xref: /linux/drivers/cpufreq/cpufreq_ondemand.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25 
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30 
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_SAMPLING_DOWN_FACTOR		(1)
34 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
39 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
40 
41 /*
42  * The polling frequency of this governor depends on the capability of
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with
45  * transition latency <= 10mS, using appropriate sampling
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48  * this governor will not work.
49  * All times here are in uS.
50  */
51 #define MIN_SAMPLING_RATE_RATIO			(2)
52 
53 static unsigned int min_sampling_rate;
54 
55 #define LATENCY_MULTIPLIER			(1000)
56 #define MIN_LATENCY_MULTIPLIER			(100)
57 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
58 
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 				unsigned int event);
62 
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67        .name                   = "ondemand",
68        .governor               = cpufreq_governor_dbs,
69        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70        .owner                  = THIS_MODULE,
71 };
72 
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75 
76 struct cpu_dbs_info_s {
77 	cputime64_t prev_cpu_idle;
78 	cputime64_t prev_cpu_iowait;
79 	cputime64_t prev_cpu_wall;
80 	cputime64_t prev_cpu_nice;
81 	struct cpufreq_policy *cur_policy;
82 	struct delayed_work work;
83 	struct cpufreq_frequency_table *freq_table;
84 	unsigned int freq_lo;
85 	unsigned int freq_lo_jiffies;
86 	unsigned int freq_hi_jiffies;
87 	unsigned int rate_mult;
88 	int cpu;
89 	unsigned int sample_type:1;
90 	/*
91 	 * percpu mutex that serializes governor limit change with
92 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 	 * when user is changing the governor or limits.
94 	 */
95 	struct mutex timer_mutex;
96 };
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98 
99 static unsigned int dbs_enable;	/* number of CPUs using this policy */
100 
101 /*
102  * dbs_mutex protects dbs_enable in governor start/stop.
103  */
104 static DEFINE_MUTEX(dbs_mutex);
105 
106 static struct dbs_tuners {
107 	unsigned int sampling_rate;
108 	unsigned int up_threshold;
109 	unsigned int down_differential;
110 	unsigned int ignore_nice;
111 	unsigned int sampling_down_factor;
112 	unsigned int powersave_bias;
113 	unsigned int io_is_busy;
114 } dbs_tuners_ins = {
115 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117 	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118 	.ignore_nice = 0,
119 	.powersave_bias = 0,
120 };
121 
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123 {
124 	u64 idle_time;
125 	u64 cur_wall_time;
126 	u64 busy_time;
127 
128 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
129 
130 	busy_time  = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
131 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
132 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
133 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
134 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
135 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
136 
137 	idle_time = cur_wall_time - busy_time;
138 	if (wall)
139 		*wall = jiffies_to_usecs(cur_wall_time);
140 
141 	return jiffies_to_usecs(idle_time);
142 }
143 
144 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
145 {
146 	u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
147 
148 	if (idle_time == -1ULL)
149 		return get_cpu_idle_time_jiffy(cpu, wall);
150 	else
151 		idle_time += get_cpu_iowait_time_us(cpu, wall);
152 
153 	return idle_time;
154 }
155 
156 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
157 {
158 	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
159 
160 	if (iowait_time == -1ULL)
161 		return 0;
162 
163 	return iowait_time;
164 }
165 
166 /*
167  * Find right freq to be set now with powersave_bias on.
