xref: /linux/drivers/cpufreq/imx6q-cpufreq.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18 
19 #define PU_SOC_VOLTAGE_NORMAL	1250000
20 #define PU_SOC_VOLTAGE_HIGH	1275000
21 #define FREQ_1P2_GHZ		1200000000
22 
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26 
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32 
33 /* clk used by i.MX6UL */
34 static struct clk *pll2_bus_clk;
35 static struct clk *secondary_sel_clk;
36 
37 static struct device *cpu_dev;
38 static bool free_opp;
39 static struct cpufreq_frequency_table *freq_table;
40 static unsigned int transition_latency;
41 
42 static u32 *imx6_soc_volt;
43 static u32 soc_opp_count;
44 
45 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
46 {
47 	struct dev_pm_opp *opp;
48 	unsigned long freq_hz, volt, volt_old;
49 	unsigned int old_freq, new_freq;
50 	int ret;
51 
52 	new_freq = freq_table[index].frequency;
53 	freq_hz = new_freq * 1000;
54 	old_freq = clk_get_rate(arm_clk) / 1000;
55 
56 	rcu_read_lock();
57 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
58 	if (IS_ERR(opp)) {
59 		rcu_read_unlock();
60 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
61 		return PTR_ERR(opp);
62 	}
63 
64 	volt = dev_pm_opp_get_voltage(opp);
65 	rcu_read_unlock();
66 	volt_old = regulator_get_voltage(arm_reg);
67 
68 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
69 		old_freq / 1000, volt_old / 1000,
70 		new_freq / 1000, volt / 1000);
71 
72 	/* scaling up?  scale voltage before frequency */
73 	if (new_freq > old_freq) {
74 		if (!IS_ERR(pu_reg)) {
75 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
76 			if (ret) {
77 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
78 				return ret;
79 			}
80 		}
81 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
82 		if (ret) {
83 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
84 			return ret;
85 		}
86 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
87 		if (ret) {
88 			dev_err(cpu_dev,
89 				"failed to scale vddarm up: %d\n", ret);
90 			return ret;
91 		}
92 	}
93 
94 	/*
95 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
96 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
97 	 * PLL1 is as below.
98 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
99 	 * flow is slightly different from other i.MX6 OSC.
100 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
101 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
102 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
103 	 *  - Disable pll2_pfd2_396m_clk
104 	 */
105 	if (of_machine_is_compatible("fsl,imx6ul")) {
106 		/*
107 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
108 		 * CPU may run at higher than 528MHz, this will lead to
109 		 * the system unstable if the voltage is lower than the
110 		 * voltage of 528MHz, so lower the CPU frequency to one
111 		 * half before changing CPU frequency.
112 		 */
113 		clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
114 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
115 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
116 			clk_set_parent(secondary_sel_clk, pll2_bus_clk);
117 		else
118 			clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
119 		clk_set_parent(step_clk, secondary_sel_clk);
120 		clk_set_parent(pll1_sw_clk, step_clk);
121 	} else {
122 		clk_set_parent(step_clk, pll2_pfd2_396m_clk);
123 		clk_set_parent(pll1_sw_clk, step_clk);
124 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
125 			clk_set_rate(pll1_sys_clk, new_freq * 1000);
126 			clk_set_parent(pll1_sw_clk, pll1_sys_clk);
127 		}
128 	}
129 
130 	/* Ensure the arm clock divider is what we expect */
131 	ret = clk_set_rate(arm_clk, new_freq * 1000);
132 	if (ret) {
133 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
134 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
135 		return ret;
136 	}
137 
138 	/* scaling down?  scale voltage after frequency */
139 	if (new_freq < old_freq) {
140 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
141 		if (ret) {
