xref: /linux/drivers/cpufreq/cpufreq_ondemand.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25 
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30 
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_SAMPLING_DOWN_FACTOR		(1)
34 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
39 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
40 
41 /*
42  * The polling frequency of this governor depends on the capability of
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with
45  * transition latency <= 10mS, using appropriate sampling
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48  * this governor will not work.
49  * All times here are in uS.
50  */
51 #define MIN_SAMPLING_RATE_RATIO			(2)
52 
53 static unsigned int min_sampling_rate;
54 
55 #define LATENCY_MULTIPLIER			(1000)
56 #define MIN_LATENCY_MULTIPLIER			(100)
57 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
58 
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 				unsigned int event);
62 
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67        .name                   = "ondemand",
68        .governor               = cpufreq_governor_dbs,
69        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70        .owner                  = THIS_MODULE,
71 };
72 
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75 
76 struct cpu_dbs_info_s {
77 	cputime64_t prev_cpu_idle;
78 	cputime64_t prev_cpu_iowait;
79 	cputime64_t prev_cpu_wall;
80 	cputime64_t prev_cpu_nice;
81 	struct cpufreq_policy *cur_policy;
82 	struct delayed_work work;
83 	struct cpufreq_frequency_table *freq_table;
84 	unsigned int freq_lo;
85 	unsigned int freq_lo_jiffies;
86 	unsigned int freq_hi_jiffies;
87 	unsigned int rate_mult;
88 	int cpu;
89 	unsigned int sample_type:1;
90 	/*
91 	 * percpu mutex that serializes governor limit change with
92 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 	 * when user is changing the governor or limits.
94 	 */
95 	struct mutex timer_mutex;
96 };
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98 
99 static unsigned int dbs_enable;	/* number of CPUs using this policy */
100 
101 /*
102  * dbs_mutex protects dbs_enable in governor start/stop.
103  */
104 static DEFINE_MUTEX(dbs_mutex);
105 
106 static struct dbs_tuners {
107 	unsigned int sampling_rate;
108 	unsigned int up_threshold;
109 	unsigned int down_differential;
110 	unsigned int ignore_nice;
111 	unsigned int sampling_down_factor;
112 	unsigned int powersave_bias;
113 	unsigned int io_is_busy;
114 } dbs_tuners_ins = {
115 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117 	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118 	.ignore_nice = 0,
119 	.powersave_bias = 0,
120 };
121 
122 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
123 							cputime64_t *wall)
124 {
125 	cputime64_t idle_time;
126 	cputime64_t cur_wall_time;
127 	cputime64_t busy_time;
128 
129 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
131 			kstat_cpu(cpu).cpustat.system);
132 
133 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
134 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
135 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
136 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
137 
138 	idle_time = cputime64_sub(cur_wall_time, busy_time);
139 	if (wall)
140 		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
141 
142 	return (cputime64_t)jiffies_to_usecs(idle_time);
143 }
144 
145 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
146 {
147 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
148 
149 	if (idle_time == -1ULL)
150 		return get_cpu_idle_time_jiffy(cpu, wall);
151 
152 	return idle_time;
153 }
154 
155 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
156 {
157 	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
158 
159 	if (iowait_time == -1ULL)
160 		return 0;
161 
162 	return iowait_time;
163 }
164 
165 /*
166  * Find right freq to be set now with powersave_bias on.
