1 /* 2 * drivers/cpufreq/cpufreq_governor.c 3 * 4 * CPUFREQ governors common code 5 * 6 * Copyright (C) 2001 Russell King 7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com> 9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk> 10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/slab.h> 22 23 #include "cpufreq_governor.h" 24 25 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs); 26 27 static DEFINE_MUTEX(gov_dbs_data_mutex); 28 29 /* Common sysfs tunables */ 30 /** 31 * store_sampling_rate - update sampling rate effective immediately if needed. 32 * 33 * If new rate is smaller than the old, simply updating 34 * dbs.sampling_rate might not be appropriate. For example, if the 35 * original sampling_rate was 1 second and the requested new sampling rate is 10 36 * ms because the user needs immediate reaction from ondemand governor, but not 37 * sure if higher frequency will be required or not, then, the governor may 38 * change the sampling rate too late; up to 1 second later. Thus, if we are 39 * reducing the sampling rate, we need to make the new value effective 40 * immediately. 41 * 42 * This must be called with dbs_data->mutex held, otherwise traversing 43 * policy_dbs_list isn't safe. 44 */ 45 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf, 46 size_t count) 47 { 48 struct dbs_data *dbs_data = to_dbs_data(attr_set); 49 struct policy_dbs_info *policy_dbs; 50 unsigned int rate; 51 int ret; 52 ret = sscanf(buf, "%u", &rate); 53 if (ret != 1) 54 return -EINVAL; 55 56 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate); 57 58 /* 59 * We are operating under dbs_data->mutex and so the list and its 60 * entries can't be freed concurrently. 61 */ 62 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) { 63 mutex_lock(&policy_dbs->update_mutex); 64 /* 65 * On 32-bit architectures this may race with the 66 * sample_delay_ns read in dbs_update_util_handler(), but that 67 * really doesn't matter. If the read returns a value that's 68 * too big, the sample will be skipped, but the next invocation 69 * of dbs_update_util_handler() (when the update has been 70 * completed) will take a sample. 71 * 72 * If this runs in parallel with dbs_work_handler(), we may end 73 * up overwriting the sample_delay_ns value that it has just 74 * written, but it will be corrected next time a sample is 75 * taken, so it shouldn't be significant. 76 */ 77 gov_update_sample_delay(policy_dbs, 0); 78 mutex_unlock(&policy_dbs->update_mutex); 79 } 80 81 return count; 82 } 83 EXPORT_SYMBOL_GPL(store_sampling_rate); 84 85 /** 86 * gov_update_cpu_data - Update CPU load data. 87 * @dbs_data: Top-level governor data pointer. 88 * 89 * Update CPU load data for all CPUs in the domain governed by @dbs_data 90 * (that may be a single policy or a bunch of them if governor tunables are 91 * system-wide). 92 * 93 * Call under the @dbs_data mutex. 94 */ 95 void gov_update_cpu_data(struct dbs_data *dbs_data) 96 { 97 struct policy_dbs_info *policy_dbs; 98 99 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) { 100 unsigned int j; 101 102 for_each_cpu(j, policy_dbs->policy->cpus) { 103 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 104 105 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, 106 dbs_data->io_is_busy); 107 if (dbs_data->ignore_nice_load) 108 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 109 } 110 } 111 } 112 EXPORT_SYMBOL_GPL(gov_update_cpu_data); 113 114 unsigned int dbs_update(struct cpufreq_policy *policy) 115 { 116 struct policy_dbs_info *policy_dbs = policy->governor_data; 117 struct dbs_data *dbs_data = policy_dbs->dbs_data; 118 unsigned int ignore_nice = dbs_data->ignore_nice_load; 119 unsigned int max_load = 0, idle_periods = UINT_MAX; 120 unsigned int sampling_rate, io_busy, j; 121 122 /* 123 * Sometimes governors may use an additional multiplier to increase 124 * sample delays temporarily. Apply that multiplier to sampling_rate 125 * so as to keep the wake-up-from-idle detection logic a bit 126 * conservative. 