xref: /linux/drivers/cpufreq/cpufreq_ondemand.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25 
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30 
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
37 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
38 
39 /*
40  * The polling frequency of this governor depends on the capability of
41  * the processor. Default polling frequency is 1000 times the transition
42  * latency of the processor. The governor will work on any processor with
43  * transition latency <= 10mS, using appropriate sampling
44  * rate.
45  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46  * this governor will not work.
47  * All times here are in uS.
48  */
49 #define MIN_SAMPLING_RATE_RATIO			(2)
50 
51 static unsigned int min_sampling_rate;
52 
53 #define LATENCY_MULTIPLIER			(1000)
54 #define MIN_LATENCY_MULTIPLIER			(100)
55 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
56 
57 static void do_dbs_timer(struct work_struct *work);
58 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
59 				unsigned int event);
60 
61 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
62 static
63 #endif
64 struct cpufreq_governor cpufreq_gov_ondemand = {
65        .name                   = "ondemand",
66        .governor               = cpufreq_governor_dbs,
67        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
68        .owner                  = THIS_MODULE,
69 };
70 
71 /* Sampling types */
72 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
73 
74 struct cpu_dbs_info_s {
75 	cputime64_t prev_cpu_idle;
76 	cputime64_t prev_cpu_iowait;
77 	cputime64_t prev_cpu_wall;
78 	cputime64_t prev_cpu_nice;
79 	struct cpufreq_policy *cur_policy;
80 	struct delayed_work work;
81 	struct cpufreq_frequency_table *freq_table;
82 	unsigned int freq_lo;
83 	unsigned int freq_lo_jiffies;
84 	unsigned int freq_hi_jiffies;
85 	int cpu;
86 	unsigned int sample_type:1;
87 	/*
88 	 * percpu mutex that serializes governor limit change with
89 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
90 	 * when user is changing the governor or limits.
91 	 */
92 	struct mutex timer_mutex;
93 };
94 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
95 
96 static unsigned int dbs_enable;	/* number of CPUs using this policy */
97 
98 /*
99  * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
100  * different CPUs. It protects dbs_enable in governor start/stop.
101  */
102 static DEFINE_MUTEX(dbs_mutex);
103 
104 static struct workqueue_struct	*kondemand_wq;
105 
106 static struct dbs_tuners {
107 	unsigned int sampling_rate;
108 	unsigned int up_threshold;
109 	unsigned int down_differential;
110 	unsigned int ignore_nice;
111 	unsigned int powersave_bias;
112 	unsigned int io_is_busy;
113 } dbs_tuners_ins = {
114 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
115 	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
116 	.ignore_nice = 0,
117 	.powersave_bias = 0,
118 };
119 
120 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
121 							cputime64_t *wall)
122 {
123 	cputime64_t idle_time;
124 	cputime64_t cur_wall_time;
125 	cputime64_t busy_time;
126 
127 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
128 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
129 			kstat_cpu(cpu).cpustat.system);
130 
131 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
132 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
133 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
134 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
135 
136 	idle_time = cputime64_sub(cur_wall_time, busy_time);
137 	if (wall)
138 		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
139 
140 	return (cputime64_t)jiffies_to_usecs(idle_time);
141 }
142 
143 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
144 {
145 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
146 
147 	if (idle_time == -1ULL)
148 		return get_cpu_idle_time_jiffy(cpu, wall);
149 
150 	return idle_time;
151 }
152 
153 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
154 {
155 	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
156 
157 	if (iowait_time == -1ULL)
158 		return 0;
159 
160 	return iowait_time;
161 }
162 
163 /*
164  * Find right freq to be set now with powersave_bias on.
