xref: /linux/drivers/cpufreq/imx6q-cpufreq.c (revision 0c874100108f03401cb3154801d2671bbad40ad4)
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/cpu_cooling.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/pm_opp.h>
19 #include <linux/platform_device.h>
20 #include <linux/regulator/consumer.h>
21 
22 #define PU_SOC_VOLTAGE_NORMAL	1250000
23 #define PU_SOC_VOLTAGE_HIGH	1275000
24 #define FREQ_1P2_GHZ		1200000000
25 
26 static struct regulator *arm_reg;
27 static struct regulator *pu_reg;
28 static struct regulator *soc_reg;
29 
30 enum IMX6_CPUFREQ_CLKS {
31 	ARM,
32 	PLL1_SYS,
33 	STEP,
34 	PLL1_SW,
35 	PLL2_PFD2_396M,
36 	/* MX6UL requires two more clks */
37 	PLL2_BUS,
38 	SECONDARY_SEL,
39 };
40 #define IMX6Q_CPUFREQ_CLK_NUM		5
41 #define IMX6UL_CPUFREQ_CLK_NUM		7
42 
43 static int num_clks;
44 static struct clk_bulk_data clks[] = {
45 	{ .id = "arm" },
46 	{ .id = "pll1_sys" },
47 	{ .id = "step" },
48 	{ .id = "pll1_sw" },
49 	{ .id = "pll2_pfd2_396m" },
50 	{ .id = "pll2_bus" },
51 	{ .id = "secondary_sel" },
52 };
53 
54 static struct device *cpu_dev;
55 static struct thermal_cooling_device *cdev;
56 static bool free_opp;
57 static struct cpufreq_frequency_table *freq_table;
58 static unsigned int max_freq;
59 static unsigned int transition_latency;
60 
61 static u32 *imx6_soc_volt;
62 static u32 soc_opp_count;
63 
64 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
65 {
66 	struct dev_pm_opp *opp;
67 	unsigned long freq_hz, volt, volt_old;
68 	unsigned int old_freq, new_freq;
69 	bool pll1_sys_temp_enabled = false;
70 	int ret;
71 
72 	new_freq = freq_table[index].frequency;
73 	freq_hz = new_freq * 1000;
74 	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
75 
76 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
77 	if (IS_ERR(opp)) {
78 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
79 		return PTR_ERR(opp);
80 	}
81 
82 	volt = dev_pm_opp_get_voltage(opp);
83 	dev_pm_opp_put(opp);
84 
85 	volt_old = regulator_get_voltage(arm_reg);
86 
87 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
88 		old_freq / 1000, volt_old / 1000,
89 		new_freq / 1000, volt / 1000);
90 
91 	/* scaling up?  scale voltage before frequency */
92 	if (new_freq > old_freq) {
93 		if (!IS_ERR(pu_reg)) {
94 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
95 			if (ret) {
96 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
97 				return ret;
98 			}
99 		}
100 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
101 		if (ret) {
102 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
103 			return ret;
104 		}
105 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
106 		if (ret) {
107 			dev_err(cpu_dev,
108 				"failed to scale vddarm up: %d\n", ret);
109 			return ret;
110 		}
111 	}
112 
113 	/*
114 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
115 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
116 	 * PLL1 is as below.
117 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
118 	 * flow is slightly different from other i.MX6 OSC.
119 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
120 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
121 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
122 	 *  - Disable pll2_pfd2_396m_clk
123 	 */
124 	if (of_machine_is_compatible("fsl,imx6ul") ||
125 	    of_machine_is_compatible("fsl,imx6ull")) {
126 		/*
127 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
128 		 * CPU may run at higher than 528MHz, this will lead to
129 		 * the system unstable if the voltage is lower than the
130 		 * voltage of 528MHz, so lower the CPU frequency to one
131 		 * half before changing CPU frequency.
