xref: /linux/drivers/cpufreq/cpufreq_ondemand.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20 
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
23 #define DEF_SAMPLING_DOWN_FACTOR		(1)
24 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
28 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
29 
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31 
32 static struct od_ops od_ops;
33 
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37 
38 static unsigned int default_powersave_bias;
39 
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43 
44 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 	dbs_info->freq_lo = 0;
46 }
47 
48 /*
49  * Not all CPUs want IO time to be accounted as busy; this depends on how
50  * efficient idling at a higher frequency/voltage is.
51  * Pavel Machek says this is not so for various generations of AMD and old
52  * Intel systems.
53  * Mike Chan (android.com) claims this is also not true for ARM.
54  * Because of this, whitelist specific known (series) of CPUs by default, and
55  * leave all others up to the user.
56  */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 	/*
61 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 	 */
63 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 			boot_cpu_data.x86 == 6 &&
65 			boot_cpu_data.x86_model >= 15)
66 		return 1;
67 #endif
68 	return 0;
69 }
70 
71 /*
72  * Find right freq to be set now with powersave_bias on.
73  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75  */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 		unsigned int freq_next, unsigned int relation)
78 {
79 	unsigned int freq_req, freq_reduc, freq_avg;
80 	unsigned int freq_hi, freq_lo;
81 	unsigned int index = 0;
82 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 						   policy->cpu);
85 	struct dbs_data *dbs_data = policy->governor_data;
86 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87 
88 	if (!dbs_info->freq_table) {
89 		dbs_info->freq_lo = 0;
90 		dbs_info->freq_lo_jiffies = 0;
91 		return freq_next;
92 	}
93 
94 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 			relation, &index);
96 	freq_req = dbs_info->freq_table[index].frequency;
97 	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 	freq_avg = freq_req - freq_reduc;
99 
100 	/* Find freq bounds for freq_avg in freq_table */
101 	index = 0;
102 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 			CPUFREQ_RELATION_H, &index);
104 	freq_lo = dbs_info->freq_table[index].frequency;
105 	index = 0;
106 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 			CPUFREQ_RELATION_L, &index);
108 	freq_hi = dbs_info->freq_table[index].frequency;
109 
110 	/* Find out how long we have to be in hi and lo freqs */
111 	if (freq_hi == freq_lo) {
112 		dbs_info->freq_lo = 0;
113 		dbs_info->freq_lo_jiffies = 0;
114 		return freq_lo;
115 	}
116 	jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 	jiffies_hi += ((freq_hi - freq_lo) / 2);
119 	jiffies_hi /= (freq_hi - freq_lo);
120 	jiffies_lo = jiffies_total - jiffies_hi;
121 	dbs_info->freq_lo = freq_lo;
122 	dbs_info->freq_lo_jiffies = jiffies_lo;
123 	dbs_info->freq_hi_jiffies = jiffies_hi;
124 	return freq_hi;
125 }
126 
127 static void ondemand_powersave_bias_init(void)
128 {
129 	int i;
130 	for_each_online_cpu(i) {
131 		ondemand_powersave_bias_init_cpu(i);
132 	}
133 }
134 
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 	struct dbs_data *dbs_data = policy->governor_data;
138 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139 
140 	if (od_tuners->powersave_bias)
141 		freq = od_ops.powersave_bias_target(policy, freq,
142 				CPUFREQ_RELATION_H);
143 	else if (policy->cur == policy->max)
144 		return;
145 
146 	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149 
150 /*
151  * Every sampling_rate, we check, if current idle time is less than 20%
152  * (default), then we try to increase frequency. Else, we adjust the frequency
153  * proportional to load.