165  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
166  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
167  */
168 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
169 					  unsigned int freq_next,
170 					  unsigned int relation)
171 {
172 	unsigned int freq_req, freq_reduc, freq_avg;
173 	unsigned int freq_hi, freq_lo;
174 	unsigned int index = 0;
175 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
176 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
177 						   policy->cpu);
178 
179 	if (!dbs_info->freq_table) {
180 		dbs_info->freq_lo = 0;
181 		dbs_info->freq_lo_jiffies = 0;
182 		return freq_next;
183 	}
184 
185 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
186 			relation, &index);
187 	freq_req = dbs_info->freq_table[index].frequency;
188 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
189 	freq_avg = freq_req - freq_reduc;
190 
191 	/* Find freq bounds for freq_avg in freq_table */
192 	index = 0;
193 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
194 			CPUFREQ_RELATION_H, &index);
195 	freq_lo = dbs_info->freq_table[index].frequency;
196 	index = 0;
197 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
198 			CPUFREQ_RELATION_L, &index);
199 	freq_hi = dbs_info->freq_table[index].frequency;
200 
201 	/* Find out how long we have to be in hi and lo freqs */
202 	if (freq_hi == freq_lo) {
203 		dbs_info->freq_lo = 0;
204 		dbs_info->freq_lo_jiffies = 0;
205 		return freq_lo;
206 	}
207 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
208 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
209 	jiffies_hi += ((freq_hi - freq_lo) / 2);
210 	jiffies_hi /= (freq_hi - freq_lo);
211 	jiffies_lo = jiffies_total - jiffies_hi;
212 	dbs_info->freq_lo = freq_lo;
213 	dbs_info->freq_lo_jiffies = jiffies_lo;
214 	dbs_info->freq_hi_jiffies = jiffies_hi;
215 	return freq_hi;
216 }
217 
218 static void ondemand_powersave_bias_init_cpu(int cpu)
219 {
220 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
221 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
222 	dbs_info->freq_lo = 0;
223 }
224 
225 static void ondemand_powersave_bias_init(void)
226 {
227 	int i;
228 	for_each_online_cpu(i) {
229 		ondemand_powersave_bias_init_cpu(i);
230 	}
231 }
232 
233 /************************** sysfs interface ************************/
234 
235 static ssize_t show_sampling_rate_max(struct kobject *kobj,
236 				      struct attribute *attr, char *buf)
237 {
238 	printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
239 	       "sysfs file is deprecated - used by: %s\n", current->comm);
240 	return sprintf(buf, "%u\n", -1U);
241 }
242 
243 static ssize_t show_sampling_rate_min(struct kobject *kobj,
244 				      struct attribute *attr, char *buf)
245 {
246 	return sprintf(buf, "%u\n", min_sampling_rate);
247 }
248 
249 define_one_global_ro(sampling_rate_max);
250 define_one_global_ro(sampling_rate_min);
251 
252 /* cpufreq_ondemand Governor Tunables */
253 #define show_one(file_name, object)					\
254 static ssize_t show_##file_name						\
255 (struct kobject *kobj, struct attribute *attr, char *buf)              \
256 {									\
257 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
258 }
259 show_one(sampling_rate, sampling_rate);
260 show_one(io_is_busy, io_is_busy);
261 show_one(up_threshold, up_threshold);
262 show_one(ignore_nice_load, ignore_nice);
263 show_one(powersave_bias, powersave_bias);
264 
265 /*** delete after deprecation time ***/
266 
267 #define DEPRECATION_MSG(file_name)					\
268 	printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
269 		    "interface is deprecated - " #file_name "\n");
270 
271 #define show_one_old(file_name)						\
272 static ssize_t show_##file_name##_old					\
273 (struct cpufreq_policy *unused, char *buf)				\
274 {									\
275 	printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
276 		    "interface is deprecated - " #file_name "\n");	\
277 	return show_##file_name(NULL, NULL, buf);			\
278 }
279 show_one_old(sampling_rate);
280 show_one_old(up_threshold);
281 show_one_old(ignore_nice_load);
282 show_one_old(powersave_bias);
283 show_one_old(sampling_rate_min);
284 show_one_old(sampling_rate_max);
285 
286 cpufreq_freq_attr_ro_old(sampling_rate_min);
287 cpufreq_freq_attr_ro_old(sampling_rate_max);
288 
289 /*** delete after deprecation time ***/
290 
291 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
292 				   const char *buf, size_t count)
293 {
294 	unsigned int input;
295 	int ret;
296 	ret = sscanf(buf, "%u", &input);
297 	if (ret != 1)
298 		return -EINVAL;
299 
300 	mutex_lock(&dbs_mutex);
301 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
302 	mutex_unlock(&dbs_mutex);
303 
304 	return count;
305 }
306 
307 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
308 				   const char *buf, size_t count)
309 {
310 	unsigned int input;
311 	int ret;
312 
313 	ret = sscanf(buf, "%u", &input);
314 	if (ret != 1)
