xref: /linux/drivers/cpufreq/cpufreq_ondemand.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20 
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
23 #define DEF_SAMPLING_DOWN_FACTOR		(1)
24 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
28 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
29 
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31 
32 static struct od_ops od_ops;
33 
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37 
38 static unsigned int default_powersave_bias;
39 
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43 
44 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 	dbs_info->freq_lo = 0;
46 }
47 
48 /*
49  * Not all CPUs want IO time to be accounted as busy; this depends on how
50  * efficient idling at a higher frequency/voltage is.
51  * Pavel Machek says this is not so for various generations of AMD and old
52  * Intel systems.
53  * Mike Chan (android.com) claims this is also not true for ARM.
54  * Because of this, whitelist specific known (series) of CPUs by default, and
55  * leave all others up to the user.
56  */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 	/*
61 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 	 */
63 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 			boot_cpu_data.x86 == 6 &&
65 			boot_cpu_data.x86_model >= 15)
66 		return 1;
67 #endif
68 	return 0;
69 }
70 
71 /*
72  * Find right freq to be set now with powersave_bias on.
73  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75  */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 		unsigned int freq_next, unsigned int relation)
78 {
79 	unsigned int freq_req, freq_reduc, freq_avg;
80 	unsigned int freq_hi, freq_lo;
81 	unsigned int index = 0;
82 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 						   policy->cpu);
85 	struct dbs_data *dbs_data = policy->governor_data;
86 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87 
88 	if (!dbs_info->freq_table) {
89 		dbs_info->freq_lo = 0;
90 		dbs_info->freq_lo_jiffies = 0;
91 		return freq_next;
92 	}
93 
94 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 			relation, &index);
96 	freq_req = dbs_info->freq_table[index].frequency;
97 	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 	freq_avg = freq_req - freq_reduc;
99 
100 	/* Find freq bounds for freq_avg in freq_table */
101 	index = 0;
102 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 			CPUFREQ_RELATION_H, &index);
104 	freq_lo = dbs_info->freq_table[index].frequency;
105 	index = 0;
106 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 			CPUFREQ_RELATION_L, &index);
108 	freq_hi = dbs_info->freq_table[index].frequency;
109 
110 	/* Find out how long we have to be in hi and lo freqs */
111 	if (freq_hi == freq_lo) {
112 		dbs_info->freq_lo = 0;
113 		dbs_info->freq_lo_jiffies = 0;
114 		return freq_lo;
115 	}
116 	jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 	jiffies_hi += ((freq_hi - freq_lo) / 2);
119 	jiffies_hi /= (freq_hi - freq_lo);
120 	jiffies_lo = jiffies_total - jiffies_hi;
121 	dbs_info->freq_lo = freq_lo;
122 	dbs_info->freq_lo_jiffies = jiffies_lo;
123 	dbs_info->freq_hi_jiffies = jiffies_hi;
124 	return freq_hi;
125 }
126 
127 static void ondemand_powersave_bias_init(void)
128 {
129 	int i;
130 	for_each_online_cpu(i) {
131 		ondemand_powersave_bias_init_cpu(i);
132 	}
133 }
134 
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 	struct dbs_data *dbs_data = policy->governor_data;
138 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139 
140 	if (od_tuners->powersave_bias)
141 		freq = od_ops.powersave_bias_target(policy, freq,
142 				CPUFREQ_RELATION_H);
143 	else if (policy->cur == policy->max)
144 		return;
145 
146 	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149 
150 /*
151  * Every sampling_rate, we check, if current idle time is less than 20%
152  * (default), then we try to increase frequency. Else, we adjust the frequency
153  * proportional to load.
