1 /* 2 * drivers/cpufreq/cpufreq_ondemand.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 6 * Jun Nakajima <jun.nakajima@intel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/cpufreq.h> 17 #include <linux/cpu.h> 18 #include <linux/jiffies.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mutex.h> 21 #include <linux/hrtimer.h> 22 #include <linux/tick.h> 23 #include <linux/ktime.h> 24 #include <linux/sched.h> 25 26 /* 27 * dbs is used in this file as a shortform for demandbased switching 28 * It helps to keep variable names smaller, simpler 29 */ 30 31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10) 32 #define DEF_FREQUENCY_UP_THRESHOLD (80) 33 #define DEF_SAMPLING_DOWN_FACTOR (1) 34 #define MAX_SAMPLING_DOWN_FACTOR (100000) 35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3) 36 #define MICRO_FREQUENCY_UP_THRESHOLD (95) 37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000) 38 #define MIN_FREQUENCY_UP_THRESHOLD (11) 39 #define MAX_FREQUENCY_UP_THRESHOLD (100) 40 41 /* 42 * The polling frequency of this governor depends on the capability of 43 * the processor. Default polling frequency is 1000 times the transition 44 * latency of the processor. The governor will work on any processor with 45 * transition latency <= 10mS, using appropriate sampling 46 * rate. 47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) 48 * this governor will not work. 49 * All times here are in uS. 50 */ 51 #define MIN_SAMPLING_RATE_RATIO (2) 52 53 static unsigned int min_sampling_rate; 54 55 #define LATENCY_MULTIPLIER (1000) 56 #define MIN_LATENCY_MULTIPLIER (100) 57 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000) 58 59 static void do_dbs_timer(struct work_struct *work); 60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy, 61 unsigned int event); 62 63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 64 static 65 #endif 66 struct cpufreq_governor cpufreq_gov_ondemand = { 67 .name = "ondemand", 68 .governor = cpufreq_governor_dbs, 69 .max_transition_latency = TRANSITION_LATENCY_LIMIT, 70 .owner = THIS_MODULE, 71 }; 72 73 /* Sampling types */ 74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE}; 75 76 struct cpu_dbs_info_s { 77 cputime64_t prev_cpu_idle; 78 cputime64_t prev_cpu_iowait; 79 cputime64_t prev_cpu_wall; 80 cputime64_t prev_cpu_nice; 81 struct cpufreq_policy *cur_policy; 82 struct delayed_work work; 83 struct cpufreq_frequency_table *freq_table; 84 unsigned int freq_lo; 85 unsigned int freq_lo_jiffies; 86 unsigned int freq_hi_jiffies; 87 unsigned int rate_mult; 88 int cpu; 89 unsigned int sample_type:1; 90 /* 91 * percpu mutex that serializes governor limit change with 92 * do_dbs_timer invocation. We do not want do_dbs_timer to run 93 * when user is changing the governor or limits. 94 */ 95 struct mutex timer_mutex; 96 }; 97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info); 98 99 static unsigned int dbs_enable; /* number of CPUs using this policy */ 100 101 /* 102 * dbs_mutex protects dbs_enable in governor start/stop. 103 */ 104 static DEFINE_MUTEX(dbs_mutex); 105 106 static struct dbs_tuners { 107 unsigned int sampling_rate; 108 unsigned int up_threshold; 109 unsigned int down_differential; 110 unsigned int ignore_nice; 111 unsigned int sampling_down_factor; 112 unsigned int powersave_bias; 113 unsigned int io_is_busy; 114 } dbs_tuners_ins = { 115 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, 116 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, 117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL, 118 .ignore_nice = 0, 119 .powersave_bias = 0, 120 }; 121 122 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu, 123 cputime64_t *wall) 124 { 125 cputime64_t idle_time; 126 cputime64_t cur_wall_time; 127 cputime64_t