xref: /linux/drivers/cpufreq/cpufreq_ondemand.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/cpufreq/cpufreq_ondemand.c
4  *
5  *  Copyright (C)  2001 Russell King
6  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
7  *                      Jun Nakajima <jun.nakajima@intel.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/cpu.h>
13 #include <linux/percpu-defs.h>
14 #include <linux/slab.h>
15 #include <linux/tick.h>
16 #include <linux/sched/cpufreq.h>
17 
18 #include "cpufreq_ondemand.h"
19 
20 /* On-demand governor macros */
21 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
22 #define DEF_SAMPLING_DOWN_FACTOR		(1)
23 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
24 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
25 #define MIN_FREQUENCY_UP_THRESHOLD		(1)
26 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
27 
28 static struct od_ops od_ops;
29 
30 static unsigned int default_powersave_bias;
31 
32 /*
33  * Not all CPUs want IO time to be accounted as busy; this depends on how
34  * efficient idling at a higher frequency/voltage is.
35  * Pavel Machek says this is not so for various generations of AMD and old
36  * Intel systems.
37  * Mike Chan (android.com) claims this is also not true for ARM.
38  * Because of this, whitelist specific known (series) of CPUs by default, and
39  * leave all others up to the user.
40  */
41 static int should_io_be_busy(void)
42 {
43 #if defined(CONFIG_X86)
44 	/*
45 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
46 	 */
47 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
48 			boot_cpu_data.x86 == 6 &&
49 			boot_cpu_data.x86_model >= 15)
50 		return 1;
51 #endif
52 	return 0;
53 }
54 
55 /*
56  * Find right freq to be set now with powersave_bias on.
57  * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
58  * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
59  */
60 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
61 		unsigned int freq_next, unsigned int relation)
62 {
63 	unsigned int freq_req, freq_reduc, freq_avg;
64 	unsigned int freq_hi, freq_lo;
65 	unsigned int index;
66 	unsigned int delay_hi_us;
67 	struct policy_dbs_info *policy_dbs = policy->governor_data;
68 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
69 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
70 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
71 	struct cpufreq_frequency_table *freq_table = policy->freq_table;
72 
73 	if (!freq_table) {
74 		dbs_info->freq_lo = 0;
75 		dbs_info->freq_lo_delay_us = 0;
76 		return freq_next;
77 	}
78 
79 	index = cpufreq_frequency_table_target(policy, freq_next, relation);
80 	freq_req = freq_table[index].frequency;
81 	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
82 	freq_avg = freq_req - freq_reduc;
83 
84 	/* Find freq bounds for freq_avg in freq_table */
85 	index = cpufreq_table_find_index_h(policy, freq_avg,
86 					   relation & CPUFREQ_RELATION_E);
87 	freq_lo = freq_table[index].frequency;
88 	index = cpufreq_table_find_index_l(policy, freq_avg,
89 					   relation & CPUFREQ_RELATION_E);
90 	freq_hi = freq_table[index].frequency;
91 
92 	/* Find out how long we have to be in hi and lo freqs */
93 	if (freq_hi == freq_lo) {
94 		dbs_info->freq_lo = 0;
95 		dbs_info->freq_lo_delay_us = 0;
96 		return freq_lo;
97 	}
98 	delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
99 	delay_hi_us += (freq_hi - freq_lo) / 2;
100 	delay_hi_us /= freq_hi - freq_lo;
101 	dbs_info->freq_hi_delay_us = delay_hi_us;
102 	dbs_info->freq_lo = freq_lo;
103 	dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
104 	return freq_hi;
105 }
106 
107 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
108 {
109 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
110 
111 	dbs_info->freq_lo = 0;
112 }
113 
114 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
115 {
116 	struct policy_dbs_info *policy_dbs = policy->governor_data;
117 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
118 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
119 
120 	if (od_tuners->powersave_bias)
121 		freq = od_ops.powersave_bias_target(policy, freq,
122 						    CPUFREQ_RELATION_HE);
123 	else if (policy->cur == policy->max)
124 		return;
125 
126 	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
127 			CPUFREQ_RELATION_LE : CPUFREQ_RELATION_HE);
128 }
129 
130 /*
131  * Every sampling_rate, we check, if current idle time is less than 20%
132  * (default), then we try to increase frequency. Else, we adjust the frequency
133  * proportional to load.
