xref: /linux/drivers/cpufreq/cpufreq_ondemand.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
30 #include <linux/mutex.h>
31 
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36 
37 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
38 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
39 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
40 
41 /*
42  * The polling frequency of this governor depends on the capability of
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with
45  * transition latency <= 10mS, using appropriate sampling
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48  * this governor will not work.
49  * All times here are in uS.
50  */
51 static unsigned int def_sampling_rate;
52 #define MIN_SAMPLING_RATE_RATIO			(2)
53 /* for correct statistics, we need at least 10 ticks between each measure */
54 #define MIN_STAT_SAMPLING_RATE			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
56 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
57 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
58 #define DEF_SAMPLING_DOWN_FACTOR		(1)
59 #define MAX_SAMPLING_DOWN_FACTOR		(10)
60 #define TRANSITION_LATENCY_LIMIT		(10 * 1000)
61 
62 static void do_dbs_timer(void *data);
63 
64 struct cpu_dbs_info_s {
65 	struct cpufreq_policy *cur_policy;
66 	unsigned int prev_cpu_idle_up;
67 	unsigned int prev_cpu_idle_down;
68 	unsigned int enable;
69 };
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71 
72 static unsigned int dbs_enable;	/* number of CPUs using this policy */
73 
74 static DEFINE_MUTEX (dbs_mutex);
75 static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);
76 
77 struct dbs_tuners {
78 	unsigned int sampling_rate;
79 	unsigned int sampling_down_factor;
80 	unsigned int up_threshold;
81 	unsigned int ignore_nice;
82 };
83 
84 static struct dbs_tuners dbs_tuners_ins = {
85 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
86 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
87 	.ignore_nice = 0,
88 };
89 
90 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
91 {
92 	return	kstat_cpu(cpu).cpustat.idle +
93 		kstat_cpu(cpu).cpustat.iowait +
94 		( dbs_tuners_ins.ignore_nice ?
95 		  kstat_cpu(cpu).cpustat.nice :
96 		  0);
97 }
98 
99 /************************** sysfs interface ************************/
100 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
101 {
102 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
103 }
104 
105 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
106 {
107 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
108 }
109 
110 #define define_one_ro(_name)		\
111 static struct freq_attr _name =		\
112 __ATTR(_name, 0444, show_##_name, NULL)
113 
114 define_one_ro(sampling_rate_max);
115 define_one_ro(sampling_rate_min);
116 
117 /* cpufreq_ondemand Governor Tunables */
118 #define show_one(file_name, object)					\
119 static ssize_t show_##file_name						\
120 (struct cpufreq_policy *unused, char *buf)				\
121 {									\
122 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
123 }
124 show_one(sampling_rate, sampling_rate);
125 show_one(sampling_down_factor, sampling_down_factor);
126 show_one(up_threshold, up_threshold);
127 show_one(ignore_nice_load, ignore_nice);
128 
129 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
130 		const char *buf, size_t count)
131 {
132 	unsigned int input;
133 	int ret;
134 	ret = sscanf (buf, "%u", &input);
135 	if (ret != 1 )
136 		return -EINVAL;
137 
138 	if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
139 		return -EINVAL;
140 
141 	mutex_lock(&dbs_mutex);
142 	dbs_tuners_ins.sampling_down_factor = input;
143 	mutex_unlock(&dbs_mutex);
144 
145 	return count;
146 }
147 
148 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
149 		const char *buf, size_t count)
150 {
151 	unsigned int input;
152 	int ret;
153 	ret = sscanf (buf, "%u", &input);
154 
155 	mutex_lock(&dbs_mutex);
156 	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
157 		mutex_unlock(&dbs_mutex);
158 		return -EINVAL;
159 	}
160 
161 	dbs_tuners_ins.sampling_rate = input;
162 	mutex_unlock(&dbs_mutex);
163 
164 	return count;
165 }
166 
167 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
168 		const char *buf, size_t count)
169 {
170 	unsigned int input;
171 	int ret;
172 	ret = sscanf (buf, "%u", &input);
173 
174 	mutex_lock(&dbs_mutex);
175 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
176 			input < MIN_FREQUENCY_UP_THRESHOLD) {
177 		mutex_unlock(&dbs_mutex);
178 		return -EINVAL;
179 	}
180 
181 	dbs_tuners_ins.up_threshold = input;
182 	mutex_unlock(&dbs_mutex);
183 
184 	return count;
185 }
186 
187 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
188 		const char *buf, size_t count)
189 {
190 	unsigned int input;
191 	int ret;
192 
193 	unsigned int j;
194 
195 	ret = sscanf (buf, "%u", &input);
196 	if ( ret != 1 )
197 		return -EINVAL;
198 
199 	if ( input > 1 )
