1 /* 2 * drivers/cpufreq/cpufreq_ondemand.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 6 * Jun Nakajima <jun.nakajima@intel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/cpufreq.h> 17 #include <linux/cpu.h> 18 #include <linux/jiffies.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mutex.h> 21 22 /* 23 * dbs is used in this file as a shortform for demandbased switching 24 * It helps to keep variable names smaller, simpler 25 */ 26 27 #define DEF_FREQUENCY_UP_THRESHOLD (80) 28 #define MIN_FREQUENCY_UP_THRESHOLD (11) 29 #define MAX_FREQUENCY_UP_THRESHOLD (100) 30 31 /* 32 * The polling frequency of this governor depends on the capability of 33 * the processor. Default polling frequency is 1000 times the transition 34 * latency of the processor. The governor will work on any processor with 35 * transition latency <= 10mS, using appropriate sampling 36 * rate. 37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) 38 * this governor will not work. 39 * All times here are in uS. 40 */ 41 static unsigned int def_sampling_rate; 42 #define MIN_SAMPLING_RATE_RATIO (2) 43 /* for correct statistics, we need at least 10 ticks between each measure */ 44 #define MIN_STAT_SAMPLING_RATE \ 45 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10)) 46 #define MIN_SAMPLING_RATE \ 47 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO) 48 #define MAX_SAMPLING_RATE (500 * def_sampling_rate) 49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000) 50 #define TRANSITION_LATENCY_LIMIT (10 * 1000) 51 52 static void do_dbs_timer(struct work_struct *work); 53 54 /* Sampling types */ 55 enum dbs_sample {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE}; 56 57 struct cpu_dbs_info_s { 58 cputime64_t prev_cpu_idle; 59 cputime64_t prev_cpu_wall; 60 struct cpufreq_policy *cur_policy; 61 struct delayed_work work; 62 enum dbs_sample sample_type; 63 unsigned int enable; 64 struct cpufreq_frequency_table *freq_table; 65 unsigned int freq_lo; 66 unsigned int freq_lo_jiffies; 67 unsigned int freq_hi_jiffies; 68 }; 69 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); 70 71 static unsigned int dbs_enable; /* number of CPUs using this policy */ 72 73 /* 74 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug 75 * lock and dbs_mutex. cpu_hotplug lock should always be held before 76 * dbs_mutex. If any function that can potentially take cpu_hotplug lock 77 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then 78 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock 79 * is recursive for the same process. -Venki 80 */ 81 static DEFINE_MUTEX(dbs_mutex); 82 83 static struct workqueue_struct *kondemand_wq; 84 85 static struct dbs_tuners { 86 unsigned int sampling_rate; 87 unsigned int up_threshold; 88 unsigned int ignore_nice; 89 unsigned int powersave_bias; 90 } dbs_tuners_ins = { 91 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, 92 .ignore_nice = 0, 93 .powersave_bias = 0, 94 }; 95 96 static inline cputime64_t get_cpu_idle_time(unsigned int cpu) 97 { 98 cputime64_t retval; 99 100 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle, 101 kstat_cpu(cpu).cpustat.iowait); 102 103 if (dbs_tuners_ins.ignore_nice) 104 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice); 105 106 return retval; 107 } 108 109 /* 110 * Find right freq to be set now with powersave_bias on. 111 * Returns the freq_hi to be used right now and will set freq_hi_jiffies, 112 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. 