315 		return -EINVAL;
316 
317 	mutex_lock(&dbs_mutex);
318 	dbs_tuners_ins.io_is_busy = !!input;
319 	mutex_unlock(&dbs_mutex);
320 
321 	return count;
322 }
323 
324 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
325 				  const char *buf, size_t count)
326 {
327 	unsigned int input;
328 	int ret;
329 	ret = sscanf(buf, "%u", &input);
330 
331 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
332 			input < MIN_FREQUENCY_UP_THRESHOLD) {
333 		return -EINVAL;
334 	}
335 
336 	mutex_lock(&dbs_mutex);
337 	dbs_tuners_ins.up_threshold = input;
338 	mutex_unlock(&dbs_mutex);
339 
340 	return count;
341 }
342 
343 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
344 				      const char *buf, size_t count)
345 {
346 	unsigned int input;
347 	int ret;
348 
349 	unsigned int j;
350 
351 	ret = sscanf(buf, "%u", &input);
352 	if (ret != 1)
353 		return -EINVAL;
354 
355 	if (input > 1)
356 		input = 1;
357 
358 	mutex_lock(&dbs_mutex);
359 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
360 		mutex_unlock(&dbs_mutex);
361 		return count;
362 	}
363 	dbs_tuners_ins.ignore_nice = input;
364 
365 	/* we need to re-evaluate prev_cpu_idle */
366 	for_each_online_cpu(j) {
367 		struct cpu_dbs_info_s *dbs_info;
368 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
369 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
370 						&dbs_info->prev_cpu_wall);
371 		if (dbs_tuners_ins.ignore_nice)
372 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
373 
374 	}
375 	mutex_unlock(&dbs_mutex);
376 
377 	return count;
378 }
379 
380 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
381 				    const char *buf, size_t count)
382 {
383 	unsigned int input;
384 	int ret;
385 	ret = sscanf(buf, "%u", &input);
386 
387 	if (ret != 1)
388 		return -EINVAL;
389 
390 	if (input > 1000)
391 		input = 1000;
392 
393 	mutex_lock(&dbs_mutex);
394 	dbs_tuners_ins.powersave_bias = input;
395 	ondemand_powersave_bias_init();
396 	mutex_unlock(&dbs_mutex);
397 
398 	return count;
399 }
400 
401 define_one_global_rw(sampling_rate);
402 define_one_global_rw(io_is_busy);
403 define_one_global_rw(up_threshold);
404 define_one_global_rw(ignore_nice_load);
405 define_one_global_rw(powersave_bias);
406 
407 static struct attribute *dbs_attributes[] = {
408 	&sampling_rate_max.attr,
409 	&sampling_rate_min.attr,
410 	&sampling_rate.attr,
411 	&up_threshold.attr,
412 	&ignore_nice_load.attr,
413 	&powersave_bias.attr,
414 	&io_is_busy.attr,
415 	NULL
416 };
417 
418 static struct attribute_group dbs_attr_group = {
419 	.attrs = dbs_attributes,
420 	.name = "ondemand",
421 };
422 
423 /*** delete after deprecation time ***/
424 
425 #define write_one_old(file_name)					\
426 static ssize_t store_##file_name##_old					\
427 (struct cpufreq_policy *unused, const char *buf, size_t count)		\
428 {									\
429        printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
430 		   "interface is deprecated - " #file_name "\n");	\
431        return store_##file_name(NULL, NULL, buf, count);		\
432 }
433 write_one_old(sampling_rate);
434 write_one_old(up_threshold);
435 write_one_old(ignore_nice_load);
436 write_one_old(powersave_bias);
437 
438 cpufreq_freq_attr_rw_old(sampling_rate);
439 cpufreq_freq_attr_rw_old(up_threshold);
440 cpufreq_freq_attr_rw_old(ignore_nice_load);
441 cpufreq_freq_attr_rw_old(powersave_bias);
442 
443 static struct attribute *dbs_attributes_old[] = {
444        &sampling_rate_max_old.attr,
445        &sampling_rate_min_old.attr,
446        &sampling_rate_old.attr,
447        &up_threshold_old.attr,
448        &ignore_nice_load_old.attr,
449        &powersave_bias_old.attr,
450        NULL
451 };
452 
453 static struct attribute_group dbs_attr_group_old = {
454        .attrs = dbs_attributes_old,
455        .name = "ondemand",
456 };
457 
458 /*** delete after deprecation time ***/
459 
460 /************************** sysfs end ************************/
461 
462 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
463 {
464 	if (dbs_tuners_ins.powersave_bias)
465 		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
466 	else if (p->cur == p->max)
467 		return;
468 
469 	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
470 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
471 }
472 
473 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
474 {
475 	unsigned int max_load_freq;
476 
477 	struct cpufreq_policy *policy;
478 	unsigned int j;
479 
480 	this_dbs_info->freq_lo = 0;
481 	policy = this_dbs_info->cur_policy;
482 
483 	/*
484 	 * Every sampling_rate, we check, if current idle time is less
485 	 * than 20% (default), then we try to increase frequency
486 	 * Every sampling_rate, we look for a the lowest
487 	 * frequency which can sustain the load while keeping idle time over
488 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
489 	 *
490 	 * Any frequency increase takes it to the maximum frequency.