154  */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
159 	struct dbs_data *dbs_data = policy->governor_data;
160 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161 
162 	dbs_info->freq_lo = 0;
163 
164 	/* Check for frequency increase */
165 	if (load > od_tuners->up_threshold) {
166 		/* If switching to max speed, apply sampling_down_factor */
167 		if (policy->cur < policy->max)
168 			dbs_info->rate_mult =
169 				od_tuners->sampling_down_factor;
170 		dbs_freq_increase(policy, policy->max);
171 	} else {
172 		/* Calculate the next frequency proportional to load */
173 		unsigned int freq_next, min_f, max_f;
174 
175 		min_f = policy->cpuinfo.min_freq;
176 		max_f = policy->cpuinfo.max_freq;
177 		freq_next = min_f + load * (max_f - min_f) / 100;
178 
179 		/* No longer fully busy, reset rate_mult */
180 		dbs_info->rate_mult = 1;
181 
182 		if (!od_tuners->powersave_bias) {
183 			__cpufreq_driver_target(policy, freq_next,
184 					CPUFREQ_RELATION_C);
185 			return;
186 		}
187 
188 		freq_next = od_ops.powersave_bias_target(policy, freq_next,
189 					CPUFREQ_RELATION_L);
190 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
191 	}
192 }
193 
194 static void od_dbs_timer(struct work_struct *work)
195 {
196 	struct od_cpu_dbs_info_s *dbs_info =
197 		container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
198 	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
199 	struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
200 			cpu);
201 	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
202 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
203 	int delay = 0, sample_type = core_dbs_info->sample_type;
204 	bool modify_all = true;
205 
206 	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
207 	if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
208 		modify_all = false;
209 		goto max_delay;
210 	}
211 
212 	/* Common NORMAL_SAMPLE setup */
213 	core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
214 	if (sample_type == OD_SUB_SAMPLE) {
215 		delay = core_dbs_info->freq_lo_jiffies;
216 		__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
217 				core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
218 	} else {
219 		dbs_check_cpu(dbs_data, cpu);
220 		if (core_dbs_info->freq_lo) {
221 			/* Setup timer for SUB_SAMPLE */
222 			core_dbs_info->sample_type = OD_SUB_SAMPLE;
223 			delay = core_dbs_info->freq_hi_jiffies;
224 		}
225 	}
226 
227 max_delay:
228 	if (!delay)
229 		delay = delay_for_sampling_rate(od_tuners->sampling_rate
230 				* core_dbs_info->rate_mult);
231 
232 	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
233 	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
234 }
235 
236 /************************** sysfs interface ************************/
237 static struct common_dbs_data od_dbs_cdata;
238 
239 /**
240  * update_sampling_rate - update sampling rate effective immediately if needed.
241  * @new_rate: new sampling rate
242  *
243  * If new rate is smaller than the old, simply updating
244  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
245  * original sampling_rate was 1 second and the requested new sampling rate is 10
246  * ms because the user needs immediate reaction from ondemand governor, but not
247  * sure if higher frequency will be required or not, then, the governor may
248  * change the sampling rate too late; up to 1 second later. Thus, if we are
249  * reducing the sampling rate, we need to make the new value effective
250  * immediately.
251  */
252 static void update_sampling_rate(struct dbs_data *dbs_data,
253 		unsigned int new_rate)
254 {
255 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
256 	int cpu;
257 
258 	od_tuners->sampling_rate = new_rate = max(new_rate,
259 			dbs_data->min_sampling_rate);
260 
261 	for_each_online_cpu(cpu) {
262 		struct cpufreq_policy *policy;
263 		struct od_cpu_dbs_info_s *dbs_info;
264 		unsigned long next_sampling, appointed_at;
265 
266 		policy = cpufreq_cpu_get(cpu);
267 		if (!policy)
268 			continue;
269 		if (policy->governor != &cpufreq_gov_ondemand) {
270 			cpufreq_cpu_put(policy);
271 			continue;
272 		}
273 		dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
274 		cpufreq_cpu_put(policy);
275 
276 		mutex_lock(&dbs_info->cdbs.timer_mutex);
277 
278 		if (!delayed_work_pending(&dbs_info->cdbs.work)) {
279 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
280 			continue;
281 		}
282 
283 		next_sampling = jiffies + usecs_to_jiffies(new_rate);
284 		appointed_at = dbs_info->cdbs.work.timer.expires;
285 
286 		if (time_before(next_sampling, appointed_at)) {
287 
288 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
289 			cancel_delayed_work_sync(&dbs_info->cdbs.work);
290 			mutex_lock(&dbs_info->cdbs.timer_mutex);
291 
292 			gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
293 					usecs_to_jiffies(new_rate), true);
294 
295 		}
296 		mutex_unlock(&dbs_info->cdbs.timer_mutex);
297 	}
298 }
299 
300 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
301 		size_t count)
302 {
303 	unsigned int input;
304 	int ret;
305 	ret = sscanf(buf, "%u", &input);
306 	if (ret != 1)
307 		return -EINVAL;
308 
309 	update_sampling_rate(dbs_data, input);
310 	return count;
311 }
312 
313 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
314 		size_t count)
