1 /* 2 * drivers/cpufreq/cpufreq_ondemand.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 6 * Jun Nakajima <jun.nakajima@intel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/cpufreq.h> 17 #include <linux/cpu.h> 18 #include <linux/jiffies.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mutex.h> 21 #include <linux/hrtimer.h> 22 #include <linux/tick.h> 23 #include <linux/ktime.h> 24 25 /* 26 * dbs is used in this file as a shortform for demandbased switching 27 * It helps to keep variable names smaller, simpler 28 */ 29 30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10) 31 #define DEF_FREQUENCY_UP_THRESHOLD (80) 32 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3) 33 #define MICRO_FREQUENCY_UP_THRESHOLD (95) 34 #define MIN_FREQUENCY_UP_THRESHOLD (11) 35 #define MAX_FREQUENCY_UP_THRESHOLD (100) 36 37 /* 38 * The polling frequency of this governor depends on the capability of 39 * the processor. Default polling frequency is 1000 times the transition 40 * latency of the processor. The governor will work on any processor with 41 * transition latency <= 10mS, using appropriate sampling 42 * rate. 43 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) 44 * this governor will not work. 45 * All times here are in uS. 46 */ 47 static unsigned int def_sampling_rate; 48 #define MIN_SAMPLING_RATE_RATIO (2) 49 /* for correct statistics, we need at least 10 ticks between each measure */ 50 #define MIN_STAT_SAMPLING_RATE \ 51 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10)) 52 #define MIN_SAMPLING_RATE \ 53 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO) 54 #define MAX_SAMPLING_RATE (500 * def_sampling_rate) 55 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000) 56 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000) 57 58 static void do_dbs_timer(struct work_struct *work); 59 60 /* Sampling types */ 61 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE}; 62 63 struct cpu_dbs_info_s { 64 cputime64_t prev_cpu_idle; 65 cputime64_t prev_cpu_wall; 66 cputime64_t prev_cpu_nice; 67 struct cpufreq_policy *cur_policy; 68 struct delayed_work work; 69 struct cpufreq_frequency_table *freq_table; 70 unsigned int freq_lo; 71 unsigned int freq_lo_jiffies; 72 unsigned int freq_hi_jiffies; 73 int cpu; 74 unsigned int enable:1, 75 sample_type:1; 76 }; 77 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); 78 79 static unsigned int dbs_enable; /* number of CPUs using this policy */ 80 81 /* 82 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug 83 * lock and dbs_mutex. cpu_hotplug lock should always be held before 84 * dbs_mutex. If any function that can potentially take cpu_hotplug lock 85 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then 86 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock 87 * is recursive for the same process. -Venki 88 */ 89 static DEFINE_MUTEX(dbs_mutex); 90 91 static struct workqueue_struct *kondemand_wq; 92 93 static struct dbs_tuners { 94 unsigned int sampling_rate; 95 unsigned int up_threshold; 96 unsigned int down_differential; 97 unsigned int ignore_nice; 98 unsigned int powersave_bias; 99 } dbs_tuners_ins = { 100 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, 101 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL, 102 .ignore_nice = 0, 103 .powersave_bias = 0, 104 }; 105 106 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu, 107 cputime64_t *wall) 108 { 109 cputime64_t idle_time; 110 cputime64_t cur_wall_time; 111 cputime64_t busy_time; 112 113 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 114 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user, 115 kstat_cpu(cpu).cpustat.system); 116 117 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq); 118 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq); 119 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal); 120 121 if (!dbs_tuners_ins.ignore_nice) { 122 busy_time = cputime64_add(busy_time, 123 kstat_cpu(cpu).cpustat.nice); 124 } 