168  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
170  */
171 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172 					  unsigned int freq_next,
173 					  unsigned int relation)
174 {
175 	unsigned int freq_req, freq_reduc, freq_avg;
176 	unsigned int freq_hi, freq_lo;
177 	unsigned int index = 0;
178 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
179 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180 						   policy->cpu);
181 
182 	if (!dbs_info->freq_table) {
183 		dbs_info->freq_lo = 0;
184 		dbs_info->freq_lo_jiffies = 0;
185 		return freq_next;
186 	}
187 
188 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189 			relation, &index);
190 	freq_req = dbs_info->freq_table[index].frequency;
191 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
192 	freq_avg = freq_req - freq_reduc;
193 
194 	/* Find freq bounds for freq_avg in freq_table */
195 	index = 0;
196 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197 			CPUFREQ_RELATION_H, &index);
198 	freq_lo = dbs_info->freq_table[index].frequency;
199 	index = 0;
200 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
201 			CPUFREQ_RELATION_L, &index);
202 	freq_hi = dbs_info->freq_table[index].frequency;
203 
204 	/* Find out how long we have to be in hi and lo freqs */
205 	if (freq_hi == freq_lo) {
206 		dbs_info->freq_lo = 0;
207 		dbs_info->freq_lo_jiffies = 0;
208 		return freq_lo;
209 	}
210 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
211 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212 	jiffies_hi += ((freq_hi - freq_lo) / 2);
213 	jiffies_hi /= (freq_hi - freq_lo);
214 	jiffies_lo = jiffies_total - jiffies_hi;
215 	dbs_info->freq_lo = freq_lo;
216 	dbs_info->freq_lo_jiffies = jiffies_lo;
217 	dbs_info->freq_hi_jiffies = jiffies_hi;
218 	return freq_hi;
219 }
220 
221 static void ondemand_powersave_bias_init_cpu(int cpu)
222 {
223 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
224 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225 	dbs_info->freq_lo = 0;
226 }
227 
228 static void ondemand_powersave_bias_init(void)
229 {
230 	int i;
231 	for_each_online_cpu(i) {
232 		ondemand_powersave_bias_init_cpu(i);
233 	}
234 }
235 
236 /************************** sysfs interface ************************/
237 
238 static ssize_t show_sampling_rate_min(struct kobject *kobj,
239 				      struct attribute *attr, char *buf)
240 {
241 	return sprintf(buf, "%u\n", min_sampling_rate);
242 }
243 
244 define_one_global_ro(sampling_rate_min);
245 
246 /* cpufreq_ondemand Governor Tunables */
247 #define show_one(file_name, object)					\
248 static ssize_t show_##file_name						\
249 (struct kobject *kobj, struct attribute *attr, char *buf)              \
250 {									\
251 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
252 }
253 show_one(sampling_rate, sampling_rate);
254 show_one(io_is_busy, io_is_busy);
255 show_one(up_threshold, up_threshold);
256 show_one(sampling_down_factor, sampling_down_factor);
257 show_one(ignore_nice_load, ignore_nice);
258 show_one(powersave_bias, powersave_bias);
259 
260 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
261 				   const char *buf, size_t count)
262 {
263 	unsigned int input;
264 	int ret;
265 	ret = sscanf(buf, "%u", &input);
266 	if (ret != 1)
267 		return -EINVAL;
268 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
269 	return count;
270 }
271 
272 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
273 				   const char *buf, size_t count)
274 {
275 	unsigned int input;
276 	int ret;
277 
278 	ret = sscanf(buf, "%u", &input);
279 	if (ret != 1)
280 		return -EINVAL;
281 	dbs_tuners_ins.io_is_busy = !!input;
282 	return count;
283 }
284 
285 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
286 				  const char *buf, size_t count)
287 {
288 	unsigned int input;
289 	int ret;
290 	ret = sscanf(buf, "%u", &input);
291 
292 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
293 			input < MIN_FREQUENCY_UP_THRESHOLD) {
294 		return -EINVAL;
295 	}
296 	dbs_tuners_ins.up_threshold = input;
297 	return count;
298 }
299 
300 static ssize_t store_sampling_down_factor(struct kobject *a,
301 			struct attribute *b, const char *buf, size_t count)
302 {
303 	unsigned int input, j;
304 	int ret;
305 	ret = sscanf(buf, "%u", &input);
306 
307 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
308 		return -EINVAL;
309 	dbs_tuners_ins.sampling_down_factor = input;
310 
311 	/* Reset down sampling multiplier in case it was active */
312 	for_each_online_cpu(j) {
313 		struct cpu_dbs_info_s *dbs_info;
314 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
315 		dbs_info->rate_mult = 1;
316 	}
317 	return count;
318 }
319 
320 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
321 				      const char *buf, size_t count)
322 {
323 	unsigned int input;
324 	int ret;
325 
326 	unsigned int j;
327 
328 	ret = sscanf(buf, "%u", &input);
329 	if (ret != 1)
330 		return -EINVAL;
331 
332 	if (input > 1)
333 		input = 1;
334 
335 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
336 		return count;
337 	}
338 	dbs_tuners_ins.ignore_nice = input;
339 
340 	/* we need to re-evaluate prev_cpu_idle */
341 	for_each_online_cpu(j) {
342 		struct cpu_dbs_info_s *dbs_info;
343 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
344 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