142 			dev_warn(cpu_dev,
143 				 "failed to scale vddarm down: %d\n", ret);
144 			ret = 0;
145 		}
146 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
147 		if (ret) {
148 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
149 			ret = 0;
150 		}
151 		if (!IS_ERR(pu_reg)) {
152 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
153 			if (ret) {
154 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
155 				ret = 0;
156 			}
157 		}
158 	}
159 
160 	return 0;
161 }
162 
163 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
164 {
165 	policy->clk = arm_clk;
166 	return cpufreq_generic_init(policy, freq_table, transition_latency);
167 }
168 
169 static struct cpufreq_driver imx6q_cpufreq_driver = {
170 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
171 	.verify = cpufreq_generic_frequency_table_verify,
172 	.target_index = imx6q_set_target,
173 	.get = cpufreq_generic_get,
174 	.init = imx6q_cpufreq_init,
175 	.name = "imx6q-cpufreq",
176 	.attr = cpufreq_generic_attr,
177 };
178 
179 static int imx6q_cpufreq_probe(struct platform_device *pdev)
180 {
181 	struct device_node *np;
182 	struct dev_pm_opp *opp;
183 	unsigned long min_volt, max_volt;
184 	int num, ret;
185 	const struct property *prop;
186 	const __be32 *val;
187 	u32 nr, i, j;
188 
189 	cpu_dev = get_cpu_device(0);
190 	if (!cpu_dev) {
191 		pr_err("failed to get cpu0 device\n");
192 		return -ENODEV;
193 	}
194 
195 	np = of_node_get(cpu_dev->of_node);
196 	if (!np) {
197 		dev_err(cpu_dev, "failed to find cpu0 node\n");
198 		return -ENOENT;
199 	}
200 
201 	arm_clk = clk_get(cpu_dev, "arm");
202 	pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
203 	pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
204 	step_clk = clk_get(cpu_dev, "step");
205 	pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
206 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
207 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
208 		dev_err(cpu_dev, "failed to get clocks\n");
209 		ret = -ENOENT;
210 		goto put_clk;
211 	}
212 
213 	if (of_machine_is_compatible("fsl,imx6ul")) {
214 		pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
215 		secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
216 		if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
217 			dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
218 			ret = -ENOENT;
219 			goto put_clk;
220 		}
221 	}
222 
223 	arm_reg = regulator_get(cpu_dev, "arm");
224 	pu_reg = regulator_get_optional(cpu_dev, "pu");
225 	soc_reg = regulator_get(cpu_dev, "soc");
226 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
227 		dev_err(cpu_dev, "failed to get regulators\n");
228 		ret = -ENOENT;
229 		goto put_reg;
230 	}
231 
232 	/*
233 	 * We expect an OPP table supplied by platform.
234 	 * Just, incase the platform did not supply the OPP
235 	 * table, it will try to get it.
236 	 */
237 	num = dev_pm_opp_get_opp_count(cpu_dev);
238 	if (num < 0) {
239 		ret = dev_pm_opp_of_add_table(cpu_dev);
240 		if (ret < 0) {
241 			dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
242 			goto put_reg;
243 		}
244 
245 		/* Because we have added the OPPs here, we must free them */
246 		free_opp = true;
247 
248 		num = dev_pm_opp_get_opp_count(cpu_dev);
249 		if (num < 0) {
250 			ret = num;
251 			dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
252 			goto out_free_opp;
253 		}
254 	}
255 
256 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
257 	if (ret) {
258 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
259 		goto put_reg;
260 	}
261 
262 	/* Make imx6_soc_volt array's size same as arm opp number */
263 	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
264 	if (imx6_soc_volt == NULL) {
265 		ret = -ENOMEM;
266 		goto free_freq_table;
267 	}
268 
269 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
270 	if (!prop || !prop->value)
271 		goto soc_opp_out;
272 
273 	/*
274 	 * Each OPP is a set of tuples consisting of frequency and
275 	 * voltage like <freq-kHz vol-uV>.