125 126 idle_time = cputime64_sub(cur_wall_time, busy_time); 127 if (wall) 128 *wall = cur_wall_time; 129 130 return idle_time; 131 } 132 133 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) 134 { 135 u64 idle_time = get_cpu_idle_time_us(cpu, wall); 136 137 if (idle_time == -1ULL) 138 return get_cpu_idle_time_jiffy(cpu, wall); 139 140 if (dbs_tuners_ins.ignore_nice) { 141 cputime64_t cur_nice; 142 unsigned long cur_nice_jiffies; 143 struct cpu_dbs_info_s *dbs_info; 144 145 dbs_info = &per_cpu(cpu_dbs_info, cpu); 146 cur_nice = cputime64_sub(kstat_cpu(cpu).cpustat.nice, 147 dbs_info->prev_cpu_nice); 148 /* 149 * Assumption: nice time between sampling periods will be 150 * less than 2^32 jiffies for 32 bit sys 151 */ 152 cur_nice_jiffies = (unsigned long) 153 cputime64_to_jiffies64(cur_nice); 154 dbs_info->prev_cpu_nice = kstat_cpu(cpu).cpustat.nice; 155 return idle_time + jiffies_to_usecs(cur_nice_jiffies); 156 } 157 return idle_time; 158 } 159 160 /* 161 * Find right freq to be set now with powersave_bias on. 162 * Returns the freq_hi to be used right now and will set freq_hi_jiffies, 163 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. 164 */ 165 static unsigned int powersave_bias_target(struct cpufreq_policy *policy, 166 unsigned int freq_next, 167 unsigned int relation) 168 { 169 unsigned int freq_req, freq_reduc, freq_avg; 170 unsigned int freq_hi, freq_lo; 171 unsigned int index = 0; 172 unsigned int jiffies_total, jiffies_hi, jiffies_lo; 173 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu); 174 175 if (!dbs_info->freq_table) { 176 dbs_info->freq_lo = 0; 177 dbs_info->freq_lo_jiffies = 0; 178 return freq_next; 179 } 180 181 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, 182 relation, &index); 183 freq_req = dbs_info->freq_table[index].frequency; 184 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000; 185 freq_avg = freq_req - freq_reduc; 186 187 /* Find freq bounds for freq_avg in freq_table */ 188 index = 0; 189 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 190 CPUFREQ_RELATION_H, &index); 191 freq_lo = dbs_info->freq_table[index].frequency; 192 index = 0; 193 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 194 CPUFREQ_RELATION_L, &index); 195 freq_hi = dbs_info->freq_table[index].frequency; 196 197 /* Find out how long we have to be in hi and lo freqs */ 198 if (freq_hi == freq_lo) { 199 dbs_info->freq_lo = 0; 200 dbs_info->freq_lo_jiffies = 0; 201 return freq_lo; 202 } 203 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 204 jiffies_hi = (freq_avg - freq_lo) * jiffies_total; 205 jiffies_hi += ((freq_hi - freq_lo) / 2); 206 jiffies_hi /= (freq_hi - freq_lo); 207 jiffies_lo = jiffies_total - jiffies_hi; 208 dbs_info->freq_lo = freq_lo; 209 dbs_info->freq_lo_jiffies = jiffies_lo; 210 dbs_info->freq_hi_jiffies = jiffies_hi; 211 return freq_hi; 212 } 213 214 static void ondemand_powersave_bias_init(void) 215 { 216 int i; 217 for_each_online_cpu(i) { 218 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i); 219 dbs_info->freq_table = cpufreq_frequency_get_table(i); 220 dbs_info->freq_lo = 0; 221 } 222 } 223 224 /************************** sysfs interface ************************/ 225 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) 226 { 227 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE); 228 } 229 230 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf) 231 { 232 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE); 233 } 234 235 #define define_one_ro(_name) \ 236 static struct freq_attr _name = \ 237 __ATTR(_name, 0444, show_##_name, NULL) 238 239 define_one_ro(sampling_rate_max); 240 define_one_ro(sampling_rate_min); 241 242 /* cpufreq_ondemand Governor Tunables */ 243 #define show_one(file_name, object) \ 244 static ssize_t show_##file_name \ 245 (struct cpufreq_policy *unused, char *buf) \ 246 { \ 247 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ 248 } 249 show_one(sampling_rate, sampling_rate); 250 