xref: /linux/drivers/cpufreq/cpufreq_ondemand.c (revision 36ca1195ad7f760a6af3814cb002bd3a3d4b4db1)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
30 
31 /*
32  * dbs is used in this file as a shortform for demandbased switching
33  * It helps to keep variable names smaller, simpler
34  */
35 
36 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
37 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
38 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
39 
40 /*
41  * The polling frequency of this governor depends on the capability of
42  * the processor. Default polling frequency is 1000 times the transition
43  * latency of the processor. The governor will work on any processor with
44  * transition latency <= 10mS, using appropriate sampling
45  * rate.
46  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
47  * this governor will not work.
48  * All times here are in uS.
49  */
50 static unsigned int 				def_sampling_rate;
51 #define MIN_SAMPLING_RATE			(def_sampling_rate / 2)
52 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
53 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
54 #define DEF_SAMPLING_DOWN_FACTOR		(1)
55 #define MAX_SAMPLING_DOWN_FACTOR		(10)
56 #define TRANSITION_LATENCY_LIMIT		(10 * 1000)
57 
58 static void do_dbs_timer(void *data);
59 
60 struct cpu_dbs_info_s {
61 	struct cpufreq_policy 	*cur_policy;
62 	unsigned int 		prev_cpu_idle_up;
63 	unsigned int 		prev_cpu_idle_down;
64 	unsigned int 		enable;
65 };
66 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
67 
68 static unsigned int dbs_enable;	/* number of CPUs using this policy */
69 
70 static DECLARE_MUTEX 	(dbs_sem);
71 static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);
72 
73 struct dbs_tuners {
74 	unsigned int 		sampling_rate;
75 	unsigned int		sampling_down_factor;
76 	unsigned int		up_threshold;
77 	unsigned int		ignore_nice;
78 };
79 
80 static struct dbs_tuners dbs_tuners_ins = {
81 	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
82 	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
83 };
84 
85 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
86 {
87 	return	kstat_cpu(cpu).cpustat.idle +
88 		kstat_cpu(cpu).cpustat.iowait +
89 		( !dbs_tuners_ins.ignore_nice ?
90 		  kstat_cpu(cpu).cpustat.nice :
91 		  0);
92 }
93 
94 /************************** sysfs interface ************************/
95 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
96 {
97 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
98 }
99 
100 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
101 {
102 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
103 }
104 
105 #define define_one_ro(_name) 					\
106 static struct freq_attr _name =  				\
107 __ATTR(_name, 0444, show_##_name, NULL)
108 
109 define_one_ro(sampling_rate_max);
110 define_one_ro(sampling_rate_min);
111 
112 /* cpufreq_ondemand Governor Tunables */
113 #define show_one(file_name, object)					\
114 static ssize_t show_##file_name						\
115 (struct cpufreq_policy *unused, char *buf)				\
116 {									\
117 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
118 }
119 show_one(sampling_rate, sampling_rate);
120 show_one(sampling_down_factor, sampling_down_factor);
121 show_one(up_threshold, up_threshold);
122 show_one(ignore_nice, ignore_nice);
123 
124 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
125 		const char *buf, size_t count)
126 {
127 	unsigned int input;
128 	int ret;
129 	ret = sscanf (buf, "%u", &input);
130 	if (ret != 1 )
131 		return -EINVAL;
132 
133 	if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
134 		return -EINVAL;
135 
136 	down(&dbs_sem);
137 	dbs_tuners_ins.sampling_down_factor = input;
138 	up(&dbs_sem);
139 
140 	return count;
141 }
142 
143 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
144 		const char *buf, size_t count)
145 {
146 	unsigned int input;
147 	int ret;
148 	ret = sscanf (buf, "%u", &input);
149 
150 	down(&dbs_sem);
151 	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
152 		up(&dbs_sem);
153 		return -EINVAL;
154 	}
155 
156 	dbs_tuners_ins.sampling_rate = input;
157 	up(&dbs_sem);
158 
159 	return count;
160 }
161 
162 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
163 		const char *buf, size_t count)
164 {
165 	unsigned int input;
166 	int ret;
167 	ret = sscanf (buf, "%u", &input);
168 
169 	down(&dbs_sem);
170 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
171 			input < MIN_FREQUENCY_UP_THRESHOLD) {
172 		up(&dbs_sem);
173 		return -EINVAL;
174 	}
175 
176 	dbs_tuners_ins.up_threshold = input;
177 	up(&dbs_sem);
178 
179 	return count;
180 }
181 
182 static ssize_t store_ignore_nice(struct cpufreq_policy *policy,
183 		const char *buf, size_t count)
184 {
185 	unsigned int input;
186 	int ret;
187 
188 	unsigned int j;
189 
190 	ret = sscanf (buf, "%u", &input);
191 	if ( ret != 1 )
192 		return -EINVAL;
193 