134  */
135 static void od_update(struct cpufreq_policy *policy)
136 {
137 	struct policy_dbs_info *policy_dbs = policy->governor_data;
138 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
139 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
140 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
141 	unsigned int load = dbs_update(policy);
142 
143 	dbs_info->freq_lo = 0;
144 
145 	/* Check for frequency increase */
146 	if (load > dbs_data->up_threshold) {
147 		/* If switching to max speed, apply sampling_down_factor */
148 		if (policy->cur < policy->max)
149 			policy_dbs->rate_mult = dbs_data->sampling_down_factor;
150 		dbs_freq_increase(policy, policy->max);
151 	} else {
152 		/* Calculate the next frequency proportional to load */
153 		unsigned int freq_next, min_f, max_f;
154 
155 		min_f = policy->cpuinfo.min_freq;
156 		max_f = policy->cpuinfo.max_freq;
157 		freq_next = min_f + load * (max_f - min_f) / 100;
158 
159 		/* No longer fully busy, reset rate_mult */
160 		policy_dbs->rate_mult = 1;
161 
162 		if (od_tuners->powersave_bias)
163 			freq_next = od_ops.powersave_bias_target(policy,
164 								 freq_next,
165 								 CPUFREQ_RELATION_LE);
166 
167 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_CE);
168 	}
169 }
170 
171 static unsigned int od_dbs_update(struct cpufreq_policy *policy)
172 {
173 	struct policy_dbs_info *policy_dbs = policy->governor_data;
174 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
175 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
176 	int sample_type = dbs_info->sample_type;
177 
178 	/* Common NORMAL_SAMPLE setup */
179 	dbs_info->sample_type = OD_NORMAL_SAMPLE;
180 	/*
181 	 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
182 	 * it then.
183 	 */
184 	if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
185 		__cpufreq_driver_target(policy, dbs_info->freq_lo,
186 					CPUFREQ_RELATION_HE);
187 		return dbs_info->freq_lo_delay_us;
188 	}
189 
190 	od_update(policy);
191 
192 	if (dbs_info->freq_lo) {
193 		/* Setup SUB_SAMPLE */
194 		dbs_info->sample_type = OD_SUB_SAMPLE;
195 		return dbs_info->freq_hi_delay_us;
196 	}
197 
198 	return dbs_data->sampling_rate * policy_dbs->rate_mult;
199 }
200 
201 /************************** sysfs interface ************************/
202 static struct dbs_governor od_dbs_gov;
203 
204 static ssize_t io_is_busy_store(struct gov_attr_set *attr_set, const char *buf,
205 				size_t count)
206 {
207 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
208 	unsigned int input;
209 	int ret;
210 
211 	ret = sscanf(buf, "%u", &input);
212 	if (ret != 1)
213 		return -EINVAL;
214 	dbs_data->io_is_busy = !!input;
215 
216 	/* we need to re-evaluate prev_cpu_idle */
217 	gov_update_cpu_data(dbs_data);
218 
219 	return count;
220 }
221 
222 static ssize_t up_threshold_store(struct gov_attr_set *attr_set,
223 				  const char *buf, size_t count)
224 {
225 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
226 	unsigned int input;
227 	int ret;
228 	ret = sscanf(buf, "%u", &input);
229 
230 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
231 			input < MIN_FREQUENCY_UP_THRESHOLD) {
232 		return -EINVAL;
233 	}
234 
235 	dbs_data->up_threshold = input;
236 	return count;
237 }
238 
239 static ssize_t sampling_down_factor_store(struct gov_attr_set *attr_set,
240 					  const char *buf, size_t count)
241 {
242 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
243 	struct policy_dbs_info *policy_dbs;
244 	unsigned int input;
245 	int ret;
246 	ret = sscanf(buf, "%u", &input);
247 
248 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
249 		return -EINVAL;
250 
251 	dbs_data->sampling_down_factor = input;
252 
253 	/* Reset down sampling multiplier in case it was active */
254 	list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
255 		/*
256 		 * Doing this without locking might lead to using different
257 		 * rate_mult values in od_update() and od_dbs_update().