113 */ 114 static unsigned int powersave_bias_target(struct cpufreq_policy *policy, 115 unsigned int freq_next, 116 unsigned int relation) 117 { 118 unsigned int freq_req, freq_reduc, freq_avg; 119 unsigned int freq_hi, freq_lo; 120 unsigned int index = 0; 121 unsigned int jiffies_total, jiffies_hi, jiffies_lo; 122 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu); 123 124 if (!dbs_info->freq_table) { 125 dbs_info->freq_lo = 0; 126 dbs_info->freq_lo_jiffies = 0; 127 return freq_next; 128 } 129 130 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, 131 relation, &index); 132 freq_req = dbs_info->freq_table[index].frequency; 133 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000; 134 freq_avg = freq_req - freq_reduc; 135 136 /* Find freq bounds for freq_avg in freq_table */ 137 index = 0; 138 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 139 CPUFREQ_RELATION_H, &index); 140 freq_lo = dbs_info->freq_table[index].frequency; 141 index = 0; 142 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 143 CPUFREQ_RELATION_L, &index); 144 freq_hi = dbs_info->freq_table[index].frequency; 145 146 /* Find out how long we have to be in hi and lo freqs */ 147 if (freq_hi == freq_lo) { 148 dbs_info->freq_lo = 0; 149 dbs_info->freq_lo_jiffies = 0; 150 return freq_lo; 151 } 152 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 153 jiffies_hi = (freq_avg - freq_lo) * jiffies_total; 154 jiffies_hi += ((freq_hi - freq_lo) / 2); 155 jiffies_hi /= (freq_hi - freq_lo); 156 jiffies_lo = jiffies_total - jiffies_hi; 157 dbs_info->freq_lo = freq_lo; 158 dbs_info->freq_lo_jiffies = jiffies_lo; 159 dbs_info->freq_hi_jiffies = jiffies_hi; 160 return freq_hi; 161 } 162 163 static void ondemand_powersave_bias_init(void) 164 { 165 int i; 166 for_each_online_cpu(i) { 167 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i); 168 dbs_info->freq_table = cpufreq_frequency_get_table(i); 169 dbs_info->freq_lo = 0; 170 } 171 } 172 173 /************************** sysfs interface ************************/ 174 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) 175 { 176 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE); 177 } 178 179 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf) 180 { 181 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE); 182 } 183 184 #define define_one_ro(_name) \ 185 static struct freq_attr _name = \ 186 __ATTR(_name, 0444, show_##_name, NULL) 187 188 define_one_ro(sampling_rate_max); 189 define_one_ro(sampling_rate_min); 190 191 /* cpufreq_ondemand Governor Tunables */ 192 #define show_one(file_name, object) \ 193 static ssize_t show_##file_name \ 194 (struct cpufreq_policy *unused, char *buf) \ 195 { \ 196 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ 197 } 198 show_one(sampling_rate, sampling_rate); 199 show_one(up_threshold, up_threshold); 200 show_one(ignore_nice_load, ignore_nice); 201 show_one(powersave_bias, powersave_bias); 202 203 static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 204 const char *buf, size_t count) 205 { 206 unsigned int input; 207 int ret; 208 ret = sscanf(buf, "%u", &input); 209 210 mutex_lock(&dbs_mutex); 211 if (ret != 1 || input > MAX_SAMPLING_RATE 212 || input < MIN_SAMPLING_RATE) { 213 mutex_unlock(&dbs_mutex); 214 return -EINVAL; 215 } 216 217 dbs_tuners_ins.sampling_rate = input; 218 mutex_unlock(&dbs_mutex); 219 220 return count; 221 } 222 223 static ssize_t store_up_threshold(struct cpufreq_policy *unused, 224 const char *buf, size_t count) 225 { 226 unsigned int input; 227 int ret; 228 ret = sscanf(buf, "%u", &input); 229 230 mutex_lock(&dbs_mutex); 231 