154  */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 	struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
159 	struct dbs_data *dbs_data = policy->governor_data;
160 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161 
162 	dbs_info->freq_lo = 0;
163 
164 	/* Check for frequency increase */
165 	if (load > od_tuners->up_threshold) {
166 		/* If switching to max speed, apply sampling_down_factor */
167 		if (policy->cur < policy->max)
168 			dbs_info->rate_mult =
169 				od_tuners->sampling_down_factor;
170 		dbs_freq_increase(policy, policy->max);
171 	} else {
172 		/* Calculate the next frequency proportional to load */
173 		unsigned int freq_next, min_f, max_f;
174 
175 		min_f = policy->cpuinfo.min_freq;
176 		max_f = policy->cpuinfo.max_freq;
177 		freq_next = min_f + load * (max_f - min_f) / 100;
178 
179 		/* No longer fully busy, reset rate_mult */
180 		dbs_info->rate_mult = 1;
181 
182 		if (!od_tuners->powersave_bias) {
183 			__cpufreq_driver_target(policy, freq_next,
184 					CPUFREQ_RELATION_C);
185 			return;
186 		}
187 
188 		freq_next = od_ops.powersave_bias_target(policy, freq_next,
189 					CPUFREQ_RELATION_L);
190 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
191 	}
192 }
193 
194 static unsigned int od_dbs_timer(struct cpu_dbs_info *cdbs,
195 				 struct dbs_data *dbs_data, bool modify_all)
196 {
197 	struct cpufreq_policy *policy = cdbs->shared->policy;
198 	unsigned int cpu = policy->cpu;
199 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
200 			cpu);
201 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
202 	int delay = 0, sample_type = dbs_info->sample_type;
203 
204 	if (!modify_all)
205 		goto max_delay;
206 
207 	/* Common NORMAL_SAMPLE setup */
208 	dbs_info->sample_type = OD_NORMAL_SAMPLE;
209 	if (sample_type == OD_SUB_SAMPLE) {
210 		delay = dbs_info->freq_lo_jiffies;
211 		__cpufreq_driver_target(policy, dbs_info->freq_lo,
212 					CPUFREQ_RELATION_H);
213 	} else {
214 		dbs_check_cpu(dbs_data, cpu);
215 		if (dbs_info->freq_lo) {
216 			/* Setup timer for SUB_SAMPLE */
217 			dbs_info->sample_type = OD_SUB_SAMPLE;
218 			delay = dbs_info->freq_hi_jiffies;
219 		}
220 	}
221 
222 max_delay:
223 	if (!delay)
224 		delay = delay_for_sampling_rate(od_tuners->sampling_rate
225 				* dbs_info->rate_mult);
226 
227 	return delay;
228 }
229 
230 /************************** sysfs interface ************************/
231 static struct common_dbs_data od_dbs_cdata;
232 
233 /**
234  * update_sampling_rate - update sampling rate effective immediately if needed.
235  * @new_rate: new sampling rate
236  *
237  * If new rate is smaller than the old, simply updating
238  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
239  * original sampling_rate was 1 second and the requested new sampling rate is 10
240  * ms because the user needs immediate reaction from ondemand governor, but not
241  * sure if higher frequency will be required or not, then, the governor may
242  * change the sampling rate too late; up to 1 second later. Thus, if we are
243  * reducing the sampling rate, we need to make the new value effective
244  * immediately.
245  */
246 static void update_sampling_rate(struct dbs_data *dbs_data,
247 		unsigned int new_rate)
248 {
249 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
250 	int cpu;
251 
252 	od_tuners->sampling_rate = new_rate = max(new_rate,
253 			dbs_data->min_sampling_rate);
254 
255 	for_each_online_cpu(cpu) {
256 		struct cpufreq_policy *policy;
257 		struct od_cpu_dbs_info_s *dbs_info;
258 		unsigned long next_sampling, appointed_at;
259 
260 		policy = cpufreq_cpu_get(cpu);
261 		if (!policy)
262 			continue;
263 		if (policy->governor != &cpufreq_gov_ondemand) {
264 			cpufreq_cpu_put(policy);
265 			continue;
266 		}
267 		dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
268 		cpufreq_cpu_put(policy);
269 
270 		mutex_lock(&dbs_info->cdbs.shared->timer_mutex);
271 
272 		if (!delayed_work_pending(&dbs_info->cdbs.dwork)) {
273 			mutex_unlock(&dbs_info->cdbs.shared->timer_mutex);
274 			continue;
275 		}
276 
277 		next_sampling = jiffies + usecs_to_jiffies(new_rate);
278 		appointed_at = dbs_info->cdbs.dwork.timer.expires;
279 
280 		if (time_before(next_sampling, appointed_at)) {
281 
282 			mutex_unlock(&dbs_info->cdbs.shared->timer_mutex);
283 			cancel_delayed_work_sync(&dbs_info->cdbs.dwork);
284 			mutex_lock(&dbs_info->cdbs.shared->timer_mutex);
285 
286 			gov_queue_work(dbs_data, policy,
287 				       usecs_to_jiffies(new_rate), true);
288 
289 		}
290 		mutex_unlock(&dbs_info->cdbs.shared->timer_mutex);
291 	}
292 }
293 
294 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
295 		size_t count)
296 {
297 	unsigned int input;
298 	int ret;
299 	ret = sscanf(buf, "%u", &input);
300 	if (ret != 1)
301 		return -EINVAL;
302 
303 	update_sampling_rate(dbs_data, input);
304 	return count;
305 }
306 
307 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
308 		size_t count)
309 {
310 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
311 	unsigned int input;
312 	int ret;
313 	unsigned int j;
314 
315 	ret = sscanf(buf, "%u", &input);