busy_time; 128 129 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 130 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user, 131 kstat_cpu(cpu).cpustat.system); 132 133 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq); 134 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq); 135 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal); 136 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice); 137 138 idle_time = cputime64_sub(cur_wall_time, busy_time); 139 if (wall) 140 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time); 141 142 return (cputime64_t)jiffies_to_usecs(idle_time); 143 } 144 145 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) 146 { 147 u64 idle_time = get_cpu_idle_time_us(cpu, wall); 148 149 if (idle_time == -1ULL) 150 return get_cpu_idle_time_jiffy(cpu, wall); 151 152 return idle_time; 153 } 154 155 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall) 156 { 157 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall); 158 159 if (iowait_time == -1ULL) 160 return 0; 161 162 return iowait_time; 163 } 164 165 /* 166 * Find right freq to be set now with powersave_bias on. 167 * Returns the freq_hi to be used right now and will set freq_hi_jiffies, 168 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. 169 */ 170 static unsigned int powersave_bias_target(struct cpufreq_policy *policy, 171 unsigned int freq_next, 172 unsigned int relation) 173 { 174 unsigned int freq_req, freq_reduc, freq_avg; 175 unsigned int freq_hi, freq_lo; 176 unsigned int index = 0; 177 unsigned int jiffies_total, jiffies_hi, jiffies_lo; 178 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 179 policy->cpu); 180 181 if (!dbs_info->freq_table) { 182 dbs_info->freq_lo = 0; 183 dbs_info->freq_lo_jiffies = 0; 184 return freq_next; 185 } 186 187 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, 188 relation, &index); 189 freq_req = dbs_info->freq_table[index].frequency; 190 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000; 191 freq_avg = freq_req - freq_reduc; 192 193 /* Find freq bounds for freq_avg in freq_table */ 194 index = 0; 195 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 196 CPUFREQ_RELATION_H, &index); 197 freq_lo = dbs_info->freq_table[index].frequency; 198 index = 0; 199 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 200 CPUFREQ_RELATION_L, &index); 201 freq_hi = dbs_info->freq_table[index].frequency; 202 203 /* Find out how long we have to be in hi and lo freqs */ 204 if (freq_hi == freq_lo) { 205 dbs_info->freq_lo = 0; 206 dbs_info->freq_lo_jiffies = 0; 207 return freq_lo; 208 } 209 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 210 jiffies_hi = (freq_avg - freq_lo) * jiffies_total; 211 jiffies_hi += ((freq_hi - freq_lo) / 2); 212 jiffies_hi /= (freq_hi - freq_lo); 213 jiffies_lo = jiffies_total - jiffies_hi; 214 dbs_info->freq_lo = freq_lo; 215 dbs_info->freq_lo_jiffies = jiffies_lo; 216 dbs_info->freq_hi_jiffies = jiffies_hi; 217 return freq_hi; 218 } 219 220 static void ondemand_powersave_bias_init_cpu(int cpu) 221 { 222 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 223 dbs_info->freq_table = cpufreq_frequency_get_table(cpu); 224 dbs_info->freq_lo = 0; 225 } 226 227 static void ondemand_powersave_bias_init(void) 228 { 229 int i; 230 for_each_online_cpu(i) { 231 ondemand_powersave_bias_init_cpu(i); 232 } 233 } 234 235 /************************** sysfs interface ************************/ 236 237 static ssize_t show_sampling_rate_min(struct kobject *kobj, 238 struct attribute *attr, char *buf) 239 { 240 return sprintf(buf, "%u\n", min_sampling_rate); 241 } 242 243 define_one_global_ro(sampling_rate_min); 244 245 /* cpufreq_ondemand Governor Tunables */ 246 #define show_one(file_name, object) \ 247 static