xref: /linux/drivers/cpufreq/cpufreq_ondemand.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 
25 /*
26  * dbs is used in this file as a shortform for demandbased switching
27  * It helps to keep variable names smaller, simpler
28  */
29 
30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
31 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
32 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
33 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
34 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
35 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
36 
37 /*
38  * The polling frequency of this governor depends on the capability of
39  * the processor. Default polling frequency is 1000 times the transition
40  * latency of the processor. The governor will work on any processor with
41  * transition latency <= 10mS, using appropriate sampling
42  * rate.
43  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
44  * this governor will not work.
45  * All times here are in uS.
46  */
47 static unsigned int def_sampling_rate;
48 #define MIN_SAMPLING_RATE_RATIO			(2)
49 /* for correct statistics, we need at least 10 ticks between each measure */
50 #define MIN_STAT_SAMPLING_RATE 			\
51 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
52 #define MIN_SAMPLING_RATE			\
53 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
54 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
55 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
56 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
57 
58 static void do_dbs_timer(struct work_struct *work);
59 
60 /* Sampling types */
61 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
62 
63 struct cpu_dbs_info_s {
64 	cputime64_t prev_cpu_idle;
65 	cputime64_t prev_cpu_wall;
66 	cputime64_t prev_cpu_nice;
67 	struct cpufreq_policy *cur_policy;
68  	struct delayed_work work;
69 	struct cpufreq_frequency_table *freq_table;
70 	unsigned int freq_lo;
71 	unsigned int freq_lo_jiffies;
72 	unsigned int freq_hi_jiffies;
73 	int cpu;
74 	unsigned int enable:1,
75 	             sample_type:1;
76 };
77 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
78 
79 static unsigned int dbs_enable;	/* number of CPUs using this policy */
80 
81 /*
82  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
83  * lock and dbs_mutex. cpu_hotplug lock should always be held before
84  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
85  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
86  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
87  * is recursive for the same process. -Venki
88  */
89 static DEFINE_MUTEX(dbs_mutex);
90 
91 static struct workqueue_struct	*kondemand_wq;
92 
93 static struct dbs_tuners {
94 	unsigned int sampling_rate;
95 	unsigned int up_threshold;
96 	unsigned int down_differential;
97 	unsigned int ignore_nice;
98 	unsigned int powersave_bias;
99 } dbs_tuners_ins = {
100 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
101 	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
102 	.ignore_nice = 0,
103 	.powersave_bias = 0,
104 };
105 
106 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
107 							cputime64_t *wall)
108 {
109 	cputime64_t idle_time;
110 	cputime64_t cur_wall_time;
111 	cputime64_t busy_time;
112 
113 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
114 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
115 			kstat_cpu(cpu).cpustat.system);
116 
117 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
118 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
119 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
120 
121 	if (!dbs_tuners_ins.ignore_nice) {
122 		busy_time = cputime64_add(busy_time,
123 				kstat_cpu(cpu).cpustat.nice);
124 	}
125 
126 	idle_time = cputime64_sub(cur_wall_time, busy_time);
127 	if (wall)
128 		*wall = cur_wall_time;
129 
130 	return idle_time;
131 }
132 
133 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
134 {
135 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
136 
137 	if (idle_time == -1ULL)
138 		return get_cpu_idle_time_jiffy(cpu, wall);
139 
140 	if (dbs_tuners_ins.ignore_nice) {
141 		cputime64_t cur_nice;
142 		unsigned long cur_nice_jiffies;
143 		struct cpu_dbs_info_s *dbs_info;
144 
145 		dbs_info = &per_cpu(cpu_dbs_info, cpu);
146 		cur_nice = cputime64_sub(kstat_cpu(cpu).cpustat.nice,
147 					 dbs_info->prev_cpu_nice);
148 		/*
149 		 * Assumption: nice time between sampling periods will be
150 		 * less than 2^32 jiffies for 32 bit sys
151 		 */
152 		cur_nice_jiffies = (unsigned long)
153 					cputime64_to_jiffies64(cur_nice);
154 		dbs_info->prev_cpu_nice = kstat_cpu(cpu).cpustat.nice;
155 		return idle_time + jiffies_to_usecs(cur_nice_jiffies);
156 	}
157 	return idle_time;
158 }
159 
160 /*
161  * Find right freq to be set now with powersave_bias on.