491 	 * Frequency reduction happens at minimum steps of
492 	 * 5% (default) of current frequency
493 	 */
494 
495 	/* Get Absolute Load - in terms of freq */
496 	max_load_freq = 0;
497 
498 	for_each_cpu(j, policy->cpus) {
499 		struct cpu_dbs_info_s *j_dbs_info;
500 		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
501 		unsigned int idle_time, wall_time, iowait_time;
502 		unsigned int load, load_freq;
503 		int freq_avg;
504 
505 		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
506 
507 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
508 		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
509 
510 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
511 				j_dbs_info->prev_cpu_wall);
512 		j_dbs_info->prev_cpu_wall = cur_wall_time;
513 
514 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
515 				j_dbs_info->prev_cpu_idle);
516 		j_dbs_info->prev_cpu_idle = cur_idle_time;
517 
518 		iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
519 				j_dbs_info->prev_cpu_iowait);
520 		j_dbs_info->prev_cpu_iowait = cur_iowait_time;
521 
522 		if (dbs_tuners_ins.ignore_nice) {
523 			cputime64_t cur_nice;
524 			unsigned long cur_nice_jiffies;
525 
526 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
527 					 j_dbs_info->prev_cpu_nice);
528 			/*
529 			 * Assumption: nice time between sampling periods will
530 			 * be less than 2^32 jiffies for 32 bit sys
531 			 */
532 			cur_nice_jiffies = (unsigned long)
533 					cputime64_to_jiffies64(cur_nice);
534 
535 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
536 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
537 		}
538 
539 		/*
540 		 * For the purpose of ondemand, waiting for disk IO is an
541 		 * indication that you're performance critical, and not that
542 		 * the system is actually idle. So subtract the iowait time
543 		 * from the cpu idle time.
544 		 */
545 
546 		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
547 			idle_time -= iowait_time;
548 
549 		if (unlikely(!wall_time || wall_time < idle_time))
550 			continue;
551 
552 		load = 100 * (wall_time - idle_time) / wall_time;
553 
554 		freq_avg = __cpufreq_driver_getavg(policy, j);
555 		if (freq_avg <= 0)
556 			freq_avg = policy->cur;
557 
558 		load_freq = load * freq_avg;
559 		if (load_freq > max_load_freq)
560 			max_load_freq = load_freq;
561 	}
562 
563 	/* Check for frequency increase */
564 	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
565 		dbs_freq_increase(policy, policy->max);
566 		return;
567 	}
568 
569 	/* Check for frequency decrease */
570 	/* if we cannot reduce the frequency anymore, break out early */
571 	if (policy->cur == policy->min)
572 		return;
573 
574 	/*
575 	 * The optimal frequency is the frequency that is the lowest that
576 	 * can support the current CPU usage without triggering the up
577 	 * policy. To be safe, we focus 10 points under the threshold.