200 		input = 1;
201 
202 	mutex_lock(&dbs_mutex);
203 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
204 		mutex_unlock(&dbs_mutex);
205 		return count;
206 	}
207 	dbs_tuners_ins.ignore_nice = input;
208 
209 	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
210 	for_each_online_cpu(j) {
211 		struct cpu_dbs_info_s *j_dbs_info;
212 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
213 		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
214 		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
215 	}
216 	mutex_unlock(&dbs_mutex);
217 
218 	return count;
219 }
220 
221 #define define_one_rw(_name) \
222 static struct freq_attr _name = \
223 __ATTR(_name, 0644, show_##_name, store_##_name)
224 
225 define_one_rw(sampling_rate);
226 define_one_rw(sampling_down_factor);
227 define_one_rw(up_threshold);
228 define_one_rw(ignore_nice_load);
229 
230 static struct attribute * dbs_attributes[] = {
231 	&sampling_rate_max.attr,
232 	&sampling_rate_min.attr,
233 	&sampling_rate.attr,
234 	&sampling_down_factor.attr,
235 	&up_threshold.attr,
236 	&ignore_nice_load.attr,
237 	NULL
238 };
239 
240 static struct attribute_group dbs_attr_group = {
241 	.attrs = dbs_attributes,
242 	.name = "ondemand",
243 };
244 
245 /************************** sysfs end ************************/
246 
247 static void dbs_check_cpu(int cpu)
248 {
249 	unsigned int idle_ticks, up_idle_ticks, total_ticks;
250 	unsigned int freq_next;
251 	unsigned int freq_down_sampling_rate;
252 	static int down_skip[NR_CPUS];
253 	struct cpu_dbs_info_s *this_dbs_info;
254 
255 	struct cpufreq_policy *policy;
256 	unsigned int j;
257 
258 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
259 	if (!this_dbs_info->enable)
260 		return;
261 
262 	policy = this_dbs_info->cur_policy;
263 	/*
264 	 * Every sampling_rate, we check, if current idle time is less
265 	 * than 20% (default), then we try to increase frequency
266 	 * Every sampling_rate*sampling_down_factor, we look for a the lowest
267 	 * frequency which can sustain the load while keeping idle time over
268 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
269 	 *
270 	 * Any frequency increase takes it to the maximum frequency.
271 	 * Frequency reduction happens at minimum steps of
272 	 * 5% (default) of current frequency
273 	 */
274 
275 	/* Check for frequency increase */
276 	idle_ticks = UINT_MAX;
277 	for_each_cpu_mask(j, policy->cpus) {
278 		unsigned int tmp_idle_ticks, total_idle_ticks;
279 		struct cpu_dbs_info_s *j_dbs_info;
280 
281 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
282 		total_idle_ticks = get_cpu_idle_time(j);
283 		tmp_idle_ticks = total_idle_ticks -
284 			j_dbs_info->prev_cpu_idle_up;
285 		j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
286 
287 		if (tmp_idle_ticks < idle_ticks)
288 			idle_ticks = tmp_idle_ticks;
289 	}
290 
291 	/* Scale idle ticks by 100 and compare with up and down ticks */
292 	idle_ticks *= 100;
293 	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
294 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
295 
296 	if (idle_ticks < up_idle_ticks) {
297 		down_skip[cpu] = 0;
298 		for_each_cpu_mask(j, policy->cpus) {
299 			struct cpu_dbs_info_s *j_dbs_info;
300 
301 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
302 			j_dbs_info->prev_cpu_idle_down =
303 					j_dbs_info->prev_cpu_idle_up;
304 		}
305 		/* if we are already at full speed then break out early */
306 		if (policy->cur == policy->max)
307 			return;
308 
309 		__cpufreq_driver_target(policy, policy->max,
310 			CPUFREQ_RELATION_H);
311 		return;
312 	}
313 
314 	/* Check for frequency decrease */
315 	down_skip[cpu]++;
316 	if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
317 		return;
318 
319 	idle_ticks = UINT_MAX;
320 	for_each_cpu_mask(j, policy->cpus) {
321 		unsigned int tmp_idle_ticks, total_idle_ticks;
322 		struct cpu_dbs_info_s *j_dbs_info;
323 
324 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
325 		/* Check for frequency decrease */
326 		total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
327 		tmp_idle_ticks = total_idle_ticks -
328 			j_dbs_info->prev_cpu_idle_down;
329 		j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
330 
331 		if (tmp_idle_ticks < idle_ticks)
332 			idle_ticks = tmp_idle_ticks;
333 	}
334 
335 	down_skip[cpu] = 0;
336 	/* if we cannot reduce the frequency anymore, break out early */
337 	if (policy->cur == policy->min)
338 		return;
339 
340 	/* Compute how many ticks there are between two measurements */
341 	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
342 		dbs_tuners_ins.sampling_down_factor;
343 	total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
344 
345 	/*
346 	 * The optimal frequency is the frequency that is the lowest that
347 	 * can support the current CPU usage without triggering the up
348 	 * policy. To be safe, we focus 10 points under the threshold.