345 						&dbs_info->prev_cpu_wall);
346 		if (dbs_tuners_ins.ignore_nice)
347 			dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
348 
349 	}
350 	return count;
351 }
352 
353 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
354 				    const char *buf, size_t count)
355 {
356 	unsigned int input;
357 	int ret;
358 	ret = sscanf(buf, "%u", &input);
359 
360 	if (ret != 1)
361 		return -EINVAL;
362 
363 	if (input > 1000)
364 		input = 1000;
365 
366 	dbs_tuners_ins.powersave_bias = input;
367 	ondemand_powersave_bias_init();
368 	return count;
369 }
370 
371 define_one_global_rw(sampling_rate);
372 define_one_global_rw(io_is_busy);
373 define_one_global_rw(up_threshold);
374 define_one_global_rw(sampling_down_factor);
375 define_one_global_rw(ignore_nice_load);
376 define_one_global_rw(powersave_bias);
377 
378 static struct attribute *dbs_attributes[] = {
379 	&sampling_rate_min.attr,
380 	&sampling_rate.attr,
381 	&up_threshold.attr,
382 	&sampling_down_factor.attr,
383 	&ignore_nice_load.attr,
384 	&powersave_bias.attr,
385 	&io_is_busy.attr,
386 	NULL
387 };
388 
389 static struct attribute_group dbs_attr_group = {
390 	.attrs = dbs_attributes,
391 	.name = "ondemand",
392 };
393 
394 /************************** sysfs end ************************/
395 
396 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
397 {
398 	if (dbs_tuners_ins.powersave_bias)
399 		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
400 	else if (p->cur == p->max)
401 		return;
402 
403 	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
404 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
405 }
406 
407 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
408 {
409 	unsigned int max_load_freq;
410 
411 	struct cpufreq_policy *policy;
412 	unsigned int j;
413 
414 	this_dbs_info->freq_lo = 0;
415 	policy = this_dbs_info->cur_policy;
416 
417 	/*
418 	 * Every sampling_rate, we check, if current idle time is less
419 	 * than 20% (default), then we try to increase frequency
420 	 * Every sampling_rate, we look for a the lowest
421 	 * frequency which can sustain the load while keeping idle time over
422 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
423 	 *
424 	 * Any frequency increase takes it to the maximum frequency.
425 	 * Frequency reduction happens at minimum steps of
426 	 * 5% (default) of current frequency
427 	 */
428 
429 	/* Get Absolute Load - in terms of freq */
430 	max_load_freq = 0;
431 
432 	for_each_cpu(j, policy->cpus) {
433 		struct cpu_dbs_info_s *j_dbs_info;
434 		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
435 		unsigned int idle_time, wall_time, iowait_time;
436 		unsigned int load, load_freq;
437 		int freq_avg;
438 
439 		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
440 
441 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
442 		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
443 
444 		wall_time = (unsigned int)
445 			(cur_wall_time - j_dbs_info->prev_cpu_wall);
446 		j_dbs_info->prev_cpu_wall = cur_wall_time;
447 
448 		idle_time = (unsigned int)
449 			(cur_idle_time - j_dbs_info->prev_cpu_idle);
450 		j_dbs_info->prev_cpu_idle = cur_idle_time;
451 
452 		iowait_time = (unsigned int)
453 			(cur_iowait_time - j_dbs_info->prev_cpu_iowait);
454 		j_dbs_info->prev_cpu_iowait = cur_iowait_time;
455 
456 		if (dbs_tuners_ins.ignore_nice) {
457 			u64 cur_nice;
458 			unsigned long cur_nice_jiffies;
459 
460 			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
461 					 j_dbs_info->prev_cpu_nice;
462 			/*
463 			 * Assumption: nice time between sampling periods will
464 			 * be less than 2^32 jiffies for 32 bit sys
465 			 */
466 			cur_nice_jiffies = (unsigned long)
467 					cputime64_to_jiffies64(cur_nice);
468 
469 			j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
470 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
471 		}
472 
473 		/*
474 		 * For the purpose of ondemand, waiting for disk IO is an
475 		 * indication that you're performance critical, and not that
476 		 * the system is actually idle. So subtract the iowait time
477 		 * from the cpu idle time.
478 		 */
479 
480 		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
481 			idle_time -= iowait_time;
482 
483 		if (unlikely(!wall_time || wall_time < idle_time))
484 			continue;
485 
486 		load = 100 * (wall_time - idle_time) / wall_time;
487 
488 		freq_avg = __cpufreq_driver_getavg(policy, j);
489 		if (freq_avg <= 0)
490 			freq_avg = policy->cur;
491 
492 		load_freq = load * freq_avg;
493 		if (load_freq > max_load_freq)
494 			max_load_freq = load_freq;
495 	}
496 
497 	/* Check for frequency increase */
498 	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
499 		/* If switching to max speed, apply sampling_down_factor */
500 		if (policy->cur < policy->max)
501 			this_dbs_info->rate_mult =
502 				dbs_tuners_ins.sampling_down_factor;
503 		dbs_freq_increase(policy, policy->max);
504 		return;
505 	}
506 
507 	/* Check for frequency decrease */
508 	/* if we cannot reduce the frequency anymore, break out early */
509 	if (policy->cur == policy->min)
510 		return;
511 
512 	/*
513 	 * The optimal frequency is the frequency that is the lowest that
514 	 * can support the current CPU usage without triggering the up
515 	 * policy. To be safe, we focus 10 points under the threshold.
