1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/cpufreq/cpufreq_governor.c 4 * 5 * CPUFREQ governors common code 6 * 7 * Copyright (C) 2001 Russell King 8 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 9 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com> 10 * (C) 2009 Alexander Clouter <alex@digriz.org.uk> 11 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org> 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/export.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/slab.h> 19 20 #include "cpufreq_governor.h" 21 22 #define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL (2 * TICK_NSEC / NSEC_PER_USEC) 23 24 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs); 25 26 static DEFINE_MUTEX(gov_dbs_data_mutex); 27 28 /* Common sysfs tunables */ 29 /* 30 * sampling_rate_store - update sampling rate effective immediately if needed. 31 * 32 * If new rate is smaller than the old, simply updating 33 * dbs.sampling_rate might not be appropriate. For example, if the 34 * original sampling_rate was 1 second and the requested new sampling rate is 10 35 * ms because the user needs immediate reaction from ondemand governor, but not 36 * sure if higher frequency will be required or not, then, the governor may 37 * change the sampling rate too late; up to 1 second later. Thus, if we are 38 * reducing the sampling rate, we need to make the new value effective 39 * immediately. 40 * 41 * This must be called with dbs_data->mutex held, otherwise traversing 42 * policy_dbs_list isn't safe. 43 */ 44 ssize_t sampling_rate_store(struct gov_attr_set *attr_set, const char *buf, 45 size_t count) 46 { 47 struct dbs_data *dbs_data = to_dbs_data(attr_set); 48 struct policy_dbs_info *policy_dbs; 49 unsigned int sampling_interval; 50 int ret; 51 52 ret = sscanf(buf, "%u", &sampling_interval); 53 if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL) 54 return -EINVAL; 55 56 dbs_data->sampling_rate = sampling_interval; 57 58 /* 59 * We are operating under dbs_data->mutex and so the list and its 60 * entries can't be freed concurrently. 61 */ 62 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) { 63 mutex_lock(&policy_dbs->update_mutex); 64 /* 65 * On 32-bit architectures this may race with the 66 * sample_delay_ns read in dbs_update_util_handler(), but that 67 * really doesn't matter. If the read returns a value that's 68 * too big, the sample will be skipped, but the next invocation 69 * of dbs_update_util_handler() (when the update has been 70 * completed) will take a sample. 71 * 72 * If this runs in parallel with dbs_work_handler(), we may end 73 * up overwriting the sample_delay_ns value that it has just 74 * written, but it will be corrected next time a sample is 75 * taken, so it shouldn't be significant. 76 */ 77 gov_update_sample_delay(policy_dbs, 0); 78 mutex_unlock(&policy_dbs->update_mutex); 79 } 80 81 return count; 82 } 83 EXPORT_SYMBOL_GPL(sampling_rate_store); 84 85 /** 86 * gov_update_cpu_data - Update CPU load data. 87 * @dbs_data: Top-level governor data pointer. 88 * 89 * Update CPU load data for all CPUs in the domain governed by @dbs_data 90 * (that may be a single policy or a bunch of them if governor tunables are 91 * system-wide). 92 * 93 * Call under the @dbs_data mutex. 94 */ 95 void gov_update_cpu_data(struct dbs_data *dbs_data) 96 { 97 struct policy_dbs_info *policy_dbs; 98 99 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) { 100 unsigned int j; 101 102 for_each_cpu(j, policy_dbs->policy->cpus) { 103 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 104 105 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, 106 dbs_data->io_is_busy); 107 if (dbs_data->ignore_nice_load) 108 j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j); 109 } 110 } 111 } 112 EXPORT_SYMBOL_GPL(gov_update_cpu_data); 113 114 unsigned int dbs_update(struct cpufreq_policy *policy) 115 { 116 struct policy_dbs_info *policy_dbs = policy->governor_data; 117 struct dbs_data *dbs_data = policy_dbs->dbs_data; 118 unsigned int ignore_nice = dbs_data->ignore_nice_load; 119 unsigned int max_load = 0, idle_periods = UINT_MAX; 120 unsigned int sampling_rate, io_busy, j; 121 122 /* 123 * Sometimes governors may use an additional multiplier to increase 124 * sample delays temporarily. Apply that multiplier to sampling_rate 125 * so as to keep the wake-up-from-idle detection logic a bit 126 * conservative. 