127 */ 128 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult; 129 /* 130 * For the purpose of ondemand, waiting for disk IO is an indication 131 * that you're performance critical, and not that the system is actually 132 * idle, so do not add the iowait time to the CPU idle time then. 133 */ 134 io_busy = dbs_data->io_is_busy; 135 136 /* Get Absolute Load */ 137 for_each_cpu(j, policy->cpus) { 138 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 139 u64 update_time, cur_idle_time; 140 unsigned int idle_time, time_elapsed; 141 unsigned int load; 142 143 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy); 144 145 time_elapsed = update_time - j_cdbs->prev_update_time; 146 j_cdbs->prev_update_time = update_time; 147 148 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle; 149 j_cdbs->prev_cpu_idle = cur_idle_time; 150 151 if (ignore_nice) { 152 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 153 154 idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC); 155 j_cdbs->prev_cpu_nice = cur_nice; 156 } 157 158 if (unlikely(!time_elapsed)) { 159 /* 160 * That can only happen when this function is called 161 * twice in a row with a very short interval between the 162 * calls, so the previous load value can be used then. 163 */ 164 load = j_cdbs->prev_load; 165 } else if (unlikely(time_elapsed > 2 * sampling_rate && 166 j_cdbs->prev_load)) { 167 /* 168 * If the CPU had gone completely idle and a task has 169 * just woken up on this CPU now, it would be unfair to 170 * calculate 'load' the usual way for this elapsed 171 * time-window, because it would show near-zero load, 172 * irrespective of how CPU intensive that task actually 173 * was. This is undesirable for latency-sensitive bursty 174 * workloads. 175 * 176 * To avoid this, reuse the 'load' from the previous 177 * time-window and give this task a chance to start with 178 * a reasonably high CPU frequency. However, that 179 * shouldn't be over-done, lest we get stuck at a high 180 * load (high frequency) for too long, even when the 181 * current system load has actually dropped down, so 182 * clear prev_load to guarantee that the load will be 183 * computed again next time. 184 * 185 * Detecting this situation is easy: the governor's 186 * utilization update handler would not have run during 187 * CPU-idle periods. Hence, an unusually large 188 * 'time_elapsed' (as compared to the sampling rate) 189 * indicates this scenario. 190 */ 191 load = j_cdbs->prev_load; 192 j_cdbs->prev_load = 0; 193 } else { 194 if (time_elapsed >= idle_time) { 195 load = 100 * (time_elapsed - idle_time) / time_elapsed; 196 } else { 197 /* 198 * That can happen if idle_time is returned by 199 * get_cpu_idle_time_jiffy(). In that case 200 * idle_time is roughly equal to the difference 201 * between time_elapsed and "busy time" obtained 202 * from CPU statistics. Then, the "busy time" 203 * can end up being greater than time_elapsed 204 * (for example, if jiffies_64 and the CPU 205 * statistics are updated by different CPUs), 206 * so idle_time may in fact be negative. That 207 * means, though, that the CPU was busy all 208 * the time (on the rough average) during the 209 * last sampling interval and 100 can be 210 * returned as the load. 211 */ 212 load = (int)idle_time < 0 ? 100 : 0; 213 } 214 j_cdbs->prev_load = load; 215 } 216 217 if (time_elapsed > 2 * sampling_rate) { 218 unsigned int periods = time_elapsed / sampling_rate; 219 220 if (periods < idle_periods) 221 idle_periods = periods; 222 } 223 224 if (load > max_load) 225 max_load = load; 226 } 227 228 policy_dbs->idle_periods = idle_periods; 229 230 return max_load; 231 } 232 EXPORT_SYMBOL_GPL(dbs_update); 233 234 static void dbs_work_handler(struct work_struct *work) 235 { 236 struct policy_dbs_info *policy_dbs; 237 struct cpufreq_policy *policy; 238 struct dbs_governor *gov; 239 240 policy_dbs = container_of(work, struct policy_dbs_info, work); 241 policy = policy_dbs->policy; 242 gov = dbs_governor_of(policy); 243 244 /* 245 * Make sure cpufreq_governor_limits() isn't evaluating load or the 246 * ondemand governor isn't updating the sampling rate in parallel. 247 */ 248 mutex_lock(&policy_dbs->update_mutex); 249 gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy)); 250 mutex_unlock(&policy_dbs->update_mutex); 251 252 /* Allow the utilization update handler to queue up more work. */ 253 atomic_set(&policy_dbs->work_count, 0); 254 /* 255 * If the update below is reordered with respect to the sample delay 256 * modification, the utilization update handler may end up using a stale 257 * sample delay value. 