xref: /linux/drivers/cpufreq/cpufreq_ondemand.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 
22 /*
23  * dbs is used in this file as a shortform for demandbased switching
24  * It helps to keep variable names smaller, simpler
25  */
26 
27 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
28 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
29 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
30 
31 /*
32  * The polling frequency of this governor depends on the capability of
33  * the processor. Default polling frequency is 1000 times the transition
34  * latency of the processor. The governor will work on any processor with
35  * transition latency <= 10mS, using appropriate sampling
36  * rate.
37  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38  * this governor will not work.
39  * All times here are in uS.
40  */
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO			(2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE 			\
45 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46 #define MIN_SAMPLING_RATE			\
47 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
48 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
50 #define TRANSITION_LATENCY_LIMIT		(10 * 1000)
51 
52 static void do_dbs_timer(struct work_struct *work);
53 
54 /* Sampling types */
55 enum dbs_sample {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
56 
57 struct cpu_dbs_info_s {
58 	cputime64_t prev_cpu_idle;
59 	cputime64_t prev_cpu_wall;
60 	struct cpufreq_policy *cur_policy;
61  	struct delayed_work work;
62 	enum dbs_sample sample_type;
63 	unsigned int enable;
64 	struct cpufreq_frequency_table *freq_table;
65 	unsigned int freq_lo;
66 	unsigned int freq_lo_jiffies;
67 	unsigned int freq_hi_jiffies;
68 };
69 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
70 
71 static unsigned int dbs_enable;	/* number of CPUs using this policy */
72 
73 /*
74  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
75  * lock and dbs_mutex. cpu_hotplug lock should always be held before
76  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
77  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
78  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
79  * is recursive for the same process. -Venki
80  */
81 static DEFINE_MUTEX(dbs_mutex);
82 
83 static struct workqueue_struct	*kondemand_wq;
84 
85 static struct dbs_tuners {
86 	unsigned int sampling_rate;
87 	unsigned int up_threshold;
88 	unsigned int ignore_nice;
89 	unsigned int powersave_bias;
90 } dbs_tuners_ins = {
91 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 	.ignore_nice = 0,
93 	.powersave_bias = 0,
94 };
95 
96 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
97 {
98 	cputime64_t retval;
99 
100 	retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
101 			kstat_cpu(cpu).cpustat.iowait);
102 
103 	if (dbs_tuners_ins.ignore_nice)
104 		retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
105 
106 	return retval;
107 }
108 
109 /*
110  * Find right freq to be set now with powersave_bias on.
111  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
112  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
113  */
114 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
115 					  unsigned int freq_next,
116 					  unsigned int relation)
117 {
118 	unsigned int freq_req, freq_reduc, freq_avg;
119 	unsigned int freq_hi, freq_lo;
120 	unsigned int index = 0;
121 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
122 	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
123 
124 	if (!dbs_info->freq_table) {
125 		dbs_info->freq_lo = 0;
126 		dbs_info->freq_lo_jiffies = 0;
127 		return freq_next;
128 	}
129 
130 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
131 			relation, &index);
132 	freq_req = dbs_info->freq_table[index].frequency;
133 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
134 	freq_avg = freq_req - freq_reduc;
135 
136 	/* Find freq bounds for freq_avg in freq_table */
137 	index = 0;
138 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
139 			CPUFREQ_RELATION_H, &index);
140 	freq_lo = dbs_info->freq_table[index].frequency;
141 	index = 0;
142 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
143 			CPUFREQ_RELATION_L, &index);
144 	freq_hi = dbs_info->freq_table[index].frequency;
145 
146 	/* Find out how long we have to be in hi and lo freqs */
147 	if (freq_hi == freq_lo) {
148 		dbs_info->freq_lo = 0;
149 		dbs_info->freq_lo_jiffies = 0;
150 		return freq_lo;
151 	}
152 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
153 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
154 	jiffies_hi += ((freq_hi - freq_lo) / 2);
155 	jiffies_hi /= (freq_hi - freq_lo);
156 	jiffies_lo = jiffies_total - jiffies_hi;
157 	dbs_info->freq_lo = freq_lo;
158 	dbs_info->freq_lo_jiffies = jiffies_lo;
159 	dbs_info->freq_hi_jiffies = jiffies_hi;
160 	return freq_hi;
161 }
162 
163 static void ondemand_powersave_bias_init(void)
164 {
165 	int i;
166 	for_each_online_cpu(i) {
167 		struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