162  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
163  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
164  */
165 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
166 					  unsigned int freq_next,
167 					  unsigned int relation)
168 {
169 	unsigned int freq_req, freq_reduc, freq_avg;
170 	unsigned int freq_hi, freq_lo;
171 	unsigned int index = 0;
172 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
173 	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
174 
175 	if (!dbs_info->freq_table) {
176 		dbs_info->freq_lo = 0;
177 		dbs_info->freq_lo_jiffies = 0;
178 		return freq_next;
179 	}
180 
181 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
182 			relation, &index);
183 	freq_req = dbs_info->freq_table[index].frequency;
184 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
185 	freq_avg = freq_req - freq_reduc;
186 
187 	/* Find freq bounds for freq_avg in freq_table */
188 	index = 0;
189 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
190 			CPUFREQ_RELATION_H, &index);
191 	freq_lo = dbs_info->freq_table[index].frequency;
192 	index = 0;
193 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
194 			CPUFREQ_RELATION_L, &index);
195 	freq_hi = dbs_info->freq_table[index].frequency;
196 
197 	/* Find out how long we have to be in hi and lo freqs */
198 	if (freq_hi == freq_lo) {
199 		dbs_info->freq_lo = 0;
200 		dbs_info->freq_lo_jiffies = 0;
201 		return freq_lo;
202 	}
203 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
204 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
205 	jiffies_hi += ((freq_hi - freq_lo) / 2);
206 	jiffies_hi /= (freq_hi - freq_lo);
207 	jiffies_lo = jiffies_total - jiffies_hi;
208 	dbs_info->freq_lo = freq_lo;
209 	dbs_info->freq_lo_jiffies = jiffies_lo;
210 	dbs_info->freq_hi_jiffies = jiffies_hi;
211 	return freq_hi;
212 }
213 
214 static void ondemand_powersave_bias_init(void)
215 {
216 	int i;
217 	for_each_online_cpu(i) {
218 		struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
219 		dbs_info->freq_table = cpufreq_frequency_get_table(i);
220 		dbs_info->freq_lo = 0;
221 	}
222 }
223 
224 /************************** sysfs interface ************************/
225 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
226 {
227 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
228 }
229 
230 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
231 {
232 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
233 }
234 
235 #define define_one_ro(_name)		\
236 static struct freq_attr _name =		\
237 __ATTR(_name, 0444, show_##_name, NULL)
238 
239 define_one_ro(sampling_rate_max);
240 define_one_ro(sampling_rate_min);
241 
242 /* cpufreq_ondemand Governor Tunables */
243 #define show_one(file_name, object)					\
244 static ssize_t show_##file_name						\
245 (struct cpufreq_policy *unused, char *buf)				\
246 {									\
247 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
248 }
249 show_one(sampling_rate, sampling_rate);
250 show_one(up_threshold, up_threshold);
251 show_one(ignore_nice_load, ignore_nice);
252 show_one(powersave_bias, powersave_bias);
253 
254 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
255 		const char *buf, size_t count)
256 {
257 	unsigned int input;
258 	int ret;
259 	ret = sscanf(buf, "%u", &input);
260 
261 	mutex_lock(&dbs_mutex);
262 	if (ret != 1 || input > MAX_SAMPLING_RATE