ssize_t show_##file_name \ 248 (struct kobject *kobj, struct attribute *attr, char *buf) \ 249 { \ 250 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ 251 } 252 show_one(sampling_rate, sampling_rate); 253 show_one(io_is_busy, io_is_busy); 254 show_one(up_threshold, up_threshold); 255 show_one(sampling_down_factor, sampling_down_factor); 256 show_one(ignore_nice_load, ignore_nice); 257 show_one(powersave_bias, powersave_bias); 258 259 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b, 260 const char *buf, size_t count) 261 { 262 unsigned int input; 263 int ret; 264 ret = sscanf(buf, "%u", &input); 265 if (ret != 1) 266 return -EINVAL; 267 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate); 268 return count; 269 } 270 271 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b, 272 const char *buf, size_t count) 273 { 274 unsigned int input; 275 int ret; 276 277 ret = sscanf(buf, "%u", &input); 278 if (ret != 1) 279 return -EINVAL; 280 dbs_tuners_ins.io_is_busy = !!input; 281 return count; 282 } 283 284 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b, 285 const char *buf, size_t count) 286 { 287 unsigned int input; 288 int ret; 289 ret = sscanf(buf, "%u", &input); 290 291 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 292 input < MIN_FREQUENCY_UP_THRESHOLD) { 293 return -EINVAL; 294 } 295 dbs_tuners_ins.up_threshold = input; 296 return count; 297 } 298 299 static ssize_t store_sampling_down_factor(struct kobject *a, 300 struct attribute *b, const char *buf, size_t count) 301 { 302 unsigned int input, j; 303 int ret; 304 ret = sscanf(buf, "%u", &input); 305 306 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) 307 return -EINVAL; 308 dbs_tuners_ins.sampling_down_factor = input; 309 310 /* Reset down sampling multiplier in case it was active */ 311 for_each_online_cpu(j) { 312 struct cpu_dbs_info_s *dbs_info; 313 dbs_info = &per_cpu(od_cpu_dbs_info, j); 314 dbs_info->rate_mult = 1; 315 } 316 return count; 317 } 318 319 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, 320 const char *buf, size_t count) 321 { 322 unsigned int input; 323 int ret; 324 325 unsigned int j; 326 327 ret = sscanf(buf, "%u", &input); 328 if (ret != 1) 329 return -EINVAL; 330 331 if (input > 1) 332 input = 1; 333 334 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */ 335 return count; 336 } 337 dbs_tuners_ins.ignore_nice = input; 338 339 /* we need to re-evaluate prev_cpu_idle */ 340 for_each_online_cpu(j) { 341 struct cpu_dbs_info_s *dbs_info; 342 dbs_info = &per_cpu(od_cpu_dbs_info, j); 343 dbs_info->prev_cpu_idle = get_cpu_idle_time(j, 344 &dbs_info->prev_cpu_wall); 345 if (dbs_tuners_ins.ignore_nice) 346 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; 347 348 } 349 return count; 350 } 351 352 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b, 353 const char *buf, size_t count) 354 { 355 unsigned int input; 356 int ret; 357 ret = sscanf(buf, "%u", &input); 358 359 if (ret != 1) 360 return -EINVAL; 361 362 if (input > 1000) 363 input = 1000; 364 365 dbs_tuners_ins.powersave_bias = input; 366 ondemand_powersave_bias_init(); 367 return count; 368 } 369 370 define_one_global_rw(sampling_rate); 371 define_one_global_rw(io_is_busy); 372 define_one_global_rw(up_threshold); 373 define_one_global_rw(sampling_down_factor); 374 define_one_global_rw(ignore_nice_load); 375 define_one_global_rw(powersave_bias); 376 377 static struct attribute *dbs_attributes[] = { 378 &sampling_rate_min.attr, 379 &sampling_rate.attr, 380 &up_threshold.attr, 381 &sampling_down_factor.attr, 382 &ignore_nice_load.attr, 383 &powersave_bias.attr, 384 &io_is_busy.attr, 385 NULL 386 }; 387 388 static struct attribute_group dbs_attr_group = { 389 .attrs = dbs_attributes, 390 .name = "ondemand", 391 }; 392 393 /************************** sysfs end ************************/ 394 395 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq) 396 { 397 if (dbs_tuners_ins.powersave_bias) 398 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H); 399 else if (p->cur == p->max) 400 return; 401 402 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ? 