show_one(up_threshold, up_threshold); 251 show_one(ignore_nice_load, ignore_nice); 252 show_one(powersave_bias, powersave_bias); 253 254 static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 255 const char *buf, size_t count) 256 { 257 unsigned int input; 258 int ret; 259 ret = sscanf(buf, "%u", &input); 260 261 mutex_lock(&dbs_mutex); 262 if (ret != 1 || input > MAX_SAMPLING_RATE 263 || input < MIN_SAMPLING_RATE) { 264 mutex_unlock(&dbs_mutex); 265 return -EINVAL; 266 } 267 268 dbs_tuners_ins.sampling_rate = input; 269 mutex_unlock(&dbs_mutex); 270 271 return count; 272 } 273 274 static ssize_t store_up_threshold(struct cpufreq_policy *unused, 275 const char *buf, size_t count) 276 { 277 unsigned int input; 278 int ret; 279 ret = sscanf(buf, "%u", &input); 280 281 mutex_lock(&dbs_mutex); 282 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 283 input < MIN_FREQUENCY_UP_THRESHOLD) { 284 mutex_unlock(&dbs_mutex); 285 return -EINVAL; 286 } 287 288 dbs_tuners_ins.up_threshold = input; 289 mutex_unlock(&dbs_mutex); 290 291 return count; 292 } 293 294 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy, 295 const char *buf, size_t count) 296 { 297 unsigned int input; 298 int ret; 299 300 unsigned int j; 301 302 ret = sscanf(buf, "%u", &input); 303 if ( ret != 1 ) 304 return -EINVAL; 305 306 if ( input > 1 ) 307 input = 1; 308 309 mutex_lock(&dbs_mutex); 310 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */ 311 mutex_unlock(&dbs_mutex); 312 return count; 313 } 314 dbs_tuners_ins.ignore_nice = input; 315 316 /* we need to re-evaluate prev_cpu_idle */ 317 for_each_online_cpu(j) { 318 struct cpu_dbs_info_s *dbs_info; 319 dbs_info = &per_cpu(cpu_dbs_info, j); 320 dbs_info->prev_cpu_idle = get_cpu_idle_time(j, 321 &dbs_info->prev_cpu_wall); 322 } 323 mutex_unlock(&dbs_mutex); 324 325 return count; 326 } 327 328 static ssize_t store_powersave_bias(struct cpufreq_policy *unused, 329 const char *buf, size_t count) 330 { 331 unsigned int input; 332 int ret; 333 ret = sscanf(buf, "%u", &input); 334 335 if (ret != 1) 336 return -EINVAL; 337 338 if (input > 1000) 339 input = 1000; 340 341 mutex_lock(&dbs_mutex); 342 dbs_tuners_ins.powersave_bias = input; 343 ondemand_powersave_bias_init(); 344 mutex_unlock(&dbs_mutex); 345 346 return count; 347 } 348 349 #define define_one_rw(_name) \ 350 static struct freq_attr _name = \ 351 __ATTR(_name, 0644, show_##_name, store_##_name) 352 353 define_one_rw(sampling_rate); 354 define_one_rw(up_threshold); 355 define_one_rw(ignore_nice_load); 356 define_one_rw(powersave_bias); 357 358 static struct attribute * dbs_attributes[] = { 359 &sampling_rate_max.attr, 360 &sampling_rate_min.attr, 361 &sampling_rate.attr, 362 &up_threshold.attr, 363 &ignore_nice_load.attr, 364 &powersave_bias.attr, 365 NULL 366 }; 367 368 static struct attribute_group dbs_attr_group = { 369 .attrs = dbs_attributes, 370 .name = "ondemand", 371 }; 372 373 /************************** sysfs end ************************/ 374 375 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) 376 { 377 unsigned int max_load_freq; 378 379 struct cpufreq_policy *policy; 380 unsigned int j; 381 382 if (!this_dbs_info->enable) 383 return; 384 385 this_dbs_info->freq_lo = 0; 386 policy = this_dbs_info->cur_policy; 387 388 /* 389 * Every sampling_rate, we check, if current idle time is less 390 * than 20% (default), then we try to increase frequency 391 * Every sampling_rate, we look for a the lowest 392 * frequency which can sustain the load while keeping idle time over 393 * 30%. If such a frequency exist, we try to decrease to this frequency. 394 * 395 * Any frequency increase takes it to the maximum frequency. 