263 		     || input < MIN_SAMPLING_RATE) {
264 		mutex_unlock(&dbs_mutex);
265 		return -EINVAL;
266 	}
267 
268 	dbs_tuners_ins.sampling_rate = input;
269 	mutex_unlock(&dbs_mutex);
270 
271 	return count;
272 }
273 
274 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
275 		const char *buf, size_t count)
276 {
277 	unsigned int input;
278 	int ret;
279 	ret = sscanf(buf, "%u", &input);
280 
281 	mutex_lock(&dbs_mutex);
282 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
283 			input < MIN_FREQUENCY_UP_THRESHOLD) {
284 		mutex_unlock(&dbs_mutex);
285 		return -EINVAL;
286 	}
287 
288 	dbs_tuners_ins.up_threshold = input;
289 	mutex_unlock(&dbs_mutex);
290 
291 	return count;
292 }
293 
294 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
295 		const char *buf, size_t count)
296 {
297 	unsigned int input;
298 	int ret;
299 
300 	unsigned int j;
301 
302 	ret = sscanf(buf, "%u", &input);
303 	if ( ret != 1 )
304 		return -EINVAL;
305 
306 	if ( input > 1 )
307 		input = 1;
308 
309 	mutex_lock(&dbs_mutex);
310 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
311 		mutex_unlock(&dbs_mutex);
312 		return count;
313 	}
314 	dbs_tuners_ins.ignore_nice = input;
315 
316 	/* we need to re-evaluate prev_cpu_idle */
317 	for_each_online_cpu(j) {
318 		struct cpu_dbs_info_s *dbs_info;
319 		dbs_info = &per_cpu(cpu_dbs_info, j);
320 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
321 						&dbs_info->prev_cpu_wall);
322 	}
323 	mutex_unlock(&dbs_mutex);
324 
325 	return count;
326 }
327 
328 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
329 		const char *buf, size_t count)
330 {
331 	unsigned int input;
332 	int ret;
333 	ret = sscanf(buf, "%u", &input);
334 
335 	if (ret != 1)
336 		return -EINVAL;
337 
338 	if (input > 1000)
339 		input = 1000;
340 
341 	mutex_lock(&dbs_mutex);
342 	dbs_tuners_ins.powersave_bias = input;
343 	ondemand_powersave_bias_init();
344 	mutex_unlock(&dbs_mutex);
345 
346 	return count;
347 }
348 
349 #define define_one_rw(_name) \
350 static struct freq_attr _name = \
351 __ATTR(_name, 0644, show_##_name, store_##_name)
352 
353 define_one_rw(sampling_rate);
354 define_one_rw(up_threshold);
355 define_one_rw(ignore_nice_load);
356 define_one_rw(powersave_bias);
357 
358 static struct attribute * dbs_attributes[] = {
359 	&sampling_rate_max.attr,
360 	&sampling_rate_min.attr,
361 	&sampling_rate.attr,
362 	&up_threshold.attr,
363 	&ignore_nice_load.attr,
364 	&powersave_bias.attr,
365 	NULL
366 };
367 
368 static struct attribute_group dbs_attr_group = {
369 	.attrs = dbs_attributes,
370 	.name = "ondemand",
371 };
372 
373 /************************** sysfs end ************************/
374 
375 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
376 {
377 	unsigned int max_load_freq;
378 
379 	struct cpufreq_policy *policy;
380 	unsigned int j;
381 
382 	if (!this_dbs_info->enable)
383 		return;
384 
385 	this_dbs_info->freq_lo = 0;
386 	policy = this_dbs_info->cur_policy;
387 
388 	/*
389 	 * Every sampling_rate, we check, if current idle time is less
390 	 * than 20% (default), then we try to increase frequency
391 	 * Every sampling_rate, we look for a the lowest
392 	 * frequency which can sustain the load while keeping idle time over
393 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
394 	 *
395 	 * Any frequency increase takes it to the maximum frequency.