132 		 */
133 		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
134 		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
135 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
136 			clk_set_parent(clks[SECONDARY_SEL].clk,
137 				       clks[PLL2_BUS].clk);
138 		else
139 			clk_set_parent(clks[SECONDARY_SEL].clk,
140 				       clks[PLL2_PFD2_396M].clk);
141 		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
142 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
143 		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
144 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
145 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
146 		}
147 	} else {
148 		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
149 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
150 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
151 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
152 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
153 		} else {
154 			/* pll1_sys needs to be enabled for divider rate change to work. */
155 			pll1_sys_temp_enabled = true;
156 			clk_prepare_enable(clks[PLL1_SYS].clk);
157 		}
158 	}
159 
160 	/* Ensure the arm clock divider is what we expect */
161 	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
162 	if (ret) {
163 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
164 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
165 		return ret;
166 	}
167 
168 	/* PLL1 is only needed until after ARM-PODF is set. */
169 	if (pll1_sys_temp_enabled)
170 		clk_disable_unprepare(clks[PLL1_SYS].clk);
171 
172 	/* scaling down?  scale voltage after frequency */
173 	if (new_freq < old_freq) {
174 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
175 		if (ret) {
176 			dev_warn(cpu_dev,
177 				 "failed to scale vddarm down: %d\n", ret);
178 			ret = 0;
179 		}
180 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
181 		if (ret) {
182 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
183 			ret = 0;
184 		}
185 		if (!IS_ERR(pu_reg)) {
186 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
187 			if (ret) {
188 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
189 				ret = 0;
190 			}
191 		}
192 	}
193 
194 	return 0;
195 }
196 
197 static void imx6q_cpufreq_ready(struct cpufreq_policy *policy)
198 {
199 	cdev = of_cpufreq_cooling_register(policy);
200 
201 	if (!cdev)
202 		dev_err(cpu_dev,
203 			"running cpufreq without cooling device: %ld\n",
204 			PTR_ERR(cdev));
205 }
206 
207 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
208 {
209 	int ret;
210 
211 	policy->clk = clks[ARM].clk;
212 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
213 	policy->suspend_freq = max_freq;
214 
215 	return ret;
216 }
217 
218 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
219 {
220 	cpufreq_cooling_unregister(cdev);
221 
222 	return 0;
223 }
224 
225 static struct cpufreq_driver imx6q_cpufreq_driver = {
226 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
227 	.verify = cpufreq_generic_frequency_table_verify,
228 	.target_index = imx6q_set_target,
229 	.get = cpufreq_generic_get,
230 	.init = imx6q_cpufreq_init,
231 	.exit = imx6q_cpufreq_exit,
232 	.name = "imx6q-cpufreq",
233 	.ready = imx6q_cpufreq_ready,
234 	.attr = cpufreq_generic_attr,
235 	.suspend = cpufreq_generic_suspend,
236 };
237 
238 #define OCOTP_CFG3			0x440
239 #define OCOTP_CFG3_SPEED_SHIFT		16
240 #define OCOTP_CFG3_SPEED_1P2GHZ		0x3
241 #define OCOTP_CFG3_SPEED_996MHZ		0x2
242 #define OCOTP_CFG3_SPEED_852MHZ		0x1
243 
244 static void imx6q_opp_check_speed_grading(struct device *dev)
245 {
246 	struct device_node *np;
247 	void __iomem *base;
248 	u32 val;
249 
250 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
251 	if (!np)
252 		return;
253 
254 	base = of_iomap(np, 0);
255 	if (!base) {
256 		dev_err(dev, "failed to map ocotp\n");
257 		goto put_node;
258 	}
259 
260 	/*
261 	 * SPEED_GRADING[1:0] defines the max speed of ARM:
262 	 * 2b'11: 1200000000Hz;
263 	 * 2b'10: 996000000Hz;
264 	 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
265 	 * 2b'00: 792000000Hz;
266 	 * We need to set the max speed of ARM according to fuse map.