349 	 */
350 	freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
351 	freq_next = (freq_next * policy->cur) /
352 			(dbs_tuners_ins.up_threshold - 10);
353 
354 	if (freq_next < policy->min)
355 		freq_next = policy->min;
356 
357 	if (freq_next <= ((policy->cur * 95) / 100))
358 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
359 }
360 
361 static void do_dbs_timer(void *data)
362 {
363 	int i;
364 	mutex_lock(&dbs_mutex);
365 	for_each_online_cpu(i)
366 		dbs_check_cpu(i);
367 	schedule_delayed_work(&dbs_work,
368 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
369 	mutex_unlock(&dbs_mutex);
370 }
371 
372 static inline void dbs_timer_init(void)
373 {
374 	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
375 	schedule_delayed_work(&dbs_work,
376 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
377 	return;
378 }
379 
380 static inline void dbs_timer_exit(void)
381 {
382 	cancel_delayed_work(&dbs_work);
383 	return;
384 }
385 
386 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
387 				   unsigned int event)
388 {
389 	unsigned int cpu = policy->cpu;
390 	struct cpu_dbs_info_s *this_dbs_info;
391 	unsigned int j;
392 
393 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
394 
395 	switch (event) {
396 	case CPUFREQ_GOV_START:
397 		if ((!cpu_online(cpu)) ||
398 		    (!policy->cur))
399 			return -EINVAL;
400 
401 		if (policy->cpuinfo.transition_latency >
402 				(TRANSITION_LATENCY_LIMIT * 1000)) {
403 			printk(KERN_WARNING "ondemand governor failed to load "
404 			       "due to too long transition latency\n");
405 			return -EINVAL;
406 		}
407 		if (this_dbs_info->enable) /* Already enabled */
408 			break;
409 
410 		mutex_lock(&dbs_mutex);
411 		for_each_cpu_mask(j, policy->cpus) {
412 			struct cpu_dbs_info_s *j_dbs_info;
413 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
414 			j_dbs_info->cur_policy = policy;
415 
416 			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
417 			j_dbs_info->prev_cpu_idle_down
418 				= j_dbs_info->prev_cpu_idle_up;
419 		}
420 		this_dbs_info->enable = 1;
421 		sysfs_create_group(&policy->kobj, &dbs_attr_group);
422 		dbs_enable++;
423 		/*
424 		 * Start the timerschedule work, when this governor
425 		 * is used for first time
426 		 */
427 		if (dbs_enable == 1) {
428 			unsigned int latency;
429 			/* policy latency is in nS. Convert it to uS first */
430 			latency = policy->cpuinfo.transition_latency / 1000;
431 			if (latency == 0)
432 				latency = 1;
433 
434 			def_sampling_rate = latency *
435 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
436 
437 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
438 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
439 
440 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
441 			dbs_timer_init();
442 		}
443 
444 		mutex_unlock(&dbs_mutex);
445 		break;
446 
447 	case CPUFREQ_GOV_STOP:
448 		mutex_lock(&dbs_mutex);
449 		this_dbs_info->enable = 0;
450 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
451 		dbs_enable--;
452 		/*
453 		 * Stop the timerschedule work, when this governor
454 		 * is used for first time
455 		 */
456 		if (dbs_enable == 0)
457 			dbs_timer_exit();
458 
459 		mutex_unlock(&dbs_mutex);
460 
461 		break;
462 
463 	case CPUFREQ_GOV_LIMITS:
464 		mutex_lock(&dbs_mutex);
465 		if (policy->max < this_dbs_info->cur_policy->cur)
466 			__cpufreq_driver_target(
467 					this_dbs_info->cur_policy,
468 					policy->max, CPUFREQ_RELATION_H);
469 		else if (policy->min > this_dbs_info->cur_policy->cur)
470 			__cpufreq_driver_target(
471 					this_dbs_info->cur_policy,
472 					policy->min, CPUFREQ_RELATION_L);
473 		mutex_unlock(&dbs_mutex);
474 		break;
475 	}
476 	return 0;
477 }
478 
479 static struct cpufreq_governor cpufreq_gov_dbs = {
480 	.name		= "ondemand",
481 	.governor	= cpufreq_governor_dbs,
482 	.owner		= THIS_MODULE,
483 };
484 
485 static int __init cpufreq_gov_dbs_init(void)
486 {
487 	return cpufreq_register_governor(&cpufreq_gov_dbs);
488 }
489 
490 static void __exit cpufreq_gov_dbs_exit(void)
491 {
492 	/* Make sure that the scheduled work is indeed not running */
493 	flush_scheduled_work();
494 
495 	cpufreq_unregister_governor(&cpufreq_gov_dbs);
496 }
497 
498 
499 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
500 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
501 		"Low Latency Frequency Transition capable processors");
502 MODULE_LICENSE ("GPL");
503 
504 module_init(cpufreq_gov_dbs_init);
505 module_exit(cpufreq_gov_dbs_exit);
506