194 	if ( input > 1 )
195 		input = 1;
196 
197 	down(&dbs_sem);
198 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
199 		up(&dbs_sem);
200 		return count;
201 	}
202 	dbs_tuners_ins.ignore_nice = input;
203 
204 	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
205 	for_each_online_cpu(j) {
206 		struct cpu_dbs_info_s *j_dbs_info;
207 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
208 		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
209 		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
210 	}
211 	up(&dbs_sem);
212 
213 	return count;
214 }
215 
216 #define define_one_rw(_name) \
217 static struct freq_attr _name = \
218 __ATTR(_name, 0644, show_##_name, store_##_name)
219 
220 define_one_rw(sampling_rate);
221 define_one_rw(sampling_down_factor);
222 define_one_rw(up_threshold);
223 define_one_rw(ignore_nice);
224 
225 static struct attribute * dbs_attributes[] = {
226 	&sampling_rate_max.attr,
227 	&sampling_rate_min.attr,
228 	&sampling_rate.attr,
229 	&sampling_down_factor.attr,
230 	&up_threshold.attr,
231 	&ignore_nice.attr,
232 	NULL
233 };
234 
235 static struct attribute_group dbs_attr_group = {
236 	.attrs = dbs_attributes,
237 	.name = "ondemand",
238 };
239 
240 /************************** sysfs end ************************/
241 
242 static void dbs_check_cpu(int cpu)
243 {
244 	unsigned int idle_ticks, up_idle_ticks, total_ticks;
245 	unsigned int freq_next;
246 	unsigned int freq_down_sampling_rate;
247 	static int down_skip[NR_CPUS];
248 	struct cpu_dbs_info_s *this_dbs_info;
249 
250 	struct cpufreq_policy *policy;
251 	unsigned int j;
252 
253 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
254 	if (!this_dbs_info->enable)
255 		return;
256 
257 	policy = this_dbs_info->cur_policy;
258 	/*
259 	 * Every sampling_rate, we check, if current idle time is less
260 	 * than 20% (default), then we try to increase frequency
261 	 * Every sampling_rate*sampling_down_factor, we look for a the lowest
262 	 * frequency which can sustain the load while keeping idle time over
263 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
264 	 *
265 	 * Any frequency increase takes it to the maximum frequency.
266 	 * Frequency reduction happens at minimum steps of
267 	 * 5% (default) of current frequency
268 	 */
269 
270 	/* Check for frequency increase */
271 	idle_ticks = UINT_MAX;
272 	for_each_cpu_mask(j, policy->cpus) {
273 		unsigned int tmp_idle_ticks, total_idle_ticks;
274 		struct cpu_dbs_info_s *j_dbs_info;
275 
276 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
277 		total_idle_ticks = get_cpu_idle_time(j);
278 		tmp_idle_ticks = total_idle_ticks -
279 			j_dbs_info->prev_cpu_idle_up;
280 		j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
281 
282 		if (tmp_idle_ticks < idle_ticks)
283 			idle_ticks = tmp_idle_ticks;
284 	}
285 
286 	/* Scale idle ticks by 100 and compare with up and down ticks */
287 	idle_ticks *= 100;
288 	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
289 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
290 
291 	if (idle_ticks < up_idle_ticks) {
292 		down_skip[cpu] = 0;
293 		for_each_cpu_mask(j, policy->cpus) {
294 			struct cpu_dbs_info_s *j_dbs_info;
295 
296 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
297 			j_dbs_info->prev_cpu_idle_down =
298 					j_dbs_info->prev_cpu_idle_up;
299 		}
300 		/* if we are already at full speed then break out early */
301 		if (policy->cur == policy->max)
302 			return;
303 
304 		__cpufreq_driver_target(policy, policy->max,
305 			CPUFREQ_RELATION_H);
306 		return;
307 	}
308 
309 	/* Check for frequency decrease */
310 	down_skip[cpu]++;
311 	if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
312 		return;
313 
314 	idle_ticks = UINT_MAX;
315 	for_each_cpu_mask(j, policy->cpus) {
316 		unsigned int tmp_idle_ticks, total_idle_ticks;
317 		struct cpu_dbs_info_s *j_dbs_info;
318 
319 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
320 		/* Check for frequency decrease */
321 		total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
322 		tmp_idle_ticks = total_idle_ticks -
323 			j_dbs_info->prev_cpu_idle_down;
324 		j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
325 
326 		if (tmp_idle_ticks < idle_ticks)
327 			idle_ticks = tmp_idle_ticks;
328 	}
329 
330 	down_skip[cpu] = 0;
331 	/* if we cannot reduce the frequency anymore, break out early */
332 	if (policy->cur == policy->min)
333 		return;
334 
335 	/* Compute how many ticks there are between two measurements */
336 	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
337 		dbs_tuners_ins.sampling_down_factor;
338 	total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
339 
340 	/*
341 	 * The optimal frequency is the frequency that is the lowest that
342 	 * can support the current CPU usage without triggering the up
343 	 * policy. To be safe, we focus 10 points under the threshold.