167  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
168  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
169  */
170 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
171 					  unsigned int freq_next,
172 					  unsigned int relation)
173 {
174 	unsigned int freq_req, freq_reduc, freq_avg;
175 	unsigned int freq_hi, freq_lo;
176 	unsigned int index = 0;
177 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
178 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
179 						   policy->cpu);
180 
181 	if (!dbs_info->freq_table) {
182 		dbs_info->freq_lo = 0;
183 		dbs_info->freq_lo_jiffies = 0;
184 		return freq_next;
185 	}
186 
187 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
188 			relation, &index);
189 	freq_req = dbs_info->freq_table[index].frequency;
190 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
191 	freq_avg = freq_req - freq_reduc;
192 
193 	/* Find freq bounds for freq_avg in freq_table */
194 	index = 0;
195 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
196 			CPUFREQ_RELATION_H, &index);
197 	freq_lo = dbs_info->freq_table[index].frequency;
198 	index = 0;
199 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
200 			CPUFREQ_RELATION_L, &index);
201 	freq_hi = dbs_info->freq_table[index].frequency;
202 
203 	/* Find out how long we have to be in hi and lo freqs */
204 	if (freq_hi == freq_lo) {
205 		dbs_info->freq_lo = 0;
206 		dbs_info->freq_lo_jiffies = 0;
207 		return freq_lo;
208 	}
209 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
210 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
211 	jiffies_hi += ((freq_hi - freq_lo) / 2);
212 	jiffies_hi /= (freq_hi - freq_lo);
213 	jiffies_lo = jiffies_total - jiffies_hi;
214 	dbs_info->freq_lo = freq_lo;
215 	dbs_info->freq_lo_jiffies = jiffies_lo;
216 	dbs_info->freq_hi_jiffies = jiffies_hi;
217 	return freq_hi;
218 }
219 
220 static void ondemand_powersave_bias_init_cpu(int cpu)
221 {
222 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
223 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
224 	dbs_info->freq_lo = 0;
225 }
226 
227 static void ondemand_powersave_bias_init(void)
228 {
229 	int i;
230 	for_each_online_cpu(i) {
231 		ondemand_powersave_bias_init_cpu(i);
232 	}
233 }
234 
235 /************************** sysfs interface ************************/
236 
237 static ssize_t show_sampling_rate_min(struct kobject *kobj,
238 				      struct attribute *attr, char *buf)
239 {
240 	return sprintf(buf, "%u\n", min_sampling_rate);
241 }
242 
243 define_one_global_ro(sampling_rate_min);
244 
245 /* cpufreq_ondemand Governor Tunables */
246 #define show_one(file_name, object)					\
247 static ssize_t show_##file_name						\
248 (struct kobject *kobj, struct attribute *attr, char *buf)              \
249 {									\
250 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
251 }
252 show_one(sampling_rate, sampling_rate);
253 show_one(io_is_busy, io_is_busy);
254 show_one(up_threshold, up_threshold);
255 show_one(sampling_down_factor, sampling_down_factor);
256 show_one(ignore_nice_load, ignore_nice);
257 show_one(powersave_bias, powersave_bias);
258 
259 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
260 				   const char *buf, size_t count)
261 {
262 	unsigned int input;
263 	int ret;
264 	ret = sscanf(buf, "%u", &input);
265 	if (ret != 1)
266 		return -EINVAL;
267 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
268 	return count;
269 }
270 
271 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
272 				   const char *buf, size_t count)
273 {
274 	unsigned int input;
275 	int ret;
276 
277 	ret = sscanf(buf, "%u", &input);
278 	if (ret != 1)
279 		return -EINVAL;
280 	dbs_tuners_ins.io_is_busy = !!input;
281 	return count;
282 }
283 
284 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
285 				  const char *buf, size_t count)
286 {
287 	unsigned int input;
288 	int ret;
289 	ret = sscanf(buf, "%u", &input);
290 
291 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
292 			input < MIN_FREQUENCY_UP_THRESHOLD) {
293 		return -EINVAL;
294 	}
295 	dbs_tuners_ins.up_threshold = input;
296 	return count;
297 }
298 
299 static ssize_t store_sampling_down_factor(struct kobject *a,
300 			struct attribute *b, const char *buf, size_t count)
301 {
302 	unsigned int input, j;
303 	int ret;
304 	ret = sscanf(buf, "%u", &input);
305 
306 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
307 		return -EINVAL;
308 	dbs_tuners_ins.sampling_down_factor = input;
309 
310 	/* Reset down sampling multiplier in case it was active */
311 	for_each_online_cpu(j) {
312 		struct cpu_dbs_info_s *dbs_info;
313 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
314 		dbs_info->rate_mult = 1;
315 	}
316 	return count;
317 }
318 
319 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
320 				      const char *buf, size_t count)
321 {
322 	unsigned int input;
323 	int ret;
324 
325 	unsigned int j;
326 
327 	ret = sscanf(buf, "%u", &input);
328 	if (ret != 1)
329 		return -EINVAL;
330 
331 	if (input > 1)
332 		input = 1;
333 
334 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
335 		return count;
336 	}
337 	dbs_tuners_ins.ignore_nice = input;
338 
339 	/* we need to re-evaluate prev_cpu_idle */
340 	for_each_online_cpu(j) {
341 		struct cpu_dbs_info_s *dbs_info;
342 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
343 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