316 	if (ret != 1)
317 		return -EINVAL;
318 	od_tuners->io_is_busy = !!input;
319 
320 	/* we need to re-evaluate prev_cpu_idle */
321 	for_each_online_cpu(j) {
322 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
323 									j);
324 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
325 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
326 	}
327 	return count;
328 }
329 
330 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
331 		size_t count)
332 {
333 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
334 	unsigned int input;
335 	int ret;
336 	ret = sscanf(buf, "%u", &input);
337 
338 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
339 			input < MIN_FREQUENCY_UP_THRESHOLD) {
340 		return -EINVAL;
341 	}
342 
343 	od_tuners->up_threshold = input;
344 	return count;
345 }
346 
347 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
348 		const char *buf, size_t count)
349 {
350 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
351 	unsigned int input, j;
352 	int ret;
353 	ret = sscanf(buf, "%u", &input);
354 
355 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
356 		return -EINVAL;
357 	od_tuners->sampling_down_factor = input;
358 
359 	/* Reset down sampling multiplier in case it was active */
360 	for_each_online_cpu(j) {
361 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
362 				j);
363 		dbs_info->rate_mult = 1;
364 	}
365 	return count;
366 }
367 
368 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
369 		const char *buf, size_t count)
370 {
371 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
372 	unsigned int input;
373 	int ret;
374 
375 	unsigned int j;
376 
377 	ret = sscanf(buf, "%u", &input);
378 	if (ret != 1)
379 		return -EINVAL;
380 
381 	if (input > 1)
382 		input = 1;
383 
384 	if (input == od_tuners->ignore_nice_load) { /* nothing to do */
385 		return count;
386 	}
387 	od_tuners->ignore_nice_load = input;
388 
389 	/* we need to re-evaluate prev_cpu_idle */
390 	for_each_online_cpu(j) {
391 		struct od_cpu_dbs_info_s *dbs_info;
392 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
393 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
394 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
395 		if (od_tuners->ignore_nice_load)
396 			dbs_info->cdbs.prev_cpu_nice =
397 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
398 
399 	}
400 	return count;
401 }
402 
403 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
404 		size_t count)
405 {
406 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
407 	unsigned int input;
408 	int ret;
409 	ret = sscanf(buf, "%u", &input);
410 
411 	if (ret != 1)
412 		return -EINVAL;
413 
414 	if (input > 1000)
415 		input = 1000;
416 
417 	od_tuners->powersave_bias = input;
418 	ondemand_powersave_bias_init();
419 	return count;
420 }
421 
422 show_store_one(od, sampling_rate);
423 show_store_one(od, io_is_busy);
424 show_store_one(od, up_threshold);
425 show_store_one(od, sampling_down_factor);
426 show_store_one(od, ignore_nice_load);
427 show_store_one(od, powersave_bias);
428 declare_show_sampling_rate_min(od);
429 
430 gov_sys_pol_attr_rw(sampling_rate);
431 gov_sys_pol_attr_rw(io_is_busy);
432 gov_sys_pol_attr_rw(up_threshold);
433 gov_sys_pol_attr_rw(sampling_down_factor);
434 gov_sys_pol_attr_rw(ignore_nice_load);
435 gov_sys_pol_attr_rw(powersave_bias);
436 gov_sys_pol_attr_ro(sampling_rate_min);
437 
438 static struct attribute *dbs_attributes_gov_sys[] = {
439 	&sampling_rate_min_gov_sys.attr,
440 	&sampling_rate_gov_sys.attr,
441 	&up_threshold_gov_sys.attr,
442 	&sampling_down_factor_gov_sys.attr,
443 	&ignore_nice_load_gov_sys.attr,
444 	&powersave_bias_gov_sys.attr,
445 	&io_is_busy_gov_sys.attr,
446 	NULL
447 };
448 
449 static struct attribute_group od_attr_group_gov_sys = {
450 	.attrs = dbs_attributes_gov_sys,
451 	.name = "ondemand",
452 };
453 
454 static struct attribute *dbs_attributes_gov_pol[] = {
455 	&sampling_rate_min_gov_pol.attr,
456 	&sampling_rate_gov_pol.attr,
457 	&up_threshold_gov_pol.attr,
458 	&sampling_down_factor_gov_pol.attr,
459 	&ignore_nice_load_gov_pol.attr,
460 	&powersave_bias_gov_pol.attr,
461 	&io_is_busy_gov_pol.attr,
462 	NULL
463 };
464 
465 static struct attribute_group od_attr_group_gov_pol = {
466 	.attrs = dbs_attributes_gov_pol,
467 	.name = "ondemand",
468 };
469 
470 /************************** sysfs end ************************/
471 
472 static int od_init(struct dbs_data *dbs_data, bool notify)
473 {
474 	struct od_dbs_tuners *tuners;
475 	u64 idle_time;
476 	int cpu;
477 
478 	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
479 	if (!tuners) {
480 		pr_err("%s: kzalloc failed\n", __func__);
481 		return -ENOMEM;
482 	}
483 
484 	cpu = get_cpu();
485 	idle_time = get_cpu_idle_time_us(cpu, NULL);
486 	put_cpu();
487 	if (idle_time != -1ULL) {
488 		/* Idle micro accounting is supported. Use finer thresholds */
489 		tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
490 		/*
491 		 * In nohz/micro accounting case we set the minimum frequency
492 		 * not depending on HZ, but fixed (very low). The deferred
493 		 * timer might skip some samples if idle/sleeping as needed.