258 		 */
259 		mutex_lock(&policy_dbs->update_mutex);
260 		policy_dbs->rate_mult = 1;
261 		mutex_unlock(&policy_dbs->update_mutex);
262 	}
263 
264 	return count;
265 }
266 
267 static ssize_t ignore_nice_load_store(struct gov_attr_set *attr_set,
268 				      const char *buf, size_t count)
269 {
270 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
271 	unsigned int input;
272 	int ret;
273 
274 	ret = sscanf(buf, "%u", &input);
275 	if (ret != 1)
276 		return -EINVAL;
277 
278 	if (input > 1)
279 		input = 1;
280 
281 	if (input == dbs_data->ignore_nice_load) { /* nothing to do */
282 		return count;
283 	}
284 	dbs_data->ignore_nice_load = input;
285 
286 	/* we need to re-evaluate prev_cpu_idle */
287 	gov_update_cpu_data(dbs_data);
288 
289 	return count;
290 }
291 
292 static ssize_t powersave_bias_store(struct gov_attr_set *attr_set,
293 				    const char *buf, size_t count)
294 {
295 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
296 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
297 	struct policy_dbs_info *policy_dbs;
298 	unsigned int input;
299 	int ret;
300 	ret = sscanf(buf, "%u", &input);
301 
302 	if (ret != 1)
303 		return -EINVAL;
304 
305 	if (input > 1000)
306 		input = 1000;
307 
308 	od_tuners->powersave_bias = input;
309 
310 	list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
311 		ondemand_powersave_bias_init(policy_dbs->policy);
312 
313 	return count;
314 }
315 
316 gov_show_one_common(sampling_rate);
317 gov_show_one_common(up_threshold);
318 gov_show_one_common(sampling_down_factor);
319 gov_show_one_common(ignore_nice_load);
320 gov_show_one_common(io_is_busy);
321 gov_show_one(od, powersave_bias);
322 
323 gov_attr_rw(sampling_rate);
324 gov_attr_rw(io_is_busy);
325 gov_attr_rw(up_threshold);
326 gov_attr_rw(sampling_down_factor);
327 gov_attr_rw(ignore_nice_load);
328 gov_attr_rw(powersave_bias);
329 
330 static struct attribute *od_attrs[] = {
331 	&sampling_rate.attr,
332 	&up_threshold.attr,
333 	&sampling_down_factor.attr,
334 	&ignore_nice_load.attr,
335 	&powersave_bias.attr,
336 	&io_is_busy.attr,
337 	NULL
338 };
339 ATTRIBUTE_GROUPS(od);
340 
341 /************************** sysfs end ************************/
342 
343 static struct policy_dbs_info *od_alloc(void)
344 {
345 	struct od_policy_dbs_info *dbs_info;
346 
347 	dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
348 	return dbs_info ? &dbs_info->policy_dbs : NULL;
349 }
350 
351 static void od_free(struct policy_dbs_info *policy_dbs)
352 {
353 	kfree(to_dbs_info(policy_dbs));
354 }
355 
356 static int od_init(struct dbs_data *dbs_data)
357 {
358 	struct od_dbs_tuners *tuners;
359 	u64 idle_time;
360 	int cpu;
361 
362 	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
363 	if (!tuners)
364 		return -ENOMEM;
365 
366 	cpu = get_cpu();
367 	idle_time = get_cpu_idle_time_us(cpu, NULL);
368 	put_cpu();
369 	if (idle_time != -1ULL) {
370 		/* Idle micro accounting is supported. Use finer thresholds */
371 		dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
372 	} else {
373 		dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
374 	}
375 