396 * Frequency reduction happens at minimum steps of 397 * 5% (default) of current frequency 398 */ 399 400 /* Get Absolute Load - in terms of freq */ 401 max_load_freq = 0; 402 403 for_each_cpu_mask_nr(j, policy->cpus) { 404 struct cpu_dbs_info_s *j_dbs_info; 405 cputime64_t cur_wall_time, cur_idle_time; 406 unsigned int idle_time, wall_time; 407 unsigned int load, load_freq; 408 int freq_avg; 409 410 j_dbs_info = &per_cpu(cpu_dbs_info, j); 411 412 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); 413 414 wall_time = (unsigned int) cputime64_sub(cur_wall_time, 415 j_dbs_info->prev_cpu_wall); 416 j_dbs_info->prev_cpu_wall = cur_wall_time; 417 418 idle_time = (unsigned int) cputime64_sub(cur_idle_time, 419 j_dbs_info->prev_cpu_idle); 420 j_dbs_info->prev_cpu_idle = cur_idle_time; 421 422 if (unlikely(!wall_time || wall_time < idle_time)) 423 continue; 424 425 load = 100 * (wall_time - idle_time) / wall_time; 426 427 freq_avg = __cpufreq_driver_getavg(policy, j); 428 if (freq_avg <= 0) 429 freq_avg = policy->cur; 430 431 load_freq = load * freq_avg; 432 if (load_freq > max_load_freq) 433 max_load_freq = load_freq; 434 } 435 436 /* Check for frequency increase */ 437 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) { 438 /* if we are already at full speed then break out early */ 439 if (!dbs_tuners_ins.powersave_bias) { 440 if (policy->cur == policy->max) 441 return; 442 443 __cpufreq_driver_target(policy, policy->max, 444 CPUFREQ_RELATION_H); 445 } else { 446 int freq = powersave_bias_target(policy, policy->max, 447 CPUFREQ_RELATION_H); 448 __cpufreq_driver_target(policy, freq, 449 CPUFREQ_RELATION_L); 450 } 451 return; 452 } 453 454 /* Check for frequency decrease */ 455 /* if we cannot reduce the frequency anymore, break out early */ 456 if (policy->cur == policy->min) 457 return; 458 459 /* 460 * The optimal frequency is the frequency that is the lowest that 461 * can support the current CPU usage without triggering the up 462 * policy. To be safe, we focus 10 points under the threshold. 463 */ 464 if (max_load_freq < 465 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) * 466 policy->cur) { 467 unsigned int freq_next; 468 freq_next = max_load_freq / 469 (dbs_tuners_ins.up_threshold - 470 dbs_tuners_ins.down_differential); 471 472 if (!dbs_tuners_ins.powersave_bias) { 473 __cpufreq_driver_target(policy, freq_next, 474 CPUFREQ_RELATION_L); 475 } else { 476 int freq = powersave_bias_target(policy, freq_next, 477 CPUFREQ_RELATION_L); 478 __cpufreq_driver_target(policy, freq, 479 CPUFREQ_RELATION_L); 480 } 481 } 482 } 483 484 static void do_dbs_timer(struct work_struct *work) 485 { 486 struct cpu_dbs_info_s *dbs_info = 487 container_of(work, struct cpu_dbs_info_s, work.work); 488 unsigned int cpu = dbs_info->cpu; 489 int sample_type = dbs_info->sample_type; 490 491 /* We want all CPUs to do sampling nearly on same jiffy */ 492 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 493 494 delay -= jiffies % delay; 495 496 if (lock_policy_rwsem_write(cpu) < 0) 497 return; 498 499 if (!dbs_info->enable) { 500 unlock_policy_rwsem_write(cpu); 501 return; 502 } 503 504 /* Common NORMAL_SAMPLE setup */ 505 dbs_info->sample_type = DBS_NORMAL_SAMPLE; 506 if (!dbs_tuners_ins.powersave_bias || 507 sample_type == DBS_NORMAL_SAMPLE) { 508 dbs_check_cpu(dbs_info); 509 if (dbs_info->freq_lo) { 510 /* Setup timer for SUB_SAMPLE */ 511 dbs_info->sample_type = DBS_SUB_SAMPLE; 512 delay = dbs_info->freq_hi_jiffies; 513 } 514 } else { 515 __cpufreq_driver_target(dbs_info->cur_policy, 516 dbs_info->freq_lo, 517 CPUFREQ_RELATION_H); 518 } 519 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay); 520 unlock_policy_rwsem_write(cpu); 521 } 522 523 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info) 524 { 525 /* We want all CPUs to do sampling nearly on same jiffy */ 526 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 527 delay -= jiffies % delay; 528 529 dbs_info->enable = 1; 530 ondemand_powersave_bias_init(); 531 dbs_info->sample_type = DBS_NORMAL_SAMPLE; 532 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer); 533 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work, 534 delay); 535 } 536 537 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info) 538 { 539 dbs_info->enable = 0; 540 