396 	 * Frequency reduction happens at minimum steps of
397 	 * 5% (default) of current frequency
398 	 */
399 
400 	/* Get Absolute Load - in terms of freq */
401 	max_load_freq = 0;
402 
403 	for_each_cpu_mask_nr(j, policy->cpus) {
404 		struct cpu_dbs_info_s *j_dbs_info;
405 		cputime64_t cur_wall_time, cur_idle_time;
406 		unsigned int idle_time, wall_time;
407 		unsigned int load, load_freq;
408 		int freq_avg;
409 
410 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
411 
412 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
413 
414 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
415 				j_dbs_info->prev_cpu_wall);
416 		j_dbs_info->prev_cpu_wall = cur_wall_time;
417 
418 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
419 				j_dbs_info->prev_cpu_idle);
420 		j_dbs_info->prev_cpu_idle = cur_idle_time;
421 
422 		if (unlikely(!wall_time || wall_time < idle_time))
423 			continue;
424 
425 		load = 100 * (wall_time - idle_time) / wall_time;
426 
427 		freq_avg = __cpufreq_driver_getavg(policy, j);
428 		if (freq_avg <= 0)
429 			freq_avg = policy->cur;
430 
431 		load_freq = load * freq_avg;
432 		if (load_freq > max_load_freq)
433 			max_load_freq = load_freq;
434 	}
435 
436 	/* Check for frequency increase */
437 	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
438 		/* if we are already at full speed then break out early */
439 		if (!dbs_tuners_ins.powersave_bias) {
440 			if (policy->cur == policy->max)
441 				return;
442 
443 			__cpufreq_driver_target(policy, policy->max,
444 				CPUFREQ_RELATION_H);
445 		} else {
446 			int freq = powersave_bias_target(policy, policy->max,
447 					CPUFREQ_RELATION_H);
448 			__cpufreq_driver_target(policy, freq,
449 				CPUFREQ_RELATION_L);
450 		}
451 		return;
452 	}
453 
454 	/* Check for frequency decrease */
455 	/* if we cannot reduce the frequency anymore, break out early */
456 	if (policy->cur == policy->min)
457 		return;
458 
459 	/*
460 	 * The optimal frequency is the frequency that is the lowest that
461 	 * can support the current CPU usage without triggering the up
462 	 * policy. To be safe, we focus 10 points under the threshold.
463 	 */
464 	if (max_load_freq <
465 	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
466 	     policy->cur) {
467 		unsigned int freq_next;
468 		freq_next = max_load_freq /
469 				(dbs_tuners_ins.up_threshold -
470 				 dbs_tuners_ins.down_differential);
471 
472 		if (!dbs_tuners_ins.powersave_bias) {
473 			__cpufreq_driver_target(policy, freq_next,
474 					CPUFREQ_RELATION_L);
475 		} else {
476 			int freq = powersave_bias_target(policy, freq_next,
477 					CPUFREQ_RELATION_L);
478 			__cpufreq_driver_target(policy, freq,
479 				CPUFREQ_RELATION_L);
480 		}
481 	}
482 }
483 
484 static void do_dbs_timer(struct work_struct *work)
485 {
486 	struct cpu_dbs_info_s *dbs_info =
487 		container_of(work, struct cpu_dbs_info_s, work.work);
488 	unsigned int cpu = dbs_info->cpu;
489 	int sample_type = dbs_info->sample_type;
490 
491 	/* We want all CPUs to do sampling nearly on same jiffy */
492 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
493 
494 	delay -= jiffies % delay;
495 
496 	if (lock_policy_rwsem_write(cpu) < 0)
497 		return;
498 
499 	if (!dbs_info->enable) {
500 		unlock_policy_rwsem_write(cpu);
501 		return;
502 	}
503 
504 	/* Common NORMAL_SAMPLE setup */
505 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
506 	if (!dbs_tuners_ins.powersave_bias ||
507 	    sample_type == DBS_NORMAL_SAMPLE) {
508 		dbs_check_cpu(dbs_info);
509 		if (dbs_info->freq_lo) {
510 			/* Setup timer for SUB_SAMPLE */
511 			dbs_info->sample_type = DBS_SUB_SAMPLE;
512 			delay = dbs_info->freq_hi_jiffies;
513 		}
514 	} else {
515 		__cpufreq_driver_target(dbs_info->cur_policy,
516 	                        	dbs_info->freq_lo,
517 	                        	CPUFREQ_RELATION_H);
518 	}
519 	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
520 	unlock_policy_rwsem_write(cpu);
521 }
522 
523 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
524 {
525 	/* We want all CPUs to do sampling nearly on same jiffy */
526 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
527 	delay -= jiffies % delay;
528 
529 	dbs_info->enable = 1;
530 	ondemand_powersave_bias_init();
531 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
532 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
533 	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