315 {
316 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
317 	unsigned int input;
318 	int ret;
319 	unsigned int j;
320 
321 	ret = sscanf(buf, "%u", &input);
322 	if (ret != 1)
323 		return -EINVAL;
324 	od_tuners->io_is_busy = !!input;
325 
326 	/* we need to re-evaluate prev_cpu_idle */
327 	for_each_online_cpu(j) {
328 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
329 									j);
330 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
331 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
332 	}
333 	return count;
334 }
335 
336 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
337 		size_t count)
338 {
339 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
340 	unsigned int input;
341 	int ret;
342 	ret = sscanf(buf, "%u", &input);
343 
344 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
345 			input < MIN_FREQUENCY_UP_THRESHOLD) {
346 		return -EINVAL;
347 	}
348 
349 	od_tuners->up_threshold = input;
350 	return count;
351 }
352 
353 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
354 		const char *buf, size_t count)
355 {
356 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
357 	unsigned int input, j;
358 	int ret;
359 	ret = sscanf(buf, "%u", &input);
360 
361 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
362 		return -EINVAL;
363 	od_tuners->sampling_down_factor = input;
364 
365 	/* Reset down sampling multiplier in case it was active */
366 	for_each_online_cpu(j) {
367 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
368 				j);
369 		dbs_info->rate_mult = 1;
370 	}
371 	return count;
372 }
373 
374 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
375 		const char *buf, size_t count)
376 {
377 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
378 	unsigned int input;
379 	int ret;
380 
381 	unsigned int j;
382 
383 	ret = sscanf(buf, "%u", &input);
384 	if (ret != 1)
385 		return -EINVAL;
386 
387 	if (input > 1)
388 		input = 1;
389 
390 	if (input == od_tuners->ignore_nice_load) { /* nothing to do */
391 		return count;
392 	}
393 	od_tuners->ignore_nice_load = input;
394 
395 	/* we need to re-evaluate prev_cpu_idle */
396 	for_each_online_cpu(j) {
397 		struct od_cpu_dbs_info_s *dbs_info;
398 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
399 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
400 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
401 		if (od_tuners->ignore_nice_load)
402 			dbs_info->cdbs.prev_cpu_nice =
403 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
404 
405 	}
406 	return count;
407 }
408 
409 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
410 		size_t count)
411 {
412 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
413 	unsigned int input;
414 	int ret;
415 	ret = sscanf(buf, "%u", &input);
416 
417 	if (ret != 1)
418 		return -EINVAL;
419 
420 	if (input > 1000)
421 		input = 1000;
422 
423 	od_tuners->powersave_bias = input;
424 	ondemand_powersave_bias_init();
425 	return count;
426 }
427 
428 show_store_one(od, sampling_rate);
429 show_store_one(od, io_is_busy);
430 show_store_one(od, up_threshold);
431 show_store_one(od, sampling_down_factor);
432 show_store_one(od, ignore_nice_load);
433 show_store_one(od, powersave_bias);
434 declare_show_sampling_rate_min(od);
435 
436 gov_sys_pol_attr_rw(sampling_rate);
437 gov_sys_pol_attr_rw(io_is_busy);
438 gov_sys_pol_attr_rw(up_threshold);
439 gov_sys_pol_attr_rw(sampling_down_factor);
440 gov_sys_pol_attr_rw(ignore_nice_load);
441 gov_sys_pol_attr_rw(powersave_bias);
442 gov_sys_pol_attr_ro(sampling_rate_min);
443 
444 static struct attribute *dbs_attributes_gov_sys[] = {
445 	&sampling_rate_min_gov_sys.attr,
446 	&sampling_rate_gov_sys.attr,
447 	&up_threshold_gov_sys.attr,
448 	&sampling_down_factor_gov_sys.attr,
449 	&ignore_nice_load_gov_sys.attr,
450 	&powersave_bias_gov_sys.attr,
451 	&io_is_busy_gov_sys.attr,
452 	NULL
453 };
454 
455 static struct attribute_group od_attr_group_gov_sys = {
456 	.attrs = dbs_attributes_gov_sys,
457 	.name = "ondemand",
458 };
459 
460 static struct attribute *dbs_attributes_gov_pol[] = {
461 	&sampling_rate_min_gov_pol.attr,
462 	&sampling_rate_gov_pol.attr,
463 	&up_threshold_gov_pol.attr,
464 	&sampling_down_factor_gov_pol.attr,
465 	&ignore_nice_load_gov_pol.attr,
466 	&powersave_bias_gov_pol.attr,
467 	&io_is_busy_gov_pol.attr,
468 	NULL
469 };
470 
471 static struct attribute_group od_attr_group_gov_pol = {
472 	.attrs = dbs_attributes_gov_pol,
473 	.name = "ondemand",
474 };
475 
476 /************************** sysfs end ************************/
477 
478 static int od_init(struct dbs_data *dbs_data, bool notify)
479 {
480 	struct od_dbs_tuners *tuners;
481 	u64 idle_time;
482 	int cpu;
483 
484 	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
485 	if (!tuners) {
486 		pr_err("%s: kzalloc failed\n", __func__);
487 		return -ENOMEM;
488 	}
489 
490 	cpu = get_cpu();
491 	idle_time = get_cpu_idle_time_us(cpu, NULL);
492 	put_cpu();
493 	if (idle_time != -1ULL) {
494 		/* Idle micro accounting is supported. Use finer thresholds */
495 		tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
496 		/*
497 		 * In nohz/micro accounting case we set the minimum frequency
498 		 * not depending on HZ, but fixed (very low). The deferred
499 		 * timer might skip some samples if idle/sleeping as needed.