344 						&dbs_info->prev_cpu_wall);
345 		if (dbs_tuners_ins.ignore_nice)
346 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
347 
348 	}
349 	return count;
350 }
351 
352 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
353 				    const char *buf, size_t count)
354 {
355 	unsigned int input;
356 	int ret;
357 	ret = sscanf(buf, "%u", &input);
358 
359 	if (ret != 1)
360 		return -EINVAL;
361 
362 	if (input > 1000)
363 		input = 1000;
364 
365 	dbs_tuners_ins.powersave_bias = input;
366 	ondemand_powersave_bias_init();
367 	return count;
368 }
369 
370 define_one_global_rw(sampling_rate);
371 define_one_global_rw(io_is_busy);
372 define_one_global_rw(up_threshold);
373 define_one_global_rw(sampling_down_factor);
374 define_one_global_rw(ignore_nice_load);
375 define_one_global_rw(powersave_bias);
376 
377 static struct attribute *dbs_attributes[] = {
378 	&sampling_rate_min.attr,
379 	&sampling_rate.attr,
380 	&up_threshold.attr,
381 	&sampling_down_factor.attr,
382 	&ignore_nice_load.attr,
383 	&powersave_bias.attr,
384 	&io_is_busy.attr,
385 	NULL
386 };
387 
388 static struct attribute_group dbs_attr_group = {
389 	.attrs = dbs_attributes,
390 	.name = "ondemand",
391 };
392 
393 /************************** sysfs end ************************/
394 
395 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
396 {
397 	if (dbs_tuners_ins.powersave_bias)
398 		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
399 	else if (p->cur == p->max)
400 		return;
401 
402 	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
403 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
404 }
405 
406 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
407 {
408 	unsigned int max_load_freq;
409 
410 	struct cpufreq_policy *policy;
411 	unsigned int j;
412 
413 	this_dbs_info->freq_lo = 0;
414 	policy = this_dbs_info->cur_policy;
415 
416 	/*
417 	 * Every sampling_rate, we check, if current idle time is less
418 	 * than 20% (default), then we try to increase frequency
419 	 * Every sampling_rate, we look for a the lowest
420 	 * frequency which can sustain the load while keeping idle time over
421 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
422 	 *
423 	 * Any frequency increase takes it to the maximum frequency.
424 	 * Frequency reduction happens at minimum steps of
425 	 * 5% (default) of current frequency
426 	 */
427 
428 	/* Get Absolute Load - in terms of freq */
429 	max_load_freq = 0;
430 
431 	for_each_cpu(j, policy->cpus) {
432 		struct cpu_dbs_info_s *j_dbs_info;
433 		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
434 		unsigned int idle_time, wall_time, iowait_time;
435 		unsigned int load, load_freq;
436 		int freq_avg;
437 
438 		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
439 
440 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
441 		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
442 
443 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
444 				j_dbs_info->prev_cpu_wall);
445 		j_dbs_info->prev_cpu_wall = cur_wall_time;
446 
447 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
448 				j_dbs_info->prev_cpu_idle);
449 		j_dbs_info->prev_cpu_idle = cur_idle_time;
450 
451 		iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
452 				j_dbs_info->prev_cpu_iowait);
453 		j_dbs_info->prev_cpu_iowait = cur_iowait_time;
454 
455 		if (dbs_tuners_ins.ignore_nice) {
456 			cputime64_t cur_nice;
457 			unsigned long cur_nice_jiffies;
458 
459 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
460 					 j_dbs_info->prev_cpu_nice);
461 			/*
462 			 * Assumption: nice time between sampling periods will
463 			 * be less than 2^32 jiffies for 32 bit sys
464 			 */
465 			cur_nice_jiffies = (unsigned long)
466 					cputime64_to_jiffies64(cur_nice);
467 
468 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
469 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
470 		}
471 
472 		/*
473 		 * For the purpose of ondemand, waiting for disk IO is an
474 		 * indication that you're performance critical, and not that
475 		 * the system is actually idle. So subtract the iowait time
476 		 * from the cpu idle time.
477 		 */
478 
479 		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
480 			idle_time -= iowait_time;
481 
482 		if (unlikely(!wall_time || wall_time < idle_time))
483 			continue;
484 
485 		load = 100 * (wall_time - idle_time) / wall_time;
486 
487 		freq_avg = __cpufreq_driver_getavg(policy, j);
488 		if (freq_avg <= 0)
489 			freq_avg = policy->cur;
490 
491 		load_freq = load * freq_avg;
492 		if (load_freq > max_load_freq)
493 			max_load_freq = load_freq;
494 	}
495 
496 	/* Check for frequency increase */
497 	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
498 		/* If switching to max speed, apply sampling_down_factor */
499 		if (policy->cur < policy->max)
500 			this_dbs_info->rate_mult =
501 				dbs_tuners_ins.sampling_down_factor;
502 		dbs_freq_increase(policy, policy->max);
503 		return;
504 	}
505 
506 	/* Check for frequency decrease */
507 	/* if we cannot reduce the frequency anymore, break out early */
508 	if (policy->cur == policy->min)
509 		return;
510 
511 	/*
512 	 * The optimal frequency is the frequency that is the lowest that
513 	 * can support the current CPU usage without triggering the up
514 	 * policy. To be safe, we focus 10 points under the threshold.
