc_reg)) 498 regulator_put(soc_reg); 499 500 clk_bulk_put(num_clks, clks); 501 put_node: 502 of_node_put(np); 503 504 return ret; 505 } 506 507 static void imx6q_cpufreq_remove(struct platform_device *pdev) 508 { 509 cpufreq_unregister_driver(&imx6q_cpufreq_driver); 510 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); 511 dev_pm_opp_of_remove_table(cpu_dev); 512 regulator_put(arm_reg); 513 if (!IS_ERR(pu_reg)) 514 regulator_put(pu_reg); 515 regulator_put(soc_reg); 516 517 clk_bulk_put(num_clks, clks); 518 } 519 520 static struct platform_driver imx6q_cpufreq_platdrv = { 521 .driver = { 522 .name = "imx6q-cpufreq", 523 }, 524 .probe = imx6q_cpufreq_probe, 525 .remove = imx6q_cpufreq_remove, 526 }; 527 module_platform_driver(imx6q_cpufreq_platdrv); 528 529 MODULE_ALIAS("platform:imx6q-cpufreq"); 530 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); 531 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); 532 MODULE_LICENSE("GPL"); 533