403 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H); 404 } 405 406 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) 407 { 408 unsigned int max_load_freq; 409 410 struct cpufreq_policy *policy; 411 unsigned int j; 412 413 this_dbs_info->freq_lo = 0; 414 policy = this_dbs_info->cur_policy; 415 416 /* 417 * Every sampling_rate, we check, if current idle time is less 418 * than 20% (default), then we try to increase frequency 419 * Every sampling_rate, we look for a the lowest 420 * frequency which can sustain the load while keeping idle time over 421 * 30%. If such a frequency exist, we try to decrease to this frequency. 422 * 423 * Any frequency increase takes it to the maximum frequency. 424 * Frequency reduction happens at minimum steps of 425 * 5% (default) of current frequency 426 */ 427 428 /* Get Absolute Load - in terms of freq */ 429 max_load_freq = 0; 430 431 for_each_cpu(j, policy->cpus) { 432 struct cpu_dbs_info_s *j_dbs_info; 433 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time; 434 unsigned int idle_time, wall_time, iowait_time; 435 unsigned int load, load_freq; 436 int freq_avg; 437 438 j_dbs_info = &per_cpu(od_cpu_dbs_info, j); 439 440 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); 441 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time); 442 443 wall_time = (unsigned int) cputime64_sub(cur_wall_time, 444 j_dbs_info->prev_cpu_wall); 445 j_dbs_info->prev_cpu_wall = cur_wall_time; 446 447 idle_time = (unsigned int) cputime64_sub(cur_idle_time, 448 j_dbs_info->prev_cpu_idle); 449 j_dbs_info->prev_cpu_idle = cur_idle_time; 450 451 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time, 452 j_dbs_info->prev_cpu_iowait); 453 j_dbs_info->prev_cpu_iowait = cur_iowait_time; 454 455 if (dbs_tuners_ins.ignore_nice) { 456 cputime64_t cur_nice; 457 unsigned long cur_nice_jiffies; 458 459 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice, 460 j_dbs_info->prev_cpu_nice); 461 /* 462 * Assumption: nice time between sampling periods will 463 * be less than 2^32 jiffies for 32 bit sys 464 */ 465 cur_nice_jiffies = (unsigned long) 466 cputime64_to_jiffies64(cur_nice); 467 468 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; 469 idle_time += jiffies_to_usecs(cur_nice_jiffies); 470 } 471 472 /* 473 * For the purpose of ondemand, waiting for disk IO is an 474 * indication that you're performance critical, and not that 475 * the system is actually idle. So subtract the iowait time 476 * from the cpu idle time. 477 */ 478 479 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time) 480 idle_time -= iowait_time; 481 482 if (unlikely(!wall_time || wall_time < idle_time)) 483 continue; 484 485 load = 100 * (wall_time - idle_time) / wall_time; 486 487 freq_avg = __cpufreq_driver_getavg(policy, j); 488 if (freq_avg <= 0) 489 freq_avg = policy->cur; 490 491 load_freq = load * freq_avg; 492 if (load_freq > max_load_freq) 493 max_load_freq = load_freq; 494 } 495 496 /* Check for frequency increase */ 497 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) { 498 /* If switching to max speed, apply sampling_down_factor */ 499 if (policy->cur < policy->max) 500 this_dbs_info->rate_mult = 501 dbs_tuners_ins.sampling_down_factor; 502 dbs_freq_increase(policy, policy->max); 503 return; 504 } 505 506 /* Check for frequency decrease */ 507 /* if we cannot reduce the frequency anymore, break out early */ 508 if (policy->cur == policy->min) 509 return; 510 511 /* 512 * The optimal frequency is the frequency that is the lowest that 513 * can support the current CPU usage without triggering the up 514 * policy. To be safe, we focus 10 points under the threshold. 