500 		*/
501 		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
502 	} else {
503 		tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
504 
505 		/* For correct statistics, we need 10 ticks for each measure */
506 		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
507 			jiffies_to_usecs(10);
508 	}
509 
510 	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
511 	tuners->ignore_nice_load = 0;
512 	tuners->powersave_bias = default_powersave_bias;
513 	tuners->io_is_busy = should_io_be_busy();
514 
515 	dbs_data->tuners = tuners;
516 	return 0;
517 }
518 
519 static void od_exit(struct dbs_data *dbs_data, bool notify)
520 {
521 	kfree(dbs_data->tuners);
522 }
523 
524 define_get_cpu_dbs_routines(od_cpu_dbs_info);
525 
526 static struct od_ops od_ops = {
527 	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
528 	.powersave_bias_target = generic_powersave_bias_target,
529 	.freq_increase = dbs_freq_increase,
530 };
531 
532 static struct common_dbs_data od_dbs_cdata = {
533 	.governor = GOV_ONDEMAND,
534 	.attr_group_gov_sys = &od_attr_group_gov_sys,
535 	.attr_group_gov_pol = &od_attr_group_gov_pol,
536 	.get_cpu_cdbs = get_cpu_cdbs,
537 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
538 	.gov_dbs_timer = od_dbs_timer,
539 	.gov_check_cpu = od_check_cpu,
540 	.gov_ops = &od_ops,
541 	.init = od_init,
542 	.exit = od_exit,
543 	.mutex = __MUTEX_INITIALIZER(od_dbs_cdata.mutex),
544 };
545 
546 static void od_set_powersave_bias(unsigned int powersave_bias)
547 {
548 	struct cpufreq_policy *policy;
549 	struct dbs_data *dbs_data;
550 	struct od_dbs_tuners *od_tuners;
551 	unsigned int cpu;
552 	cpumask_t done;
553 
554 	default_powersave_bias = powersave_bias;
555 	cpumask_clear(&done);
556 
557 	get_online_cpus();
558 	for_each_online_cpu(cpu) {
559 		if (cpumask_test_cpu(cpu, &done))
560 			continue;
561 
562 		policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
563 		if (!policy)
564 			continue;
565 
566 		cpumask_or(&done, &done, policy->cpus);
567 
568 		if (policy->governor != &cpufreq_gov_ondemand)
569 			continue;
570 
571 		dbs_data = policy->governor_data;
572 		od_tuners = dbs_data->tuners;
573 		od_tuners->powersave_bias = default_powersave_bias;
574 	}
575 	put_online_cpus();
576 }
577 
578 void od_register_powersave_bias_handler(unsigned int (*f)
579 		(struct cpufreq_policy *, unsigned int, unsigned int),
580 		unsigned int powersave_bias)
581 {
582 	od_ops.powersave_bias_target = f;
583 	od_set_powersave_bias(powersave_bias);
584 }
585 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
586 
587 void od_unregister_powersave_bias_handler(void)
588 {
589 	od_ops.powersave_bias_target = generic_powersave_bias_target;
590 	od_set_powersave_bias(0);
591 }
592 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
593 
594 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
595 		unsigned int event)
596 {
597 	return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
598 }
599 
600 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
601 static
602 #endif
603 struct cpufreq_governor cpufreq_gov_ondemand = {
604 	.name			= "ondemand",
605 	.governor		= od_cpufreq_governor_dbs,
606 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
607 	.owner			= THIS_MODULE,
608 };
609 
610 static int __init cpufreq_gov_dbs_init(void)
611 {
612 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
613 }
614 
615 static void __exit cpufreq_gov_dbs_exit(void)
616 {
617 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
618 }
619 
620 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
621 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
622 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
623 	"Low Latency Frequency Transition capable processors");
624 MODULE_LICENSE("GPL");
625 
626 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
627 fs_initcall(cpufreq_gov_dbs_init);
628 #else
629 module_init(cpufreq_gov_dbs_init);
630 #endif
631 module_exit(cpufreq_gov_dbs_exit);
632