515 	 */
516 	if (max_load_freq <
517 	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
518 	     policy->cur) {
519 		unsigned int freq_next;
520 		freq_next = max_load_freq /
521 				(dbs_tuners_ins.up_threshold -
522 				 dbs_tuners_ins.down_differential);
523 
524 		/* No longer fully busy, reset rate_mult */
525 		this_dbs_info->rate_mult = 1;
526 
527 		if (freq_next < policy->min)
528 			freq_next = policy->min;
529 
530 		if (!dbs_tuners_ins.powersave_bias) {
531 			__cpufreq_driver_target(policy, freq_next,
532 					CPUFREQ_RELATION_L);
533 		} else {
534 			int freq = powersave_bias_target(policy, freq_next,
535 					CPUFREQ_RELATION_L);
536 			__cpufreq_driver_target(policy, freq,
537 				CPUFREQ_RELATION_L);
538 		}
539 	}
540 }
541 
542 static void do_dbs_timer(struct work_struct *work)
543 {
544 	struct cpu_dbs_info_s *dbs_info =
545 		container_of(work, struct cpu_dbs_info_s, work.work);
546 	unsigned int cpu = dbs_info->cpu;
547 	int sample_type = dbs_info->sample_type;
548 
549 	int delay;
550 
551 	mutex_lock(&dbs_info->timer_mutex);
552 
553 	/* Common NORMAL_SAMPLE setup */
554 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
555 	if (!dbs_tuners_ins.powersave_bias ||
556 	    sample_type == DBS_NORMAL_SAMPLE) {
557 		dbs_check_cpu(dbs_info);
558 		if (dbs_info->freq_lo) {
559 			/* Setup timer for SUB_SAMPLE */
560 			dbs_info->sample_type = DBS_SUB_SAMPLE;
561 			delay = dbs_info->freq_hi_jiffies;
562 		} else {
563 			/* We want all CPUs to do sampling nearly on
564 			 * same jiffy
565 			 */
566 			delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
567 				* dbs_info->rate_mult);
568 
569 			if (num_online_cpus() > 1)
570 				delay -= jiffies % delay;
571 		}
572 	} else {
573 		__cpufreq_driver_target(dbs_info->cur_policy,
574 			dbs_info->freq_lo, CPUFREQ_RELATION_H);
575 		delay = dbs_info->freq_lo_jiffies;
576 	}
577 	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
578 	mutex_unlock(&dbs_info->timer_mutex);
579 }
580 
581 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
582 {
583 	/* We want all CPUs to do sampling nearly on same jiffy */
584 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
585 
586 	if (num_online_cpus() > 1)
587 		delay -= jiffies % delay;
588 
589 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
590 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
591 	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
592 }
593 
594 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
595 {
596 	cancel_delayed_work_sync(&dbs_info->work);
597 }
598 
599 /*
600  * Not all CPUs want IO time to be accounted as busy; this dependson how
601  * efficient idling at a higher frequency/voltage is.
602  * Pavel Machek says this is not so for various generations of AMD and old
603  * Intel systems.
604  * Mike Chan (androidlcom) calis this is also not true for ARM.
605  * Because of this, whitelist specific known (series) of CPUs by default, and
606  * leave all others up to the user.