515 */ 516 if (max_load_freq < 517 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) * 518 policy->cur) { 519 unsigned int freq_next; 520 freq_next = max_load_freq / 521 (dbs_tuners_ins.up_threshold - 522 dbs_tuners_ins.down_differential); 523 524 /* No longer fully busy, reset rate_mult */ 525 this_dbs_info->rate_mult = 1; 526 527 if (freq_next < policy->min) 528 freq_next = policy->min; 529 530 if (!dbs_tuners_ins.powersave_bias) { 531 __cpufreq_driver_target(policy, freq_next, 532 CPUFREQ_RELATION_L); 533 } else { 534 int freq = powersave_bias_target(policy, freq_next, 535 CPUFREQ_RELATION_L); 536 __cpufreq_driver_target(policy, freq, 537 CPUFREQ_RELATION_L); 538 } 539 } 540 } 541 542 static void do_dbs_timer(struct work_struct *work) 543 { 544 struct cpu_dbs_info_s *dbs_info = 545 container_of(work, struct cpu_dbs_info_s, work.work); 546 unsigned int cpu = dbs_info->cpu; 547 int sample_type = dbs_info->sample_type; 548 549 int delay; 550 551 mutex_lock(&dbs_info->timer_mutex); 552 553 /* Common NORMAL_SAMPLE setup */ 554 dbs_info->sample_type = DBS_NORMAL_SAMPLE; 555 if (!dbs_tuners_ins.powersave_bias || 556 sample_type == DBS_NORMAL_SAMPLE) { 557 dbs_check_cpu(dbs_info); 558 if (dbs_info->freq_lo) { 559 /* Setup timer for SUB_SAMPLE */ 560 dbs_info->sample_type = DBS_SUB_SAMPLE; 561 delay = dbs_info->freq_hi_jiffies; 562 } else { 563 /* We want all CPUs to do sampling nearly on 564 * same jiffy 565 */ 566 delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate 567 * dbs_info->rate_mult); 568 569 if (num_online_cpus() > 1) 570 delay -= jiffies % delay; 571 } 572 } else { 573 __cpufreq_driver_target(dbs_info->cur_policy, 574 dbs_info->freq_lo, CPUFREQ_RELATION_H); 575 delay = dbs_info->freq_lo_jiffies; 576 } 577 schedule_delayed_work_on(cpu, &dbs_info->work, delay); 578 mutex_unlock(&dbs_info->timer_mutex); 579 } 580 581 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info) 582 { 583 /* We want all CPUs to do sampling nearly on same jiffy */ 584 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 585 586 if (num_online_cpus() > 1) 587 delay -= jiffies % delay; 588 589 dbs_info->sample_type = DBS_NORMAL_SAMPLE; 590 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer); 591 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay); 592 } 593 594 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info) 595 { 596 cancel_delayed_work_sync(&dbs_info->work); 597 } 598 599 /* 600 * Not all CPUs want IO time to be accounted as busy; this dependson how 601 * efficient idling at a higher frequency/voltage is. 602 * Pavel Machek says this is not so for various generations of AMD and old 603 * Intel systems. 604 * Mike Chan (androidlcom) calis this is also not true for ARM. 605 * Because of this, whitelist specific known (series) of CPUs by default, and 606 * leave all others up to the user. 607 */ 608 static int should_io_be_busy(void) 609 { 610 #if defined(CONFIG_X86) 611 /* 612 * For Intel, Core 2 (model 15) andl later have an efficient idle. 613 */ 614 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 615 boot_cpu_data.x86 == 6 && 616 boot_cpu_data.x86_model >= 15) 617 return 1; 618 #endif 619 return 0; 620 } 621 622 static int cpufreq_governor_dbs(struct cpufreq_policy *policy, 623 unsigned int event) 624 { 625 unsigned int cpu = policy->cpu; 626 struct cpu_dbs_info_s *this_dbs_info; 627 unsigned int j; 628 int rc; 629 630 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 631 632 switch (event) { 633 case CPUFREQ_GOV_START: 