534 	                      delay);
535 }
536 
537 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
538 {
539 	dbs_info->enable = 0;
540 	cancel_delayed_work(&dbs_info->work);
541 }
542 
543 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
544 				   unsigned int event)
545 {
546 	unsigned int cpu = policy->cpu;
547 	struct cpu_dbs_info_s *this_dbs_info;
548 	unsigned int j;
549 	int rc;
550 
551 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
552 
553 	switch (event) {
554 	case CPUFREQ_GOV_START:
555 		if ((!cpu_online(cpu)) || (!policy->cur))
556 			return -EINVAL;
557 
558 		if (this_dbs_info->enable) /* Already enabled */
559 			break;
560 
561 		mutex_lock(&dbs_mutex);
562 		dbs_enable++;
563 
564 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
565 		if (rc) {
566 			dbs_enable--;
567 			mutex_unlock(&dbs_mutex);
568 			return rc;
569 		}
570 
571 		for_each_cpu_mask_nr(j, policy->cpus) {
572 			struct cpu_dbs_info_s *j_dbs_info;
573 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
574 			j_dbs_info->cur_policy = policy;
575 
576 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
577 						&j_dbs_info->prev_cpu_wall);
578 		}
579 		this_dbs_info->cpu = cpu;
580 		/*
581 		 * Start the timerschedule work, when this governor
582 		 * is used for first time
583 		 */
584 		if (dbs_enable == 1) {
585 			unsigned int latency;
586 			/* policy latency is in nS. Convert it to uS first */
587 			latency = policy->cpuinfo.transition_latency / 1000;
588 			if (latency == 0)
589 				latency = 1;
590 
591 			def_sampling_rate = latency *
592 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
593 
594 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
595 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
596 
597 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
598 		}
599 		dbs_timer_init(this_dbs_info);
600 
601 		mutex_unlock(&dbs_mutex);
602 		break;
603 
604 	case CPUFREQ_GOV_STOP:
605 		mutex_lock(&dbs_mutex);
606 		dbs_timer_exit(this_dbs_info);
607 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
608 		dbs_enable--;
609 		mutex_unlock(&dbs_mutex);
610 
611 		break;
612 
613 	case CPUFREQ_GOV_LIMITS:
614 		mutex_lock(&dbs_mutex);
615 		if (policy->max < this_dbs_info->cur_policy->cur)
616 			__cpufreq_driver_target(this_dbs_info->cur_policy,
617 			                        policy->max,
618 			                        CPUFREQ_RELATION_H);
619 		else if (policy->min > this_dbs_info->cur_policy->cur)
620 			__cpufreq_driver_target(this_dbs_info->cur_policy,
621 			                        policy->min,
622 			                        CPUFREQ_RELATION_L);
623 		mutex_unlock(&dbs_mutex);
624 		break;
625 	}
626 	return 0;
627 }
628 
629 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
630 static
631 #endif
632 struct cpufreq_governor cpufreq_gov_ondemand = {
633 	.name			= "ondemand",
634 	.governor		= cpufreq_governor_dbs,
635 	.max_transition_latency = TRANSITION_LATENCY_LIMIT,
636 	.owner			= THIS_MODULE,
637 };
638 
639 static int __init cpufreq_gov_dbs_init(void)
640 {
641 	int err;
642 	cputime64_t wall;
643 	u64 idle_time;
644 	int cpu = get_cpu();
645 
646 	idle_time = get_cpu_idle_time_us(cpu, &wall);
647 	put_cpu();
648 	if (idle_time != -1ULL) {
649 		/* Idle micro accounting is supported. Use finer thresholds */
650 		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
651 		dbs_tuners_ins.down_differential =
652 					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
653 	}
654 
655 	kondemand_wq = create_workqueue("kondemand");
656 	if (!kondemand_wq) {
657 		printk(KERN_ERR "Creation of kondemand failed\n");
658 		return -EFAULT;
659 	}
660 	err = cpufreq_register_governor(&cpufreq_gov_ondemand);
661 	if (err)
662 		destroy_workqueue(kondemand_wq);
663 
664 	return err;
665 }
666 
667 static void __exit cpufreq_gov_dbs_exit(void)
668 {
669 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
670 	destroy_workqueue(kondemand_wq);
671 }
672 
673 
674 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
675 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
676 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
677                    "Low Latency Frequency Transition capable processors");
678 MODULE_LICENSE("GPL");
679 
680 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
681 fs_initcall(cpufreq_gov_dbs_init);
682 #else
683 module_init(cpufreq_gov_dbs_init);
684 #endif
685 module_exit(cpufreq_gov_dbs_exit);
686