258 */ 259 smp_wmb(); 260 policy_dbs->work_in_progress = false; 261 } 262 263 static void dbs_irq_work(struct irq_work *irq_work) 264 { 265 struct policy_dbs_info *policy_dbs; 266 267 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work); 268 schedule_work_on(smp_processor_id(), &policy_dbs->work); 269 } 270 271 static void dbs_update_util_handler(struct update_util_data *data, u64 time, 272 unsigned int flags) 273 { 274 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util); 275 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs; 276 u64 delta_ns, lst; 277 278 /* 279 * The work may not be allowed to be queued up right now. 280 * Possible reasons: 281 * - Work has already been queued up or is in progress. 282 * - It is too early (too little time from the previous sample). 283 */ 284 if (policy_dbs->work_in_progress) 285 return; 286 287 /* 288 * If the reads below are reordered before the check above, the value 289 * of sample_delay_ns used in the computation may be stale. 290 */ 291 smp_rmb(); 292 lst = READ_ONCE(policy_dbs->last_sample_time); 293 delta_ns = time - lst; 294 if ((s64)delta_ns < policy_dbs->sample_delay_ns) 295 return; 296 297 /* 298 * If the policy is not shared, the irq_work may be queued up right away 299 * at this point. Otherwise, we need to ensure that only one of the 300 * CPUs sharing the policy will do that. 301 */ 302 if (policy_dbs->is_shared) { 303 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1)) 304 return; 305 306 /* 307 * If another CPU updated last_sample_time in the meantime, we 308 * shouldn't be here, so clear the work counter and bail out. 309 */ 310 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) { 311 atomic_set(&policy_dbs->work_count, 0); 312 return; 313 } 314 } 315 316 policy_dbs->last_sample_time = time; 317 policy_dbs->work_in_progress = true; 318 irq_work_queue(&policy_dbs->irq_work); 319 } 320 321 static void gov_set_update_util(struct policy_dbs_info *policy_dbs, 322 unsigned int delay_us) 323 { 324 struct cpufreq_policy *policy = policy_dbs->policy; 325 int cpu; 326 327 gov_update_sample_delay(policy_dbs, delay_us); 328 policy_dbs->last_sample_time = 0; 329 330 for_each_cpu(cpu, policy->cpus) { 331 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu); 332 333 cpufreq_add_update_util_hook(cpu, &cdbs->update_util, 334 dbs_update_util_handler); 335 } 336 } 337 338 static inline void gov_clear_update_util(struct cpufreq_policy *policy) 339 { 340 int i; 341 342 for_each_cpu(i, policy->cpus) 343 cpufreq_remove_update_util_hook(i); 344 345 synchronize_sched(); 346 } 347 348 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy, 349 struct dbs_governor *gov) 350 { 351 struct policy_dbs_info *policy_dbs; 352 int j; 353 354 /* Allocate memory for per-policy governor data. */ 355 policy_dbs = gov->alloc(); 356 if (!policy_dbs) 357 return NULL; 358 359 policy_dbs->policy = policy; 360 mutex_init(&policy_dbs->update_mutex); 361 atomic_set(&policy_dbs->work_count, 0); 362 init_irq_work(&policy_dbs->irq_work, dbs_irq_work); 363 INIT_WORK(&policy_dbs->work, dbs_work_handler); 364 365 /* Set policy_dbs for all CPUs, online+offline */ 366 for_each_cpu(j, policy->related_cpus) { 367 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 368 369 j_cdbs->policy_dbs = policy_dbs; 370 } 371 return policy_dbs; 372 } 373 374 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs, 375 struct dbs_governor *gov) 376 { 377 int j; 378 379 mutex_destroy(&policy_dbs->update_mutex); 380 381 for_each_cpu(j, policy_dbs->policy->related_cpus) { 382 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 383 384 j_cdbs->policy_dbs = NULL; 385 j_cdbs->update_util.func = NULL; 386 } 387 gov->free(policy_dbs); 388 } 389 390 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy) 391 { 392 struct dbs_governor *gov = dbs_governor_of(policy); 393 struct dbs_data *dbs_data; 394 struct policy_dbs_info *policy_dbs; 395 unsigned int latency; 396 int ret = 0; 397 398 /* State should be equivalent to EXIT */ 399 if (policy->governor_data) 400 return -EBUSY; 401 402 policy_dbs = alloc_policy_dbs_info(policy, gov); 403 if (!policy_dbs) 404 return -ENOMEM; 405 406 /* Protect gov->gdbs_data against concurrent updates. */ 407 mutex_lock(&gov_dbs_data_mutex); 408 409 dbs_data = gov->gdbs_data; 410 if (dbs_data) { 411 if (WARN_ON(have_governor_per_policy())) { 412 ret = -EINVAL; 413 goto free_policy_dbs_info; 414 } 415 policy_dbs->dbs_data = dbs_data; 