cancel_delayed_work(&dbs_info->work); 541 } 542 543 static int cpufreq_governor_dbs(struct cpufreq_policy *policy, 544 unsigned int event) 545 { 546 unsigned int cpu = policy->cpu; 547 struct cpu_dbs_info_s *this_dbs_info; 548 unsigned int j; 549 int rc; 550 551 this_dbs_info = &per_cpu(cpu_dbs_info, cpu); 552 553 switch (event) { 554 case CPUFREQ_GOV_START: 555 if ((!cpu_online(cpu)) || (!policy->cur)) 556 return -EINVAL; 557 558 if (this_dbs_info->enable) /* Already enabled */ 559 break; 560 561 mutex_lock(&dbs_mutex); 562 dbs_enable++; 563 564 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group); 565 if (rc) { 566 dbs_enable--; 567 mutex_unlock(&dbs_mutex); 568 return rc; 569 } 570 571 for_each_cpu_mask_nr(j, policy->cpus) { 572 struct cpu_dbs_info_s *j_dbs_info; 573 j_dbs_info = &per_cpu(cpu_dbs_info, j); 574 j_dbs_info->cur_policy = policy; 575 576 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, 577 &j_dbs_info->prev_cpu_wall); 578 } 579 this_dbs_info->cpu = cpu; 580 /* 581 * Start the timerschedule work, when this governor 582 * is used for first time 583 */ 584 if (dbs_enable == 1) { 585 unsigned int latency; 586 /* policy latency is in nS. Convert it to uS first */ 587 latency = policy->cpuinfo.transition_latency / 1000; 588 if (latency == 0) 589 latency = 1; 590 591 def_sampling_rate = latency * 592 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER; 593 594 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE) 595 def_sampling_rate = MIN_STAT_SAMPLING_RATE; 596 597 dbs_tuners_ins.sampling_rate = def_sampling_rate; 598 } 599 dbs_timer_init(this_dbs_info); 600 601 mutex_unlock(&dbs_mutex); 602 break; 603 604 case CPUFREQ_GOV_STOP: 605 mutex_lock(&dbs_mutex); 606 dbs_timer_exit(this_dbs_info); 607 sysfs_remove_group(&policy->kobj, &dbs_attr_group); 608 dbs_enable--; 609 mutex_unlock(&dbs_mutex); 610 611 break; 612 613 case CPUFREQ_GOV_LIMITS: 614 mutex_lock(&dbs_mutex); 615 if (policy->max < this_dbs_info->cur_policy->cur) 616 __cpufreq_driver_target(this_dbs_info->cur_policy, 617 policy->max, 618 CPUFREQ_RELATION_H); 619 else if (policy->min > this_dbs_info->cur_policy->cur) 620 __cpufreq_driver_target(this_dbs_info->cur_policy, 621 policy->min, 622 CPUFREQ_RELATION_L); 623 mutex_unlock(&dbs_mutex); 624 break; 625 } 626 return 0; 627 } 628 629 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 630 static 631 #endif 632 struct cpufreq_governor cpufreq_gov_ondemand = { 633 .name = "ondemand", 634 .governor = cpufreq_governor_dbs, 635 .max_transition_latency = TRANSITION_LATENCY_LIMIT, 636 .owner = THIS_MODULE, 637 }; 638 639 static int __init cpufreq_gov_dbs_init(void) 640 { 641 int err; 642 cputime64_t wall; 643 u64 idle_time; 644 int cpu = get_cpu(); 645 646 idle_time = get_cpu_idle_time_us(cpu, &wall); 647 put_cpu(); 648 if (idle_time != -1ULL) { 649 /* Idle micro accounting is supported. Use finer thresholds */ 650 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; 651 dbs_tuners_ins.down_differential = 652 MICRO_FREQUENCY_DOWN_DIFFERENTIAL; 653 } 654 655 kondemand_wq = create_workqueue("kondemand"); 656 if (!kondemand_wq) { 657 printk(KERN_ERR "Creation of kondemand failed\n"); 658 return -EFAULT; 659 } 660 err = cpufreq_register_governor(&cpufreq_gov_ondemand); 661 if (err) 662 destroy_workqueue(kondemand_wq); 663 664 return err; 665 } 666 667 static void __exit cpufreq_gov_dbs_exit(void) 668 { 669 cpufreq_unregister_governor(&cpufreq_gov_ondemand); 670 destroy_workqueue(kondemand_wq); 671 } 672 673 674 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); 675 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); 676 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " 677 "Low Latency Frequency Transition capable processors"); 678 MODULE_LICENSE("GPL"); 679 680 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 681 fs_initcall(cpufreq_gov_dbs_init); 682 #else 683 module_init(cpufreq_gov_dbs_init); 684 #endif 685 module_exit(cpufreq_gov_dbs_exit); 686