168 		dbs_info->freq_table = cpufreq_frequency_get_table(i);
169 		dbs_info->freq_lo = 0;
170 	}
171 }
172 
173 /************************** sysfs interface ************************/
174 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
175 {
176 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
177 }
178 
179 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
180 {
181 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
182 }
183 
184 #define define_one_ro(_name)		\
185 static struct freq_attr _name =		\
186 __ATTR(_name, 0444, show_##_name, NULL)
187 
188 define_one_ro(sampling_rate_max);
189 define_one_ro(sampling_rate_min);
190 
191 /* cpufreq_ondemand Governor Tunables */
192 #define show_one(file_name, object)					\
193 static ssize_t show_##file_name						\
194 (struct cpufreq_policy *unused, char *buf)				\
195 {									\
196 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
197 }
198 show_one(sampling_rate, sampling_rate);
199 show_one(up_threshold, up_threshold);
200 show_one(ignore_nice_load, ignore_nice);
201 show_one(powersave_bias, powersave_bias);
202 
203 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
204 		const char *buf, size_t count)
205 {
206 	unsigned int input;
207 	int ret;
208 	ret = sscanf(buf, "%u", &input);
209 
210 	mutex_lock(&dbs_mutex);
211 	if (ret != 1 || input > MAX_SAMPLING_RATE
212 		     || input < MIN_SAMPLING_RATE) {
213 		mutex_unlock(&dbs_mutex);
214 		return -EINVAL;
215 	}
216 
217 	dbs_tuners_ins.sampling_rate = input;
218 	mutex_unlock(&dbs_mutex);
219 
220 	return count;
221 }
222 
223 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
224 		const char *buf, size_t count)
225 {
226 	unsigned int input;
227 	int ret;
228 	ret = sscanf(buf, "%u", &input);
229 
230 	mutex_lock(&dbs_mutex);
231 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
232 			input < MIN_FREQUENCY_UP_THRESHOLD) {
233 		mutex_unlock(&dbs_mutex);
234 		return -EINVAL;
235 	}
236 
237 	dbs_tuners_ins.up_threshold = input;
238 	mutex_unlock(&dbs_mutex);
239 
240 	return count;
241 }
242 
243 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
244 		const char *buf, size_t count)
245 {
246 	unsigned int input;
247 	int ret;
248 
249 	unsigned int j;
250 
251 	ret = sscanf(buf, "%u", &input);
252 	if ( ret != 1 )
253 		return -EINVAL;
254 
255 	if ( input > 1 )
256 		input = 1;
257 
258 	mutex_lock(&dbs_mutex);
259 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
260 		mutex_unlock(&dbs_mutex);
261 		return count;
262 	}
263 	dbs_tuners_ins.ignore_nice = input;
264 
265 	/* we need to re-evaluate prev_cpu_idle */
266 	for_each_online_cpu(j) {
267 		struct cpu_dbs_info_s *dbs_info;
268 		dbs_info = &per_cpu(cpu_dbs_info, j);
269 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
270 		dbs_info->prev_cpu_wall = get_jiffies_64();
271 	}
272 	mutex_unlock(&dbs_mutex);
273 
274 	return count;
275 }
276 
277 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
278 		const char *buf, size_t count)
279 {
280 	unsigned int input;
281 	int ret;
282 	ret = sscanf(buf, "%u", &input);
283 
284 	if (ret != 1)
285 		return -EINVAL;
286 
287 	if (input > 1000)
288 		input = 1000;
289 
290 	mutex_lock(&dbs_mutex);
291 	dbs_tuners_ins.powersave_bias = input;
292 	ondemand_powersave_bias_init();
293 	mutex_unlock(&dbs_mutex);
294 
295 	return count;
296 }
297 
298 #define define_one_rw(_name) \
299 static struct freq_attr _name = \
300 __ATTR(_name, 0644, show_##_name, store_##_name)
301 
302 define_one_rw(sampling_rate);
303 define_one_rw(up_threshold);
304 define_one_rw(ignore_nice_load);
305 define_one_rw(powersave_bias);
306 
307 static struct attribute * dbs_attributes[] = {
308 	&sampling_rate_max.attr,
309 	&sampling_rate_min.attr,
310 	&sampling_rate.attr,
311 	&up_threshold.attr,
312 	&ignore_nice_load.attr,
313 	&powersave_bias.attr,
314 	NULL
315 };
316 
317 static struct attribute_group dbs_attr_group = {
318 	.attrs = dbs_attributes,
319 	.name = "ondemand",
320 };
321 
322 /************************** sysfs end ************************/
323 
324 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
325 {
326 	unsigned int idle_ticks, total_ticks;
327 	unsigned int load;
328 	cputime64_t cur_jiffies;
329 
330 	struct cpufreq_policy *policy;
331 	unsigned int j;
332 
333 	if (!this_dbs_info->enable)
334 		return;
335 
336 	this_dbs_info->freq_lo = 0;
337 	policy = this_dbs_info->cur_policy;
338 	cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
339 	total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
340 			this_dbs_info->prev_cpu_wall);
341 	this_dbs_info->prev_cpu_wall = cur_jiffies;
342 	if (!total_ticks)
343 		return;
344 	/*
345 	 * Every sampling_rate, we check, if current idle time is less
346 	 * than 20% (default), then we try to increase frequency
347 	 * Every sampling_rate, we look for a the lowest
348 	 * frequency which can sustain the load while keeping idle time over
349 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
350 	 *
351 	 * Any frequency increase takes it to the maximum frequency.