376 	dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
377 	dbs_data->ignore_nice_load = 0;
378 	tuners->powersave_bias = default_powersave_bias;
379 	dbs_data->io_is_busy = should_io_be_busy();
380 
381 	dbs_data->tuners = tuners;
382 	return 0;
383 }
384 
385 static void od_exit(struct dbs_data *dbs_data)
386 {
387 	kfree(dbs_data->tuners);
388 }
389 
390 static void od_start(struct cpufreq_policy *policy)
391 {
392 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
393 
394 	dbs_info->sample_type = OD_NORMAL_SAMPLE;
395 	ondemand_powersave_bias_init(policy);
396 }
397 
398 static struct od_ops od_ops = {
399 	.powersave_bias_target = generic_powersave_bias_target,
400 };
401 
402 static struct dbs_governor od_dbs_gov = {
403 	.gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
404 	.kobj_type = { .default_groups = od_groups },
405 	.gov_dbs_update = od_dbs_update,
406 	.alloc = od_alloc,
407 	.free = od_free,
408 	.init = od_init,
409 	.exit = od_exit,
410 	.start = od_start,
411 };
412 
413 #define CPU_FREQ_GOV_ONDEMAND	(od_dbs_gov.gov)
414 
415 static void od_set_powersave_bias(unsigned int powersave_bias)
416 {
417 	unsigned int cpu;
418 	cpumask_var_t done;
419 
420 	if (!alloc_cpumask_var(&done, GFP_KERNEL))
421 		return;
422 
423 	default_powersave_bias = powersave_bias;
424 	cpumask_clear(done);
425 
426 	cpus_read_lock();
427 	for_each_online_cpu(cpu) {
428 		struct cpufreq_policy *policy;
429 		struct policy_dbs_info *policy_dbs;
430 		struct dbs_data *dbs_data;
431 		struct od_dbs_tuners *od_tuners;
432 
433 		if (cpumask_test_cpu(cpu, done))
434 			continue;
435 
436 		policy = cpufreq_cpu_get_raw(cpu);
437 		if (!policy || policy->governor != &CPU_FREQ_GOV_ONDEMAND)
438 			continue;
439 
440 		policy_dbs = policy->governor_data;
441 		if (!policy_dbs)
442 			continue;
443 
444 		cpumask_or(done, done, policy->cpus);
445 
446 		dbs_data = policy_dbs->dbs_data;
447 		od_tuners = dbs_data->tuners;
448 		od_tuners->powersave_bias = default_powersave_bias;
449 	}
450 	cpus_read_unlock();
451 
452 	free_cpumask_var(done);
453 }
454 
455 void od_register_powersave_bias_handler(unsigned int (*f)
456 		(struct cpufreq_policy *, unsigned int, unsigned int),
457 		unsigned int powersave_bias)
458 {
459 	od_ops.powersave_bias_target = f;
460 	od_set_powersave_bias(powersave_bias);
461 }
462 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
463 
464 void od_unregister_powersave_bias_handler(void)
465 {
466 	od_ops.powersave_bias_target = generic_powersave_bias_target;
467 	od_set_powersave_bias(0);
468 }
469 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
470 
471 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
472 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
473 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
474 	"Low Latency Frequency Transition capable processors");
475 MODULE_LICENSE("GPL");
476 
477 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
478 struct cpufreq_governor *cpufreq_default_governor(void)
479 {
480 	return &CPU_FREQ_GOV_ONDEMAND;
481 }
482 #endif
483 
484 cpufreq_governor_init(CPU_FREQ_GOV_ONDEMAND);
485 cpufreq_governor_exit(CPU_FREQ_GOV_ONDEMAND);
486