344 	 */
345 	freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
346 	freq_next = (freq_next * policy->cur) /
347 			(dbs_tuners_ins.up_threshold - 10);
348 
349 	if (freq_next <= ((policy->cur * 95) / 100))
350 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
351 }
352 
353 static void do_dbs_timer(void *data)
354 {
355 	int i;
356 	down(&dbs_sem);
357 	for_each_online_cpu(i)
358 		dbs_check_cpu(i);
359 	schedule_delayed_work(&dbs_work,
360 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
361 	up(&dbs_sem);
362 }
363 
364 static inline void dbs_timer_init(void)
365 {
366 	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
367 	schedule_delayed_work(&dbs_work,
368 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
369 	return;
370 }
371 
372 static inline void dbs_timer_exit(void)
373 {
374 	cancel_delayed_work(&dbs_work);
375 	return;
376 }
377 
378 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
379 				   unsigned int event)
380 {
381 	unsigned int cpu = policy->cpu;
382 	struct cpu_dbs_info_s *this_dbs_info;
383 	unsigned int j;
384 
385 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
386 
387 	switch (event) {
388 	case CPUFREQ_GOV_START:
389 		if ((!cpu_online(cpu)) ||
390 		    (!policy->cur))
391 			return -EINVAL;
392 
393 		if (policy->cpuinfo.transition_latency >
394 				(TRANSITION_LATENCY_LIMIT * 1000))
395 			return -EINVAL;
396 		if (this_dbs_info->enable) /* Already enabled */
397 			break;
398 
399 		down(&dbs_sem);
400 		for_each_cpu_mask(j, policy->cpus) {
401 			struct cpu_dbs_info_s *j_dbs_info;
402 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
403 			j_dbs_info->cur_policy = policy;
404 
405 			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
406 			j_dbs_info->prev_cpu_idle_down
407 				= j_dbs_info->prev_cpu_idle_up;
408 		}
409 		this_dbs_info->enable = 1;
410 		sysfs_create_group(&policy->kobj, &dbs_attr_group);
411 		dbs_enable++;
412 		/*
413 		 * Start the timerschedule work, when this governor
414 		 * is used for first time
415 		 */
416 		if (dbs_enable == 1) {
417 			unsigned int latency;
418 			/* policy latency is in nS. Convert it to uS first */
419 
420 			latency = policy->cpuinfo.transition_latency;
421 			if (latency < 1000)
422 				latency = 1000;
423 
424 			def_sampling_rate = (latency / 1000) *
425 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
426 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
427 			dbs_tuners_ins.ignore_nice = 0;
428 
429 			dbs_timer_init();
430 		}
431 
432 		up(&dbs_sem);
433 		break;
434 
435 	case CPUFREQ_GOV_STOP:
436 		down(&dbs_sem);
437 		this_dbs_info->enable = 0;
438 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
439 		dbs_enable--;
440 		/*
441 		 * Stop the timerschedule work, when this governor
442 		 * is used for first time
443 		 */
444 		if (dbs_enable == 0)
445 			dbs_timer_exit();
446 
447 		up(&dbs_sem);
448 
449 		break;
450 
451 	case CPUFREQ_GOV_LIMITS:
452 		down(&dbs_sem);
453 		if (policy->max < this_dbs_info->cur_policy->cur)
454 			__cpufreq_driver_target(
455 					this_dbs_info->cur_policy,
456 				       	policy->max, CPUFREQ_RELATION_H);
457 		else if (policy->min > this_dbs_info->cur_policy->cur)
458 			__cpufreq_driver_target(
459 					this_dbs_info->cur_policy,
460 				       	policy->min, CPUFREQ_RELATION_L);
461 		up(&dbs_sem);
462 		break;
463 	}
464 	return 0;
465 }
466 
467 static struct cpufreq_governor cpufreq_gov_dbs = {
468 	.name		= "ondemand",
469 	.governor	= cpufreq_governor_dbs,
470 	.owner		= THIS_MODULE,
471 };
472 
473 static int __init cpufreq_gov_dbs_init(void)
474 {
475 	return cpufreq_register_governor(&cpufreq_gov_dbs);
476 }
477 
478 static void __exit cpufreq_gov_dbs_exit(void)
479 {
480 	/* Make sure that the scheduled work is indeed not running */
481 	flush_scheduled_work();
482 
483 	cpufreq_unregister_governor(&cpufreq_gov_dbs);
484 }
485 
486 
487 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
488 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
489 		"Low Latency Frequency Transition capable processors");
490 MODULE_LICENSE ("GPL");
491 
492 module_init(cpufreq_gov_dbs_init);
493 module_exit(cpufreq_gov_dbs_exit);
494