267 	 */
268 	val = readl_relaxed(base + OCOTP_CFG3);
269 	val >>= OCOTP_CFG3_SPEED_SHIFT;
270 	val &= 0x3;
271 
272 	if (val < OCOTP_CFG3_SPEED_996MHZ)
273 		if (dev_pm_opp_disable(dev, 996000000))
274 			dev_warn(dev, "failed to disable 996MHz OPP\n");
275 
276 	if (of_machine_is_compatible("fsl,imx6q") ||
277 	    of_machine_is_compatible("fsl,imx6qp")) {
278 		if (val != OCOTP_CFG3_SPEED_852MHZ)
279 			if (dev_pm_opp_disable(dev, 852000000))
280 				dev_warn(dev, "failed to disable 852MHz OPP\n");
281 		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
282 			if (dev_pm_opp_disable(dev, 1200000000))
283 				dev_warn(dev, "failed to disable 1.2GHz OPP\n");
284 	}
285 	iounmap(base);
286 put_node:
287 	of_node_put(np);
288 }
289 
290 #define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
291 #define OCOTP_CFG3_6ULL_SPEED_792MHZ	0x2
292 #define OCOTP_CFG3_6ULL_SPEED_900MHZ	0x3
293 
294 static int imx6ul_opp_check_speed_grading(struct device *dev)
295 {
296 	u32 val;
297 	int ret = 0;
298 
299 	if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
300 		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
301 		if (ret)
302 			return ret;
303 	} else {
304 		struct device_node *np;
305 		void __iomem *base;
306 
307 		np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
308 		if (!np)
309 			return -ENOENT;
310 
311 		base = of_iomap(np, 0);
312 		of_node_put(np);
313 		if (!base) {
314 			dev_err(dev, "failed to map ocotp\n");
315 			return -EFAULT;
316 		}
317 
318 		val = readl_relaxed(base + OCOTP_CFG3);
319 		iounmap(base);
320 	}
321 
322 	/*
323 	 * Speed GRADING[1:0] defines the max speed of ARM:
324 	 * 2b'00: Reserved;
325 	 * 2b'01: 528000000Hz;
326 	 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
327 	 * 2b'11: 900000000Hz on i.MX6ULL only;
328 	 * We need to set the max speed of ARM according to fuse map.
329 	 */
330 	val >>= OCOTP_CFG3_SPEED_SHIFT;
331 	val &= 0x3;
332 
333 	if (of_machine_is_compatible("fsl,imx6ul")) {
334 		if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
335 			if (dev_pm_opp_disable(dev, 696000000))
336 				dev_warn(dev, "failed to disable 696MHz OPP\n");
337 	}
338 
339 	if (of_machine_is_compatible("fsl,imx6ull")) {
340 		if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
341 			if (dev_pm_opp_disable(dev, 792000000))
342 				dev_warn(dev, "failed to disable 792MHz OPP\n");
343 
344 		if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
345 			if (dev_pm_opp_disable(dev, 900000000))
346 				dev_warn(dev, "failed to disable 900MHz OPP\n");
347 	}
348 
349 	return ret;
350 }
351 
352 static int imx6q_cpufreq_probe(struct platform_device *pdev)
353 {
354 	struct device_node *np;
355 	struct dev_pm_opp *opp;
356 	unsigned long min_volt, max_volt;
357 	int num, ret;
358 	const struct property *prop;
359 	const __be32 *val;
360 	u32 nr, i, j;
361 
362 	cpu_dev = get_cpu_device(0);
363 	if (!cpu_dev) {
364 		pr_err("failed to get cpu0 device\n");
365 		return -ENODEV;
366 	}
367 
368 	np = of_node_get(cpu_dev->of_node);
369 	if (!np) {
370 		dev_err(cpu_dev, "failed to find cpu0 node\n");
371 		return -ENOENT;
372 	}
373 
374 	if (of_machine_is_compatible("fsl,imx6ul") ||
375 	    of_machine_is_compatible("fsl,imx6ull"))
376 		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
377 	else
378 		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
379 
380 	ret = clk_bulk_get(cpu_dev, num_clks, clks);
381 	if (ret)
382 		goto put_node;
383 
384 	arm_reg = regulator_get(cpu_dev, "arm");
385 	pu_reg = regulator_get_optional(cpu_dev, "pu");
386 	soc_reg = regulator_get(cpu_dev, "soc");
387 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
388 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
389 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
390 		ret = -EPROBE_DEFER;
391 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
392 		goto put_reg;
393 	}
394 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
395 		dev_err(cpu_dev, "failed to get regulators\n");
396 		ret = -ENOENT;
397 		goto put_reg;
398 	}
399 
400 	ret = dev_pm_opp_of_add_table(cpu_dev);
401 	if (ret < 0) {
402 		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
403 		goto put_reg;
404 	}
405 
406 	if (of_machine_is_compatible("fsl,imx6ul") ||
407 	    of_machine_is_compatible("fsl,imx6ull")) {
408 		ret = imx6ul_opp_check_speed_grading(cpu_dev);
409 		if (ret == -EPROBE_DEFER)
410 			return ret;
411 		if (ret) {
412 			dev_err(cpu_dev, "failed to read ocotp: %d\n",
413 				ret);
414 			return ret;
415 		}
416 	} else {
417 		imx6q_opp_check_speed_grading(cpu_dev);
418 	}
419 
420 	/* Because we have added the OPPs here, we must free them */
421 	free_opp = true;
422 	num = dev_pm_opp_get_opp_count(cpu_dev);
423 	if (num < 0) {
424 		ret = num;
425 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
426 		goto out_free_opp;
427 	}
428 
429 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
430 	if (ret) {
431 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
432 		goto out_free_opp;
433 	}
434 
435 	/* Make imx6_soc_volt array's size same as arm opp number */
436 	imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
437 				     GFP_KERNEL);
438 	if (imx6_soc_volt == NULL) {
439 		ret = -ENOMEM;
440 		goto free_freq_table;
441 	}
442 
443 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
444 	if (!prop || !prop->value)
445 		goto soc_opp_out;
446 
447 	/*
448 	 * Each OPP is a set of tuples consisting of frequency and
449 	 * voltage like <freq-kHz vol-uV>.