578 	 */
579 	if (max_load_freq <
580 	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
581 	     policy->cur) {
582 		unsigned int freq_next;
583 		freq_next = max_load_freq /
584 				(dbs_tuners_ins.up_threshold -
585 				 dbs_tuners_ins.down_differential);
586 
587 		if (freq_next < policy->min)
588 			freq_next = policy->min;
589 
590 		if (!dbs_tuners_ins.powersave_bias) {
591 			__cpufreq_driver_target(policy, freq_next,
592 					CPUFREQ_RELATION_L);
593 		} else {
594 			int freq = powersave_bias_target(policy, freq_next,
595 					CPUFREQ_RELATION_L);
596 			__cpufreq_driver_target(policy, freq,
597 				CPUFREQ_RELATION_L);
598 		}
599 	}
600 }
601 
602 static void do_dbs_timer(struct work_struct *work)
603 {
604 	struct cpu_dbs_info_s *dbs_info =
605 		container_of(work, struct cpu_dbs_info_s, work.work);
606 	unsigned int cpu = dbs_info->cpu;
607 	int sample_type = dbs_info->sample_type;
608 
609 	/* We want all CPUs to do sampling nearly on same jiffy */
610 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
611 
612 	if (num_online_cpus() > 1)
613 		delay -= jiffies % delay;
614 
615 	mutex_lock(&dbs_info->timer_mutex);
616 
617 	/* Common NORMAL_SAMPLE setup */
618 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
619 	if (!dbs_tuners_ins.powersave_bias ||
620 	    sample_type == DBS_NORMAL_SAMPLE) {
621 		dbs_check_cpu(dbs_info);
622 		if (dbs_info->freq_lo) {
623 			/* Setup timer for SUB_SAMPLE */
624 			dbs_info->sample_type = DBS_SUB_SAMPLE;
625 			delay = dbs_info->freq_hi_jiffies;
626 		}
627 	} else {
628 		__cpufreq_driver_target(dbs_info->cur_policy,
629 			dbs_info->freq_lo, CPUFREQ_RELATION_H);
630 	}
631 	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
632 	mutex_unlock(&dbs_info->timer_mutex);
633 }
634 
635 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
636 {
637 	/* We want all CPUs to do sampling nearly on same jiffy */
638 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
639 
640 	if (num_online_cpus() > 1)
641 		delay -= jiffies % delay;
642 
643 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
644 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
645 	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
646 		delay);
647 }
648 
649 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
650 {
651 	cancel_delayed_work_sync(&dbs_info->work);
652 }
653 
654 /*
655  * Not all CPUs want IO time to be accounted as busy; this dependson how
656  * efficient idling at a higher frequency/voltage is.
657  * Pavel Machek says this is not so for various generations of AMD and old
658  * Intel systems.
659  * Mike Chan (androidlcom) calis this is also not true for ARM.
660  * Because of this, whitelist specific known (series) of CPUs by default, and
661  * leave all others up to the user.
662  */
663 static int should_io_be_busy(void)
664 {
665 #if defined(CONFIG_X86)
666 	/*
667 	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
668 	 */
669 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
670 	    boot_cpu_data.x86 == 6 &&
671 	    boot_cpu_data.x86_model >= 15)
672 		return 1;
673 #endif
674 	return 0;
675 }
676 
677 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
678 				   unsigned int event)
679 {
680 	unsigned int cpu = policy->cpu;
681 	struct cpu_dbs_info_s *this_dbs_info;
682 	unsigned int j;
683 	int rc;
684 
685 	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
686 
687 	switch (event) {
688 	case CPUFREQ_GOV_START:
689 		if ((!cpu_online(cpu)) || (!policy->cur))
690 			return -EINVAL;
691 
692 		mutex_lock(&dbs_mutex);
693 
694 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
695 		if (rc) {
696 			mutex_unlock(&dbs_mutex);
697 			return rc;
698 		}
699 
700 		dbs_enable++;
701 		for_each_cpu(j, policy->cpus) {
702 			struct cpu_dbs_info_s *j_dbs_info;
703 			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
704 			j_dbs_info->cur_policy = policy;
705 
706 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