516 	 */
517 	if (max_load_freq <
518 	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
519 	     policy->cur) {
520 		unsigned int freq_next;
521 		freq_next = max_load_freq /
522 				(dbs_tuners_ins.up_threshold -
523 				 dbs_tuners_ins.down_differential);
524 
525 		/* No longer fully busy, reset rate_mult */
526 		this_dbs_info->rate_mult = 1;
527 
528 		if (freq_next < policy->min)
529 			freq_next = policy->min;
530 
531 		if (!dbs_tuners_ins.powersave_bias) {
532 			__cpufreq_driver_target(policy, freq_next,
533 					CPUFREQ_RELATION_L);
534 		} else {
535 			int freq = powersave_bias_target(policy, freq_next,
536 					CPUFREQ_RELATION_L);
537 			__cpufreq_driver_target(policy, freq,
538 				CPUFREQ_RELATION_L);
539 		}
540 	}
541 }
542 
543 static void do_dbs_timer(struct work_struct *work)
544 {
545 	struct cpu_dbs_info_s *dbs_info =
546 		container_of(work, struct cpu_dbs_info_s, work.work);
547 	unsigned int cpu = dbs_info->cpu;
548 	int sample_type = dbs_info->sample_type;
549 
550 	int delay;
551 
552 	mutex_lock(&dbs_info->timer_mutex);
553 
554 	/* Common NORMAL_SAMPLE setup */
555 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
556 	if (!dbs_tuners_ins.powersave_bias ||
557 	    sample_type == DBS_NORMAL_SAMPLE) {
558 		dbs_check_cpu(dbs_info);
559 		if (dbs_info->freq_lo) {
560 			/* Setup timer for SUB_SAMPLE */
561 			dbs_info->sample_type = DBS_SUB_SAMPLE;
562 			delay = dbs_info->freq_hi_jiffies;
563 		} else {
564 			/* We want all CPUs to do sampling nearly on
565 			 * same jiffy
566 			 */
567 			delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
568 				* dbs_info->rate_mult);
569 
570 			if (num_online_cpus() > 1)
571 				delay -= jiffies % delay;
572 		}
573 	} else {
574 		__cpufreq_driver_target(dbs_info->cur_policy,
575 			dbs_info->freq_lo, CPUFREQ_RELATION_H);
576 		delay = dbs_info->freq_lo_jiffies;
577 	}
578 	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
579 	mutex_unlock(&dbs_info->timer_mutex);
580 }
581 
582 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
583 {
584 	/* We want all CPUs to do sampling nearly on same jiffy */
585 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
586 
587 	if (num_online_cpus() > 1)
588 		delay -= jiffies % delay;
589 
590 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
591 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
592 	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
593 }
594 
595 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
596 {
597 	cancel_delayed_work_sync(&dbs_info->work);
598 }
599 
600 /*
601  * Not all CPUs want IO time to be accounted as busy; this dependson how
602  * efficient idling at a higher frequency/voltage is.
603  * Pavel Machek says this is not so for various generations of AMD and old
604  * Intel systems.
605  * Mike Chan (androidlcom) calis this is also not true for ARM.
606  * Because of this, whitelist specific known (series) of CPUs by default, and
607  * leave all others up to the user.