352 	 * Frequency reduction happens at minimum steps of
353 	 * 5% (default) of current frequency
354 	 */
355 
356 	/* Get Idle Time */
357 	idle_ticks = UINT_MAX;
358 	for_each_cpu_mask(j, policy->cpus) {
359 		cputime64_t total_idle_ticks;
360 		unsigned int tmp_idle_ticks;
361 		struct cpu_dbs_info_s *j_dbs_info;
362 
363 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
364 		total_idle_ticks = get_cpu_idle_time(j);
365 		tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
366 				j_dbs_info->prev_cpu_idle);
367 		j_dbs_info->prev_cpu_idle = total_idle_ticks;
368 
369 		if (tmp_idle_ticks < idle_ticks)
370 			idle_ticks = tmp_idle_ticks;
371 	}
372 	load = (100 * (total_ticks - idle_ticks)) / total_ticks;
373 
374 	/* Check for frequency increase */
375 	if (load > dbs_tuners_ins.up_threshold) {
376 		/* if we are already at full speed then break out early */
377 		if (!dbs_tuners_ins.powersave_bias) {
378 			if (policy->cur == policy->max)
379 				return;
380 
381 			__cpufreq_driver_target(policy, policy->max,
382 				CPUFREQ_RELATION_H);
383 		} else {
384 			int freq = powersave_bias_target(policy, policy->max,
385 					CPUFREQ_RELATION_H);
386 			__cpufreq_driver_target(policy, freq,
387 				CPUFREQ_RELATION_L);
388 		}
389 		return;
390 	}
391 
392 	/* Check for frequency decrease */
393 	/* if we cannot reduce the frequency anymore, break out early */
394 	if (policy->cur == policy->min)
395 		return;
396 
397 	/*
398 	 * The optimal frequency is the frequency that is the lowest that
399 	 * can support the current CPU usage without triggering the up
400 	 * policy. To be safe, we focus 10 points under the threshold.
401 	 */
402 	if (load < (dbs_tuners_ins.up_threshold - 10)) {
403 		unsigned int freq_next, freq_cur;
404 
405 		freq_cur = cpufreq_driver_getavg(policy);
406 		if (!freq_cur)
407 			freq_cur = policy->cur;
408 
409 		freq_next = (freq_cur * load) /
410 			(dbs_tuners_ins.up_threshold - 10);
411 
412 		if (!dbs_tuners_ins.powersave_bias) {
413 			__cpufreq_driver_target(policy, freq_next,
414 					CPUFREQ_RELATION_L);
415 		} else {
416 			int freq = powersave_bias_target(policy, freq_next,
417 					CPUFREQ_RELATION_L);
418 			__cpufreq_driver_target(policy, freq,
419 				CPUFREQ_RELATION_L);
420 		}
421 	}
422 }
423 
424 static void do_dbs_timer(struct work_struct *work)
425 {
426 	unsigned int cpu = smp_processor_id();
427 	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
428 	enum dbs_sample sample_type = dbs_info->sample_type;
429 	/* We want all CPUs to do sampling nearly on same jiffy */
430 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
431 
432 	/* Permit rescheduling of this work item */
433 	work_release(work);
434 
435 	delay -= jiffies % delay;
436 
437 	if (!dbs_info->enable)
438 		return;
439 	/* Common NORMAL_SAMPLE setup */
440 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
441 	if (!dbs_tuners_ins.powersave_bias ||
442 	    sample_type == DBS_NORMAL_SAMPLE) {
443 		lock_cpu_hotplug();
444 		dbs_check_cpu(dbs_info);
445 		unlock_cpu_hotplug();
446 		if (dbs_info->freq_lo) {
447 			/* Setup timer for SUB_SAMPLE */
448 			dbs_info->sample_type = DBS_SUB_SAMPLE;
449 			delay = dbs_info->freq_hi_jiffies;
450 		}
451 	} else {
452 		__cpufreq_driver_target(dbs_info->cur_policy,
453 	                        	dbs_info->freq_lo,
454 	                        	CPUFREQ_RELATION_H);
455 	}
456 	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
457 }
458 
459 static inline void dbs_timer_init(unsigned int cpu)
460 {
461 	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
462 	/* We want all CPUs to do sampling nearly on same jiffy */
463 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
464 	delay -= jiffies % delay;
465 
466 	ondemand_powersave_bias_init();
467 	INIT_DELAYED_WORK_NAR(&dbs_info->work, do_dbs_timer);
468 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
469 	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
470 }
471 
472 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
473 {
474 	dbs_info->enable = 0;