607  */
608 static int should_io_be_busy(void)
609 {
610 #if defined(CONFIG_X86)
611 	/*
612 	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
613 	 */
614 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
615 	    boot_cpu_data.x86 == 6 &&
616 	    boot_cpu_data.x86_model >= 15)
617 		return 1;
618 #endif
619 	return 0;
620 }
621 
622 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
623 				   unsigned int event)
624 {
625 	unsigned int cpu = policy->cpu;
626 	struct cpu_dbs_info_s *this_dbs_info;
627 	unsigned int j;
628 	int rc;
629 
630 	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
631 
632 	switch (event) {
633 	case CPUFREQ_GOV_START:
634 		if ((!cpu_online(cpu)) || (!policy->cur))
635 			return -EINVAL;
636 
637 		mutex_lock(&dbs_mutex);
638 
639 		dbs_enable++;
640 		for_each_cpu(j, policy->cpus) {
641 			struct cpu_dbs_info_s *j_dbs_info;
642 			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
643 			j_dbs_info->cur_policy = policy;
644 
645 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
646 						&j_dbs_info->prev_cpu_wall);
647 			if (dbs_tuners_ins.ignore_nice) {
648 				j_dbs_info->prev_cpu_nice =
649 						kstat_cpu(j).cpustat.nice;
650 			}
651 		}
652 		this_dbs_info->cpu = cpu;
653 		this_dbs_info->rate_mult = 1;
654 		ondemand_powersave_bias_init_cpu(cpu);
655 		/*
656 		 * Start the timerschedule work, when this governor
657 		 * is used for first time
658 		 */
659 		if (dbs_enable == 1) {
660 			unsigned int latency;
661 
662 			rc = sysfs_create_group(cpufreq_global_kobject,
663 						&dbs_attr_group);
664 			if (rc) {
665 				mutex_unlock(&dbs_mutex);
666 				return rc;
667 			}
668 
669 			/* policy latency is in nS. Convert it to uS first */
670 			latency = policy->cpuinfo.transition_latency / 1000;
671 			if (latency == 0)
672 				latency = 1;
673 			/* Bring kernel and HW constraints together */
674 			min_sampling_rate = max(min_sampling_rate,
675 					MIN_LATENCY_MULTIPLIER * latency);
676 			dbs_tuners_ins.sampling_rate =
677 				max(min_sampling_rate,
678 				    latency * LATENCY_MULTIPLIER);
679 			dbs_tuners_ins.io_is_busy = should_io_be_busy();
680 		}
681 		mutex_unlock(&dbs_mutex);
682 
683 		mutex_init(&this_dbs_info->timer_mutex);
684 		dbs_timer_init(this_dbs_info);
685 		break;
686 
687 	case CPUFREQ_GOV_STOP:
688 		dbs_timer_exit(this_dbs_info);
689 
690 		mutex_lock(&dbs_mutex);
691 		mutex_destroy(&this_dbs_info->timer_mutex);
692 		dbs_enable--;
693 		mutex_unlock(&dbs_mutex);
694 		if (!dbs_enable)
695 			sysfs_remove_group(cpufreq_global_kobject,
696 					   &dbs_attr_group);
697 
698 		break;
699 
700 	case CPUFREQ_GOV_LIMITS:
701 		mutex_lock(&this_dbs_info->timer_mutex);
702 		if (policy->max < this_dbs_info->cur_policy->cur)
703 			__cpufreq_driver_target(this_dbs_info->cur_policy,
704 				policy->max, CPUFREQ_RELATION_H);
705 		else if (policy->min > this_dbs_info->cur_policy->cur)
706 			__cpufreq_driver_target(this_dbs_info->cur_policy,
707 				policy->min, CPUFREQ_RELATION_L);
708 		mutex_unlock(&this_dbs_info->timer_mutex);
709 		break;
710 	}
711 	return 0;
712 }
713 
714 static int __init cpufreq_gov_dbs_init(void)
715 {
716 	cputime64_t wall;
717 	u64 idle_time;
718 	int cpu = get_cpu();
719 
720 	idle_time = get_cpu_idle_time_us(cpu, &wall);
721 	put_cpu();
722 	if (idle_time != -1ULL) {
723 		/* Idle micro accounting is supported. Use finer thresholds */
724 		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
725 		dbs_tuners_ins.down_differential =
726 					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
727 		/*
728 		 * In no_hz/micro accounting case we set the minimum frequency
729 		 * not depending on HZ, but fixed (very low). The deferred
730 		 * timer might skip some samples if idle/sleeping as needed.
731 		*/
732 		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
733 	} else {
734 		/* For correct statistics, we need 10 ticks for each measure */
735 		min_sampling_rate =
736 			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
737 	}
738 
739 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
740 }
741 
742 static void __exit cpufreq_gov_dbs_exit(void)
743 {
744 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
745 }
746 
747 
748 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
749 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
750 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
751 	"Low Latency Frequency Transition capable processors");
752 MODULE_LICENSE("GPL");
753 
754 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
755 fs_initcall(cpufreq_gov_dbs_init);
756 #else
757 module_init(cpufreq_gov_dbs_init);
758 #endif
759 module_exit(cpufreq_gov_dbs_exit);
760