608  */
609 static int should_io_be_busy(void)
610 {
611 #if defined(CONFIG_X86)
612 	/*
613 	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
614 	 */
615 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
616 	    boot_cpu_data.x86 == 6 &&
617 	    boot_cpu_data.x86_model >= 15)
618 		return 1;
619 #endif
620 	return 0;
621 }
622 
623 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
624 				   unsigned int event)
625 {
626 	unsigned int cpu = policy->cpu;
627 	struct cpu_dbs_info_s *this_dbs_info;
628 	unsigned int j;
629 	int rc;
630 
631 	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
632 
633 	switch (event) {
634 	case CPUFREQ_GOV_START:
635 		if ((!cpu_online(cpu)) || (!policy->cur))
636 			return -EINVAL;
637 
638 		mutex_lock(&dbs_mutex);
639 
640 		dbs_enable++;
641 		for_each_cpu(j, policy->cpus) {
642 			struct cpu_dbs_info_s *j_dbs_info;
643 			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
644 			j_dbs_info->cur_policy = policy;
645 
646 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
647 						&j_dbs_info->prev_cpu_wall);
648 			if (dbs_tuners_ins.ignore_nice)
649 				j_dbs_info->prev_cpu_nice =
650 						kcpustat_cpu(j).cpustat[CPUTIME_NICE];
651 		}
652 		this_dbs_info->cpu = cpu;
653 		this_dbs_info->rate_mult = 1;
654 		ondemand_powersave_bias_init_cpu(cpu);
655 		/*
656 		 * Start the timerschedule work, when this governor
657 		 * is used for first time
658 		 */
659 		if (dbs_enable == 1) {
660 			unsigned int latency;
661 
662 			rc = sysfs_create_group(cpufreq_global_kobject,
663 						&dbs_attr_group);
664 			if (rc) {
665 				mutex_unlock(&dbs_mutex);
666 				return rc;
667 			}
668 
669 			/* policy latency is in nS. Convert it to uS first */
670 			latency = policy->cpuinfo.transition_latency / 1000;
671 			if (latency == 0)
672 				latency = 1;
673 			/* Bring kernel and HW constraints together */
674 			min_sampling_rate = max(min_sampling_rate,
675 					MIN_LATENCY_MULTIPLIER * latency);
676 			dbs_tuners_ins.sampling_rate =
677 				max(min_sampling_rate,
678 				    latency * LATENCY_MULTIPLIER);
679 			dbs_tuners_ins.io_is_busy = should_io_be_busy();
680 		}
681 		mutex_unlock(&dbs_mutex);
682 
683 		mutex_init(&this_dbs_info->timer_mutex);
684 		dbs_timer_init(this_dbs_info);
685 		break;
686 
687 	case CPUFREQ_GOV_STOP:
688 		dbs_timer_exit(this_dbs_info);
689 
690 		mutex_lock(&dbs_mutex);
691 		mutex_destroy(&this_dbs_info->timer_mutex);
692 		dbs_enable--;
693 		mutex_unlock(&dbs_mutex);
694 		if (!dbs_enable)
695 			sysfs_remove_group(cpufreq_global_kobject,
696 					   &dbs_attr_group);
697 
698 		break;
699 
700 	case CPUFREQ_GOV_LIMITS:
701 		mutex_lock(&this_dbs_info->timer_mutex);
702 		if (policy->max < this_dbs_info->cur_policy->cur)
703 			__cpufreq_driver_target(this_dbs_info->cur_policy,
704 				policy->max, CPUFREQ_RELATION_H);
705 		else if (policy->min > this_dbs_info->cur_policy->cur)
706 			__cpufreq_driver_target(this_dbs_info->cur_policy,
707 				policy->min, CPUFREQ_RELATION_L);
708 		mutex_unlock(&this_dbs_info->timer_mutex);
709 		break;
710 	}
711 	return 0;
712 }
713 
714 static int __init cpufreq_gov_dbs_init(void)
715 {
716 	u64 idle_time;
717 	int cpu = get_cpu();
718 
719 	idle_time = get_cpu_idle_time_us(cpu, NULL);
720 	put_cpu();
721 	if (idle_time != -1ULL) {
722 		/* Idle micro accounting is supported. Use finer thresholds */
723 		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
724 		dbs_tuners_ins.down_differential =
725 					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
726 		/*
727 		 * In nohz/micro accounting case we set the minimum frequency
728 		 * not depending on HZ, but fixed (very low). The deferred
729 		 * timer might skip some samples if idle/sleeping as needed.
730 		*/
731 		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
732 	} else {
733 		/* For correct statistics, we need 10 ticks for each measure */
734 		min_sampling_rate =
735 			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
736 	}
737 
738 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
739 }
740 
741 static void __exit cpufreq_gov_dbs_exit(void)
742 {
743 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
744 }
745 
746 
747 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
748 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
749 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
750 	"Low Latency Frequency Transition capable processors");
751 MODULE_LICENSE("GPL");
752 
753 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
754 fs_initcall(cpufreq_gov_dbs_init);
755 #else
756 module_init(cpufreq_gov_dbs_init);
757 #endif
758 module_exit(cpufreq_gov_dbs_exit);
759