450 	 */
451 	nr = prop->length / sizeof(u32);
452 	if (nr % 2 || (nr / 2) < num)
453 		goto soc_opp_out;
454 
455 	for (j = 0; j < num; j++) {
456 		val = prop->value;
457 		for (i = 0; i < nr / 2; i++) {
458 			unsigned long freq = be32_to_cpup(val++);
459 			unsigned long volt = be32_to_cpup(val++);
460 			if (freq_table[j].frequency == freq) {
461 				imx6_soc_volt[soc_opp_count++] = volt;
462 				break;
463 			}
464 		}
465 	}
466 
467 soc_opp_out:
468 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
469 	if (soc_opp_count != num) {
470 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
471 		for (j = 0; j < num; j++)
472 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
473 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
474 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
475 	}
476 
477 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
478 		transition_latency = CPUFREQ_ETERNAL;
479 
480 	/*
481 	 * Calculate the ramp time for max voltage change in the
482 	 * VDDSOC and VDDPU regulators.
483 	 */
484 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
485 	if (ret > 0)
486 		transition_latency += ret * 1000;
487 	if (!IS_ERR(pu_reg)) {
488 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
489 		if (ret > 0)
490 			transition_latency += ret * 1000;
491 	}
492 
493 	/*
494 	 * OPP is maintained in order of increasing frequency, and
495 	 * freq_table initialised from OPP is therefore sorted in the
496 	 * same order.
497 	 */
498 	max_freq = freq_table[--num].frequency;
499 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
500 				  freq_table[0].frequency * 1000, true);
501 	min_volt = dev_pm_opp_get_voltage(opp);
502 	dev_pm_opp_put(opp);
503 	opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
504 	max_volt = dev_pm_opp_get_voltage(opp);
505 	dev_pm_opp_put(opp);
506 
507 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
508 	if (ret > 0)
509 		transition_latency += ret * 1000;
510 
511 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
512 	if (ret) {
513 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
514 		goto free_freq_table;
515 	}
516 
517 	of_node_put(np);
518 	return 0;
519 
520 free_freq_table:
521 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
522 out_free_opp:
523 	if (free_opp)
524 		dev_pm_opp_of_remove_table(cpu_dev);
525 put_reg:
526 	if (!IS_ERR(arm_reg))
527 		regulator_put(arm_reg);
528 	if (!IS_ERR(pu_reg))
529 		regulator_put(pu_reg);
530 	if (!IS_ERR(soc_reg))
531 		regulator_put(soc_reg);
532 
533 	clk_bulk_put(num_clks, clks);
534 put_node:
535 	of_node_put(np);
536 
537 	return ret;
538 }
539 
540 static int imx6q_cpufreq_remove(struct platform_device *pdev)
541 {
542 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
543 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
544 	if (free_opp)
545 		dev_pm_opp_of_remove_table(cpu_dev);
546 	regulator_put(arm_reg);
547 	if (!IS_ERR(pu_reg))
548 		regulator_put(pu_reg);
549 	regulator_put(soc_reg);
550 
551 	clk_bulk_put(num_clks, clks);
552 
553 	return 0;
554 }
555 
556 static struct platform_driver imx6q_cpufreq_platdrv = {
557 	.driver = {
558 		.name	= "imx6q-cpufreq",
559 	},
560 	.probe		= imx6q_cpufreq_probe,
561 	.remove		= imx6q_cpufreq_remove,
562 };
563 module_platform_driver(imx6q_cpufreq_platdrv);
564 
565 MODULE_ALIAS("platform:imx6q-cpufreq");
566 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
567 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
568 MODULE_LICENSE("GPL");
569