475 	cancel_delayed_work(&dbs_info->work);
476 	flush_workqueue(kondemand_wq);
477 }
478 
479 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
480 				   unsigned int event)
481 {
482 	unsigned int cpu = policy->cpu;
483 	struct cpu_dbs_info_s *this_dbs_info;
484 	unsigned int j;
485 	int rc;
486 
487 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
488 
489 	switch (event) {
490 	case CPUFREQ_GOV_START:
491 		if ((!cpu_online(cpu)) || (!policy->cur))
492 			return -EINVAL;
493 
494 		if (policy->cpuinfo.transition_latency >
495 				(TRANSITION_LATENCY_LIMIT * 1000)) {
496 			printk(KERN_WARNING "ondemand governor failed to load "
497 			       "due to too long transition latency\n");
498 			return -EINVAL;
499 		}
500 		if (this_dbs_info->enable) /* Already enabled */
501 			break;
502 
503 		mutex_lock(&dbs_mutex);
504 		dbs_enable++;
505 		if (dbs_enable == 1) {
506 			kondemand_wq = create_workqueue("kondemand");
507 			if (!kondemand_wq) {
508 				printk(KERN_ERR
509 					 "Creation of kondemand failed\n");
510 				dbs_enable--;
511 				mutex_unlock(&dbs_mutex);
512 				return -ENOSPC;
513 			}
514 		}
515 
516 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
517 		if (rc) {
518 			if (dbs_enable == 1)
519 				destroy_workqueue(kondemand_wq);
520 			dbs_enable--;
521 			mutex_unlock(&dbs_mutex);
522 			return rc;
523 		}
524 
525 		for_each_cpu_mask(j, policy->cpus) {
526 			struct cpu_dbs_info_s *j_dbs_info;
527 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
528 			j_dbs_info->cur_policy = policy;
529 
530 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
531 			j_dbs_info->prev_cpu_wall = get_jiffies_64();
532 		}
533 		this_dbs_info->enable = 1;
534 		/*
535 		 * Start the timerschedule work, when this governor
536 		 * is used for first time
537 		 */
538 		if (dbs_enable == 1) {
539 			unsigned int latency;
540 			/* policy latency is in nS. Convert it to uS first */
541 			latency = policy->cpuinfo.transition_latency / 1000;
542 			if (latency == 0)
543 				latency = 1;
544 
545 			def_sampling_rate = latency *
546 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
547 
548 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
549 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
550 
551 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
552 		}
553 		dbs_timer_init(policy->cpu);
554 
555 		mutex_unlock(&dbs_mutex);
556 		break;
557 
558 	case CPUFREQ_GOV_STOP:
559 		mutex_lock(&dbs_mutex);
560 		dbs_timer_exit(this_dbs_info);
561 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
562 		dbs_enable--;
563 		if (dbs_enable == 0)
564 			destroy_workqueue(kondemand_wq);
565 
566 		mutex_unlock(&dbs_mutex);
567 
568 		break;
569 
570 	case CPUFREQ_GOV_LIMITS:
571 		mutex_lock(&dbs_mutex);
572 		if (policy->max < this_dbs_info->cur_policy->cur)
573 			__cpufreq_driver_target(this_dbs_info->cur_policy,
574 			                        policy->max,
575 			                        CPUFREQ_RELATION_H);
576 		else if (policy->min > this_dbs_info->cur_policy->cur)
577 			__cpufreq_driver_target(this_dbs_info->cur_policy,
578 			                        policy->min,
579 			                        CPUFREQ_RELATION_L);
580 		mutex_unlock(&dbs_mutex);
581 		break;
582 	}
583 	return 0;
584 }
585 
586 static struct cpufreq_governor cpufreq_gov_dbs = {
587 	.name = "ondemand",
588 	.governor = cpufreq_governor_dbs,
589 	.owner = THIS_MODULE,
590 };
591 
592 static int __init cpufreq_gov_dbs_init(void)
593 {
594 	return cpufreq_register_governor(&cpufreq_gov_dbs);
595 }
596 
597 static void __exit cpufreq_gov_dbs_exit(void)
598 {
599 	cpufreq_unregister_governor(&cpufreq_gov_dbs);
600 }
601 
602 
603 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
604 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
605 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
606                    "Low Latency Frequency Transition capable processors");
607 MODULE_LICENSE("GPL");
608 
609 module_init(cpufreq_gov_dbs_init);
610 module_exit(cpufreq_gov_dbs_exit);
611