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 232 input < MIN_FREQUENCY_UP_THRESHOLD) { 233 mutex_unlock(&dbs_mutex); 234 return -EINVAL; 235 } 236 237 dbs_tuners_ins.up_threshold = input; 238 mutex_unlock(&dbs_mutex); 239 240 return count; 241 } 242 243 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy, 244 const char *buf, size_t count) 245 { 246 unsigned int input; 247 int ret; 248 249 unsigned int j; 250 251 ret = sscanf(buf, "%u", &input); 252 if ( ret != 1 ) 253 return -EINVAL; 254 255 if ( input > 1 ) 256 input = 1; 257 258 mutex_lock(&dbs_mutex); 259 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */ 260 mutex_unlock(&dbs_mutex); 261 return count; 262 } 263 dbs_tuners_ins.ignore_nice = input; 264 265 /* we need to re-evaluate prev_cpu_idle */ 266 for_each_online_cpu(j) { 267 struct cpu_dbs_info_s *dbs_info; 268 dbs_info = &per_cpu(cpu_dbs_info, j); 269 dbs_info->prev_cpu_idle = get_cpu_idle_time(j); 270 dbs_info->prev_cpu_wall = get_jiffies_64(); 271 } 272 mutex_unlock(&dbs_mutex); 273 274 return count; 275 } 276 277 static ssize_t store_powersave_bias(struct cpufreq_policy *unused, 278 const char *buf, size_t count) 279 { 280 unsigned int input; 281 int ret; 282 ret = sscanf(buf, "%u", &input); 283 284 if (ret != 1) 285 return -EINVAL; 286 287 if (input > 1000) 288 input = 1000; 289 290 mutex_lock(&dbs_mutex); 291 dbs_tuners_ins.powersave_bias = input; 292 ondemand_powersave_bias_init(); 293 mutex_unlock(&dbs_mutex); 294 295 return count; 296 } 297 298 #define define_one_rw(_name) \ 299 static struct freq_attr _name = \ 300 __ATTR(_name, 0644, show_##_name, store_##_name) 301 302 define_one_rw(sampling_rate); 303 define_one_rw(up_threshold); 304 define_one_rw(ignore_nice_load); 305 define_one_rw(powersave_bias); 306 307 static struct attribute * dbs_attributes[] = { 308 &sampling_rate_max.attr, 309 &sampling_rate_min.attr, 310 &sampling_rate.attr, 311 &up_threshold.attr, 312 &ignore_nice_load.attr, 313 &powersave_bias.attr, 314 NULL 315 }; 316 317 static struct attribute_group dbs_attr_group = { 318 .attrs = dbs_attributes, 319 .name = "ondemand", 320 }; 321 322 /************************** sysfs end ************************/ 323 324 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) 325 { 326 unsigned int idle_ticks, total_ticks; 327 unsigned int load; 328 cputime64_t cur_jiffies; 329 330 struct cpufreq_policy *policy; 331 unsigned int j; 332 333 if (!this_dbs_info->enable) 334 return; 335 336 this_dbs_info->freq_lo = 0; 337 policy = this_dbs_info->cur_policy; 338 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64()); 339 total_ticks = (unsigned int) cputime64_sub(cur_jiffies, 340 this_dbs_info->prev_cpu_wall); 341 this_dbs_info->prev_cpu_wall = cur_jiffies; 342 if (!total_ticks) 343 return; 344 /* 345 * Every sampling_rate, we check, if current idle time is less 346 * than 20% (default), then we try to increase frequency 347 * Every sampling_rate, we look for a the lowest 348 * frequency which can sustain the load while keeping idle time over 349 * 30%. If such a frequency exist, we try to decrease to this frequency. 350 * 351 * Any frequency increase takes it to the maximum frequency. 