707 						&j_dbs_info->prev_cpu_wall);
708 			if (dbs_tuners_ins.ignore_nice) {
709 				j_dbs_info->prev_cpu_nice =
710 						kstat_cpu(j).cpustat.nice;
711 			}
712 		}
713 		this_dbs_info->cpu = cpu;
714 		ondemand_powersave_bias_init_cpu(cpu);
715 		/*
716 		 * Start the timerschedule work, when this governor
717 		 * is used for first time
718 		 */
719 		if (dbs_enable == 1) {
720 			unsigned int latency;
721 
722 			rc = sysfs_create_group(cpufreq_global_kobject,
723 						&dbs_attr_group);
724 			if (rc) {
725 				mutex_unlock(&dbs_mutex);
726 				return rc;
727 			}
728 
729 			/* policy latency is in nS. Convert it to uS first */
730 			latency = policy->cpuinfo.transition_latency / 1000;
731 			if (latency == 0)
732 				latency = 1;
733 			/* Bring kernel and HW constraints together */
734 			min_sampling_rate = max(min_sampling_rate,
735 					MIN_LATENCY_MULTIPLIER * latency);
736 			dbs_tuners_ins.sampling_rate =
737 				max(min_sampling_rate,
738 				    latency * LATENCY_MULTIPLIER);
739 			dbs_tuners_ins.io_is_busy = should_io_be_busy();
740 		}
741 		mutex_unlock(&dbs_mutex);
742 
743 		mutex_init(&this_dbs_info->timer_mutex);
744 		dbs_timer_init(this_dbs_info);
745 		break;
746 
747 	case CPUFREQ_GOV_STOP:
748 		dbs_timer_exit(this_dbs_info);
749 
750 		mutex_lock(&dbs_mutex);
751 		sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
752 		mutex_destroy(&this_dbs_info->timer_mutex);
753 		dbs_enable--;
754 		mutex_unlock(&dbs_mutex);
755 		if (!dbs_enable)
756 			sysfs_remove_group(cpufreq_global_kobject,
757 					   &dbs_attr_group);
758 
759 		break;
760 
761 	case CPUFREQ_GOV_LIMITS:
762 		mutex_lock(&this_dbs_info->timer_mutex);
763 		if (policy->max < this_dbs_info->cur_policy->cur)
764 			__cpufreq_driver_target(this_dbs_info->cur_policy,
765 				policy->max, CPUFREQ_RELATION_H);
766 		else if (policy->min > this_dbs_info->cur_policy->cur)
767 			__cpufreq_driver_target(this_dbs_info->cur_policy,
768 				policy->min, CPUFREQ_RELATION_L);
769 		mutex_unlock(&this_dbs_info->timer_mutex);
770 		break;
771 	}
772 	return 0;
773 }
774 
775 static int __init cpufreq_gov_dbs_init(void)
776 {
777 	int err;
778 	cputime64_t wall;
779 	u64 idle_time;
780 	int cpu = get_cpu();
781 
782 	idle_time = get_cpu_idle_time_us(cpu, &wall);
783 	put_cpu();
784 	if (idle_time != -1ULL) {
785 		/* Idle micro accounting is supported. Use finer thresholds */
786 		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
787 		dbs_tuners_ins.down_differential =
788 					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
789 		/*
790 		 * In no_hz/micro accounting case we set the minimum frequency
791 		 * not depending on HZ, but fixed (very low). The deferred
792 		 * timer might skip some samples if idle/sleeping as needed.
793 		*/
794 		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
795 	} else {
796 		/* For correct statistics, we need 10 ticks for each measure */
797 		min_sampling_rate =
798 			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
799 	}
800 
801 	kondemand_wq = create_workqueue("kondemand");
802 	if (!kondemand_wq) {
803 		printk(KERN_ERR "Creation of kondemand failed\n");
804 		return -EFAULT;
805 	}
806 	err = cpufreq_register_governor(&cpufreq_gov_ondemand);
807 	if (err)
808 		destroy_workqueue(kondemand_wq);
809 
810 	return err;
811 }
812 
813 static void __exit cpufreq_gov_dbs_exit(void)
814 {
815 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
816 	destroy_workqueue(kondemand_wq);
817 }
818 
819 
820 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
821 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
822 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
823 	"Low Latency Frequency Transition capable processors");
824 MODULE_LICENSE("GPL");
825 
826 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
827 fs_initcall(cpufreq_gov_dbs_init);
828 #else
829 module_init(cpufreq_gov_dbs_init);
830 #endif
831 module_exit(cpufreq_gov_dbs_exit);
832