634 if ((!cpu_online(cpu)) || (!policy->cur)) 635 return -EINVAL; 636 637 mutex_lock(&dbs_mutex); 638 639 dbs_enable++; 640 for_each_cpu(j, policy->cpus) { 641 struct cpu_dbs_info_s *j_dbs_info; 642 j_dbs_info = &per_cpu(od_cpu_dbs_info, j); 643 j_dbs_info->cur_policy = policy; 644 645 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, 646 &j_dbs_info->prev_cpu_wall); 647 if (dbs_tuners_ins.ignore_nice) { 648 j_dbs_info->prev_cpu_nice = 649 kstat_cpu(j).cpustat.nice; 650 } 651 } 652 this_dbs_info->cpu = cpu; 653 this_dbs_info->rate_mult = 1; 654 ondemand_powersave_bias_init_cpu(cpu); 655 /* 656 * Start the timerschedule work, when this governor 657 * is used for first time 658 */ 659 if (dbs_enable == 1) { 660 unsigned int latency; 661 662 rc = sysfs_create_group(cpufreq_global_kobject, 663 &dbs_attr_group); 664 if (rc) { 665 mutex_unlock(&dbs_mutex); 666 return rc; 667 } 668 669 /* policy latency is in nS. Convert it to uS first */ 670 latency = policy->cpuinfo.transition_latency / 1000; 671 if (latency == 0) 672 latency = 1; 673 /* Bring kernel and HW constraints together */ 674 min_sampling_rate = max(min_sampling_rate, 675 MIN_LATENCY_MULTIPLIER * latency); 676 dbs_tuners_ins.sampling_rate = 677 max(min_sampling_rate, 678 latency * LATENCY_MULTIPLIER); 679 dbs_tuners_ins.io_is_busy = should_io_be_busy(); 680 } 681 mutex_unlock(&dbs_mutex); 682 683 mutex_init(&this_dbs_info->timer_mutex); 684 dbs_timer_init(this_dbs_info); 685 break; 686 687 case CPUFREQ_GOV_STOP: 688 dbs_timer_exit(this_dbs_info); 689 690 mutex_lock(&dbs_mutex); 691 mutex_destroy(&this_dbs_info->timer_mutex); 692 dbs_enable--; 693 mutex_unlock(&dbs_mutex); 694 if (!dbs_enable) 695 sysfs_remove_group(cpufreq_global_kobject, 696 &dbs_attr_group); 697 698 break; 699 700 case CPUFREQ_GOV_LIMITS: 701 mutex_lock(&this_dbs_info->timer_mutex); 702 if (policy->max < this_dbs_info->cur_policy->cur) 703 __cpufreq_driver_target(this_dbs_info->cur_policy, 704 policy->max, CPUFREQ_RELATION_H); 705 else if (policy->min > this_dbs_info->cur_policy->cur) 706 __cpufreq_driver_target(this_dbs_info->cur_policy, 707 policy->min, CPUFREQ_RELATION_L); 708 mutex_unlock(&this_dbs_info->timer_mutex); 709 break; 710 } 711 return 0; 712 } 713 714 static int __init cpufreq_gov_dbs_init(void) 715 { 716 cputime64_t wall; 717 u64 idle_time; 718 int cpu = get_cpu(); 719 720 idle_time = get_cpu_idle_time_us(cpu, &wall); 721 put_cpu(); 722 if (idle_time != -1ULL) { 723 /* Idle micro accounting is supported. Use finer thresholds */ 724 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; 725 dbs_tuners_ins.down_differential = 726 MICRO_FREQUENCY_DOWN_DIFFERENTIAL; 727 /* 728 * In no_hz/micro accounting case we set the minimum frequency 729 * not depending on HZ, but fixed (very low). The deferred 730 * timer might skip some samples if idle/sleeping as needed. 731 */ 732 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; 733 } else { 734 /* For correct statistics, we need 10 ticks for each measure */ 735 min_sampling_rate = 736 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10); 737 } 738 739 return cpufreq_register_governor(&cpufreq_gov_ondemand); 740 } 741 742 static void __exit cpufreq_gov_dbs_exit(void) 743 { 744 cpufreq_unregister_governor(&cpufreq_gov_ondemand); 745 } 746 747 748 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); 749 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); 750 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " 751 "Low Latency Frequency Transition capable processors"); 752 MODULE_LICENSE("GPL"); 753 754 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 755 fs_initcall(cpufreq_gov_dbs_init); 756 #else 757 module_init(cpufreq_gov_dbs_init); 758 #endif 759 module_exit(cpufreq_gov_dbs_exit); 760