352 * Frequency reduction happens at minimum steps of 353 * 5% (default) of current frequency 354 */ 355 356 /* Get Idle Time */ 357 idle_ticks = UINT_MAX; 358 for_each_cpu_mask(j, policy->cpus) { 359 cputime64_t total_idle_ticks; 360 unsigned int tmp_idle_ticks; 361 struct cpu_dbs_info_s *j_dbs_info; 362 363 j_dbs_info = &per_cpu(cpu_dbs_info, j); 364 total_idle_ticks = get_cpu_idle_time(j); 365 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks, 366 j_dbs_info->prev_cpu_idle); 367 j_dbs_info->prev_cpu_idle = total_idle_ticks; 368 369 if (tmp_idle_ticks < idle_ticks) 370 idle_ticks = tmp_idle_ticks; 371 } 372 load = (100 * (total_ticks - idle_ticks)) / total_ticks; 373 374 /* Check for frequency increase */ 375 if (load > dbs_tuners_ins.up_threshold) { 376 /* if we are already at full speed then break out early */ 377 if (!dbs_tuners_ins.powersave_bias) { 378 if (policy->cur == policy->max) 379 return; 380 381 __cpufreq_driver_target(policy, policy->max, 382 CPUFREQ_RELATION_H); 383 } else { 384 int freq = powersave_bias_target(policy, policy->max, 385 CPUFREQ_RELATION_H); 386 __cpufreq_driver_target(policy, freq, 387 CPUFREQ_RELATION_L); 388 } 389 return; 390 } 391 392 /* Check for frequency decrease */ 393 /* if we cannot reduce the frequency anymore, break out early */ 394 if (policy->cur == policy->min) 395 return; 396 397 /* 398 * The optimal frequency is the frequency that is the lowest that 399 * can support the current CPU usage without triggering the up 400 * policy. To be safe, we focus 10 points under the threshold. 401 */ 402 if (load < (dbs_tuners_ins.up_threshold - 10)) { 403 unsigned int freq_next, freq_cur; 404 405 freq_cur = cpufreq_driver_getavg(policy); 406 if (!freq_cur) 407 freq_cur = policy->cur; 408 409 freq_next = (freq_cur * load) / 410 (dbs_tuners_ins.up_threshold - 10); 411 412 if (!dbs_tuners_ins.powersave_bias) { 413 __cpufreq_driver_target(policy, freq_next, 414 CPUFREQ_RELATION_L); 415 } else { 416 int freq = powersave_bias_target(policy, freq_next, 417 CPUFREQ_RELATION_L); 418 __cpufreq_driver_target(policy, freq, 419 CPUFREQ_RELATION_L); 420 } 421 } 422 } 423 424 static void do_dbs_timer(struct work_struct *work) 425 { 426 unsigned int cpu = smp_processor_id(); 427 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu); 428 enum dbs_sample sample_type = dbs_info->sample_type; 429 /* We want all CPUs to do sampling nearly on same jiffy */ 430 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 431 432 /* Permit rescheduling of this work item */ 433 work_release(work); 434 435 delay -= jiffies % delay; 436 437 if (!dbs_info->enable) 438 return; 439 /* Common NORMAL_SAMPLE setup */ 440 dbs_info->sample_type = DBS_NORMAL_SAMPLE; 441 if (!dbs_tuners_ins.powersave_bias || 442 sample_type == DBS_NORMAL_SAMPLE) { 443 lock_cpu_hotplug(); 444 dbs_check_cpu(dbs_info); 445 unlock_cpu_hotplug(); 446 if (dbs_info->freq_lo) { 447 /* Setup timer for SUB_SAMPLE */ 448 dbs_info->sample_type = DBS_SUB_SAMPLE; 449 delay = dbs_info->freq_hi_jiffies; 450 } 451 } else { 452 __cpufreq_driver_target(dbs_info->cur_policy, 453 dbs_info->freq_lo, 454 CPUFREQ_RELATION_H); 455 } 456 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay); 457 } 458 459 static inline void dbs_timer_init(unsigned int cpu) 460 { 461 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu); 462 /* We want all CPUs to do sampling nearly on same jiffy */ 463 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 464 delay -= jiffies % delay; 465 466 ondemand_powersave_bias_init(); 467 INIT_DELAYED_WORK_NAR(&dbs_info->work, do_dbs_timer); 468 dbs_info->sample_type = DBS_NORMAL_SAMPLE; 469 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay); 470 } 471 472 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info) 473 { 474 dbs_info->enable = 0; 475 cancel_delayed_work(&dbs_info->work); 476 flush_workqueue(kondemand_wq); 477 } 478 479 static int cpufreq_governor_dbs(struct cpufreq_policy *policy, 480 unsigned int event) 481 { 482 unsigned int cpu = policy->cpu; 483 struct cpu_dbs_info_s *this_dbs_info; 484 unsigned int j; 485 int rc; 486 487 this_dbs_info = &per_cpu(cpu_dbs_info, cpu); 488 489 switch (event) { 490 case CPUFREQ_GOV_START: 491 if ((!cpu_online(cpu)) || (!policy->cur)) 492 return -EINVAL; 493 494 if (policy->cpuinfo.transition_latency > 495 (TRANSITION_LATENCY_LIMIT * 1000)) { 496 printk(KERN_WARNING "ondemand governor failed to load " 497 "due to too long transition latency\n"); 498 return -EINVAL; 499 } 500 if (this_dbs_info->enable) /* Already enabled */ 501 break; 502 503 mutex_lock(&dbs_mutex); 504 dbs_enable++; 505 if (dbs_enable == 1) { 506 kondemand_wq = create_workqueue("kondemand"); 507 if (!kondemand_wq) { 508 printk(KERN_ERR 509 "Creation of kondemand failed\n"); 510 dbs_enable--; 511 mutex_unlock(&dbs_mutex); 512 return -ENOSPC; 513 } 514 } 515 516 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group); 517 if (rc) { 518 if (dbs_enable == 1) 519 destroy_workqueue(kondemand_wq); 520 dbs_enable--; 521 mutex_unlock(&dbs_mutex); 522 return rc; 523 } 524 525 for_each_cpu_mask(j, policy->cpus) { 526 struct cpu_dbs_info_s *j_dbs_info; 527 j_dbs_info = &per_cpu(cpu_dbs_info, j); 528 j_dbs_info->cur_policy = policy; 529 530 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j); 531 j_dbs_info->prev_cpu_wall = get_jiffies_64(); 532 } 533 this_dbs_info->enable = 1; 534 /* 535 * Start the timerschedule work, when this governor 536 * is used for first time 537 */ 538 if (dbs_enable == 1) { 539 unsigned int latency; 540 /* policy latency is in nS. Convert it to uS first */ 541 latency = policy->cpuinfo.transition_latency / 1000; 542 if (latency == 0) 543 latency = 1; 544 545 def_sampling_rate = latency * 546 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER; 547 548 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE) 549 def_sampling_rate = MIN_STAT_SAMPLING_RATE; 550 551 dbs_tuners_ins.sampling_rate = def_sampling_rate; 552 } 553 dbs_timer_init(policy->cpu); 554 555 mutex_unlock(&dbs_mutex); 556 break; 557 558 case CPUFREQ_GOV_STOP: 559 mutex_lock(&dbs_mutex); 560 dbs_timer_exit(this_dbs_info); 561 sysfs_remove_group(&policy->kobj, &dbs_attr_group); 562 dbs_enable--; 563 if (dbs_enable == 0) 564 destroy_workqueue(kondemand_wq); 565 566 mutex_unlock(&dbs_mutex); 567 568 break; 569 570 case CPUFREQ_GOV_LIMITS: 571 mutex_lock(&dbs_mutex); 572 if (policy->max < this_dbs_info->cur_policy->cur) 573 __cpufreq_driver_target(this_dbs_info->cur_policy, 574 policy->max, 575 CPUFREQ_RELATION_H); 576 else if (policy->min > this_dbs_info->cur_policy->cur) 577 __cpufreq_driver_target(this_dbs_info->cur_policy, 578 policy->min, 579 CPUFREQ_RELATION_L); 580 mutex_unlock(&dbs_mutex); 581 break; 582 } 583 return 0; 584 } 585 586 static struct cpufreq_governor cpufreq_gov_dbs = { 587 .name = "ondemand", 588 .governor = cpufreq_governor_dbs, 589 .owner = THIS_MODULE, 590 }; 591 592 static int __init cpufreq_gov_dbs_init(void) 593 { 594 return cpufreq_register_governor(&cpufreq_gov_dbs); 595 } 596 597 static void __exit cpufreq_gov_dbs_exit(void) 598 { 599 cpufreq_unregister_governor(&cpufreq_gov_dbs); 600 } 601 602 603 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); 604 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); 605 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " 606 "Low Latency Frequency Transition capable processors"); 607 MODULE_LICENSE("GPL"); 608 609 module_init(cpufreq_gov_dbs_init); 610 module_exit(cpufreq_gov_dbs_exit); 611