276 	 */
277 	nr = prop->length / sizeof(u32);
278 	if (nr % 2 || (nr / 2) < num)
279 		goto soc_opp_out;
280 
281 	for (j = 0; j < num; j++) {
282 		val = prop->value;
283 		for (i = 0; i < nr / 2; i++) {
284 			unsigned long freq = be32_to_cpup(val++);
285 			unsigned long volt = be32_to_cpup(val++);
286 			if (freq_table[j].frequency == freq) {
287 				imx6_soc_volt[soc_opp_count++] = volt;
288 				break;
289 			}
290 		}
291 	}
292 
293 soc_opp_out:
294 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
295 	if (soc_opp_count != num) {
296 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
297 		for (j = 0; j < num; j++)
298 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
299 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
300 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
301 	}
302 
303 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
304 		transition_latency = CPUFREQ_ETERNAL;
305 
306 	/*
307 	 * Calculate the ramp time for max voltage change in the
308 	 * VDDSOC and VDDPU regulators.
309 	 */
310 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
311 	if (ret > 0)
312 		transition_latency += ret * 1000;
313 	if (!IS_ERR(pu_reg)) {
314 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
315 		if (ret > 0)
316 			transition_latency += ret * 1000;
317 	}
318 
319 	/*
320 	 * OPP is maintained in order of increasing frequency, and
321 	 * freq_table initialised from OPP is therefore sorted in the
322 	 * same order.
323 	 */
324 	rcu_read_lock();
325 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
326 				  freq_table[0].frequency * 1000, true);
327 	min_volt = dev_pm_opp_get_voltage(opp);
328 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
329 				  freq_table[--num].frequency * 1000, true);
330 	max_volt = dev_pm_opp_get_voltage(opp);
331 	rcu_read_unlock();
332 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
333 	if (ret > 0)
334 		transition_latency += ret * 1000;
335 
336 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
337 	if (ret) {
338 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
339 		goto free_freq_table;
340 	}
341 
342 	of_node_put(np);
343 	return 0;
344 
345 free_freq_table:
346 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
347 out_free_opp:
348 	if (free_opp)
349 		dev_pm_opp_of_remove_table(cpu_dev);
350 put_reg:
351 	if (!IS_ERR(arm_reg))
352 		regulator_put(arm_reg);
353 	if (!IS_ERR(pu_reg))
354 		regulator_put(pu_reg);
355 	if (!IS_ERR(soc_reg))
356 		regulator_put(soc_reg);
357 put_clk:
358 	if (!IS_ERR(arm_clk))
359 		clk_put(arm_clk);
360 	if (!IS_ERR(pll1_sys_clk))
361 		clk_put(pll1_sys_clk);
362 	if (!IS_ERR(pll1_sw_clk))
363 		clk_put(pll1_sw_clk);
364 	if (!IS_ERR(step_clk))
365 		clk_put(step_clk);
366 	if (!IS_ERR(pll2_pfd2_396m_clk))
367 		clk_put(pll2_pfd2_396m_clk);
368 	if (!IS_ERR(pll2_bus_clk))
369 		clk_put(pll2_bus_clk);
370 	if (!IS_ERR(secondary_sel_clk))
371 		clk_put(secondary_sel_clk);
372 	of_node_put(np);
373 	return ret;
374 }
375 
376 static int imx6q_cpufreq_remove(struct platform_device *pdev)
377 {
378 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
379 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
380 	if (free_opp)
381 		dev_pm_opp_of_remove_table(cpu_dev);
382 	regulator_put(arm_reg);
383 	if (!IS_ERR(pu_reg))
384 		regulator_put(pu_reg);
385 	regulator_put(soc_reg);
386 	clk_put(arm_clk);
387 	clk_put(pll1_sys_clk);
388 	clk_put(pll1_sw_clk);
389 	clk_put(step_clk);
390 	clk_put(pll2_pfd2_396m_clk);
391 	clk_put(pll2_bus_clk);
392 	clk_put(secondary_sel_clk);
393 
394 	return 0;
395 }
396 
397 static struct platform_driver imx6q_cpufreq_platdrv = {
398 	.driver = {
399 		.name	= "imx6q-cpufreq",
400 	},
401 	.probe		= imx6q_cpufreq_probe,
402 	.remove		= imx6q_cpufreq_remove,
403 };
404 module_platform_driver(imx6q_cpufreq_platdrv);
405 
406 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
407 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
408 MODULE_LICENSE("GPL");
409