494 		*/
495 		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
496 	} else {
497 		tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
498 
499 		/* For correct statistics, we need 10 ticks for each measure */
500 		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
501 			jiffies_to_usecs(10);
502 	}
503 
504 	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
505 	tuners->ignore_nice_load = 0;
506 	tuners->powersave_bias = default_powersave_bias;
507 	tuners->io_is_busy = should_io_be_busy();
508 
509 	dbs_data->tuners = tuners;
510 	return 0;
511 }
512 
513 static void od_exit(struct dbs_data *dbs_data, bool notify)
514 {
515 	kfree(dbs_data->tuners);
516 }
517 
518 define_get_cpu_dbs_routines(od_cpu_dbs_info);
519 
520 static struct od_ops od_ops = {
521 	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
522 	.powersave_bias_target = generic_powersave_bias_target,
523 	.freq_increase = dbs_freq_increase,
524 };
525 
526 static struct common_dbs_data od_dbs_cdata = {
527 	.governor = GOV_ONDEMAND,
528 	.attr_group_gov_sys = &od_attr_group_gov_sys,
529 	.attr_group_gov_pol = &od_attr_group_gov_pol,
530 	.get_cpu_cdbs = get_cpu_cdbs,
531 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
532 	.gov_dbs_timer = od_dbs_timer,
533 	.gov_check_cpu = od_check_cpu,
534 	.gov_ops = &od_ops,
535 	.init = od_init,
536 	.exit = od_exit,
537 	.mutex = __MUTEX_INITIALIZER(od_dbs_cdata.mutex),
538 };
539 
540 static void od_set_powersave_bias(unsigned int powersave_bias)
541 {
542 	struct cpufreq_policy *policy;
543 	struct dbs_data *dbs_data;
544 	struct od_dbs_tuners *od_tuners;
545 	unsigned int cpu;
546 	cpumask_t done;
547 
548 	default_powersave_bias = powersave_bias;
549 	cpumask_clear(&done);
550 
551 	get_online_cpus();
552 	for_each_online_cpu(cpu) {
553 		struct cpu_common_dbs_info *shared;
554 
555 		if (cpumask_test_cpu(cpu, &done))
556 			continue;
557 
558 		shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared;
559 		if (!shared)
560 			continue;
561 
562 		policy = shared->policy;
563 		cpumask_or(&done, &done, policy->cpus);
564 
565 		if (policy->governor != &cpufreq_gov_ondemand)
566 			continue;
567 
568 		dbs_data = policy->governor_data;
569 		od_tuners = dbs_data->tuners;
570 		od_tuners->powersave_bias = default_powersave_bias;
571 	}
572 	put_online_cpus();
573 }
574 
575 void od_register_powersave_bias_handler(unsigned int (*f)
576 		(struct cpufreq_policy *, unsigned int, unsigned int),
577 		unsigned int powersave_bias)
578 {
579 	od_ops.powersave_bias_target = f;
580 	od_set_powersave_bias(powersave_bias);
581 }
582 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
583 
584 void od_unregister_powersave_bias_handler(void)
585 {
586 	od_ops.powersave_bias_target = generic_powersave_bias_target;
587 	od_set_powersave_bias(0);
588 }
589 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
590 
591 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
592 		unsigned int event)
593 {
594 	return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
595 }
596 
597 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
598 static
599 #endif
600 struct cpufreq_governor cpufreq_gov_ondemand = {
601 	.name			= "ondemand",
602 	.governor		= od_cpufreq_governor_dbs,
603 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
604 	.owner			= THIS_MODULE,
605 };
606 
607 static int __init cpufreq_gov_dbs_init(void)
608 {
609 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
610 }
611 
612 static void __exit cpufreq_gov_dbs_exit(void)
613 {
614 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
615 }
616 
617 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
618 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
619 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
620 	"Low Latency Frequency Transition capable processors");
621 MODULE_LICENSE("GPL");
622 
623 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
624 fs_initcall(cpufreq_gov_dbs_init);
625 #else
626 module_init(cpufreq_gov_dbs_init);
627 #endif
628 module_exit(cpufreq_gov_dbs_exit);
629