416 policy->governor_data = policy_dbs; 417 418 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list); 419 goto out; 420 } 421 422 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); 423 if (!dbs_data) { 424 ret = -ENOMEM; 425 goto free_policy_dbs_info; 426 } 427 428 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list); 429 430 ret = gov->init(dbs_data); 431 if (ret) 432 goto free_policy_dbs_info; 433 434 /* policy latency is in ns. Convert it to us first */ 435 latency = policy->cpuinfo.transition_latency / 1000; 436 if (latency == 0) 437 latency = 1; 438 439 /* Bring kernel and HW constraints together */ 440 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate, 441 MIN_LATENCY_MULTIPLIER * latency); 442 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate, 443 LATENCY_MULTIPLIER * latency); 444 445 if (!have_governor_per_policy()) 446 gov->gdbs_data = dbs_data; 447 448 policy_dbs->dbs_data = dbs_data; 449 policy->governor_data = policy_dbs; 450 451 gov->kobj_type.sysfs_ops = &governor_sysfs_ops; 452 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type, 453 get_governor_parent_kobj(policy), 454 "%s", gov->gov.name); 455 if (!ret) 456 goto out; 457 458 /* Failure, so roll back. */ 459 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret); 460 461 policy->governor_data = NULL; 462 463 if (!have_governor_per_policy()) 464 gov->gdbs_data = NULL; 465 gov->exit(dbs_data); 466 kfree(dbs_data); 467 468 free_policy_dbs_info: 469 free_policy_dbs_info(policy_dbs, gov); 470 471 out: 472 mutex_unlock(&gov_dbs_data_mutex); 473 return ret; 474 } 475 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init); 476 477 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy) 478 { 479 struct dbs_governor *gov = dbs_governor_of(policy); 480 struct policy_dbs_info *policy_dbs = policy->governor_data; 481 struct dbs_data *dbs_data = policy_dbs->dbs_data; 482 unsigned int count; 483 484 /* Protect gov->gdbs_data against concurrent updates. */ 485 mutex_lock(&gov_dbs_data_mutex); 486 487 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list); 488 489 policy->governor_data = NULL; 490 491 if (!count) { 492 if (!have_governor_per_policy()) 493 gov->gdbs_data = NULL; 494 495 gov->exit(dbs_data); 496 kfree(dbs_data); 497 } 498 499 free_policy_dbs_info(policy_dbs, gov); 500 501 mutex_unlock(&gov_dbs_data_mutex); 502 } 503 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit); 504 505 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy) 506 { 507 struct dbs_governor *gov = dbs_governor_of(policy); 508 struct policy_dbs_info *policy_dbs = policy->governor_data; 509 struct dbs_data *dbs_data = policy_dbs->dbs_data; 510 unsigned int sampling_rate, ignore_nice, j; 511 unsigned int io_busy; 512 513 if (!policy->cur) 514 return -EINVAL; 515 516 policy_dbs->is_shared = policy_is_shared(policy); 517 policy_dbs->rate_mult = 1; 518 519 sampling_rate = dbs_data->sampling_rate; 520 ignore_nice = dbs_data->ignore_nice_load; 521 io_busy = dbs_data->io_is_busy; 522 523 for_each_cpu(j, policy->cpus) { 524 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 525 526 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy); 527 /* 528 * Make the first invocation of dbs_update() compute the load. 529 */ 530 j_cdbs->prev_load = 0; 531 532 if (ignore_nice) 533 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 534 } 535 536 gov->start(policy); 537 538 gov_set_update_util(policy_dbs, sampling_rate); 539 return 0; 540 } 541 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start); 542 543 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy) 544 { 545 struct policy_dbs_info *policy_dbs = policy->governor_data; 546 547 gov_clear_update_util(policy_dbs->policy); 548 irq_work_sync(&policy_dbs->irq_work); 549 cancel_work_sync(&policy_dbs->work); 550 atomic_set(&policy_dbs->work_count, 0); 551 policy_dbs->work_in_progress = false; 552 } 553 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop); 554 555 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy) 556 { 557 struct policy_dbs_info *policy_dbs = policy->governor_data; 558 559 mutex_lock(&policy_dbs->update_mutex); 560 cpufreq_policy_apply_limits(policy); 561 gov_update_sample_delay(policy_dbs, 0); 562 563 mutex_unlock(&policy_dbs->update_mutex); 564 } 565 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits); 566