127 */ 128 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult; 129 /* 130 * For the purpose of ondemand, waiting for disk IO is an indication 131 * that you're performance critical, and not that the system is actually 132 * idle, so do not add the iowait time to the CPU idle time then. 133 */ 134 io_busy = dbs_data->io_is_busy; 135 136 /* Get Absolute Load */ 137 for_each_cpu(j, policy->cpus) { 138 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 139 u64 update_time, cur_idle_time; 140 unsigned int idle_time, time_elapsed; 141 unsigned int load; 142 143 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy); 144 145 time_elapsed = update_time - j_cdbs->prev_update_time; 146 j_cdbs->prev_update_time = update_time; 147 148 /* 149 * cur_idle_time could be smaller than j_cdbs->prev_cpu_idle if 150 * it's obtained from get_cpu_idle_time_jiffy() when NOHZ is 151 * off, where idle_time is calculated by the difference between 152 * time elapsed in jiffies and "busy time" obtained from CPU 153 * statistics. If a CPU is 100% busy, the time elapsed and busy 154 * time should grow with the same amount in two consecutive 155 * samples, but in practice there could be a tiny difference, 156 * making the accumulated idle time decrease sometimes. Hence, 157 * in this case, idle_time should be regarded as 0 in order to 158 * make the further process correct. 159 */ 160 if (cur_idle_time > j_cdbs->prev_cpu_idle) 161 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle; 162 else 163 idle_time = 0; 164 165 j_cdbs->prev_cpu_idle = cur_idle_time; 166 167 if (ignore_nice) { 168 u64 cur_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j); 169 170 idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC); 171 j_cdbs->prev_cpu_nice = cur_nice; 172 } 173 174 if (unlikely(!time_elapsed)) { 175 /* 176 * That can only happen when this function is called 177 * twice in a row with a very short interval between the 178 * calls, so the previous load value can be used then. 179 */ 180 load = j_cdbs->prev_load; 181 } else if (unlikely(idle_time > 2 * sampling_rate && 182 j_cdbs->prev_load)) { 183 /* 184 * If the CPU had gone completely idle and a task has 185 * just woken up on this CPU now, it would be unfair to 186 * calculate 'load' the usual way for this elapsed 187 * time-window, because it would show near-zero load, 188 * irrespective of how CPU intensive that task actually 189 * was. This is undesirable for latency-sensitive bursty 190 * workloads. 191 * 192 * To avoid this, reuse the 'load' from the previous 193 * time-window and give this task a chance to start with 194 * a reasonably high CPU frequency. However, that 195 * shouldn't be over-done, lest we get stuck at a high 196 * load (high frequency) for too long, even when the 197 * current system load has actually dropped down, so 198 * clear prev_load to guarantee that the load will be 199 * computed again next time. 200 * 201 * Detecting this situation is easy: an unusually large 202 * 'idle_time' (as compared to the sampling rate) 203 * indicates this scenario. 204 */ 205 load = j_cdbs->prev_load; 206 j_cdbs->prev_load = 0; 207 } else { 208 if (time_elapsed > idle_time) 209 load = 100 * (time_elapsed - idle_time) / time_elapsed; 210 else 211 load = 0; 212 213 j_cdbs->prev_load = load; 214 } 215 216 if (unlikely(idle_time > 2 * sampling_rate)) { 217 unsigned int periods = idle_time / sampling_rate; 218 219 if (periods < idle_periods) 220 idle_periods = periods; 221 } 222 223 if (load > max_load) 224 max_load = load; 225 } 226 227 policy_dbs->idle_periods = idle_periods; 228 229 return max_load; 230 } 231 EXPORT_SYMBOL_GPL(dbs_update); 232 233 static void dbs_work_handler(struct work_struct *work) 234 { 235 struct policy_dbs_info *policy_dbs; 236 struct cpufreq_policy *policy; 237 struct dbs_governor *gov; 238 239 policy_dbs = container_of(work, struct policy_dbs_info, work); 240 policy = policy_dbs->policy; 241 gov = dbs_governor_of(policy); 242 243 /* 244 * Make sure cpufreq_governor_limits() isn't evaluating load or the 245 * ondemand governor isn't updating the sampling rate in parallel. 246 */ 247 mutex_lock(&policy_dbs->update_mutex); 248 gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy)); 249 mutex_unlock(&policy_dbs->update_mutex); 250 251 /* Allow the utilization update handler to queue up more work. */ 252 atomic_set(&policy_dbs->work_count, 0); 253 /* 254 * If the update below is reordered with respect to the sample delay 255 * modification, the utilization update handler may end up using a stale 256 * sample delay value. 257 */ 258 smp_wmb(); 259 policy_dbs->work_in_progress = false; 260 } 261 262 static void dbs_irq_work(struct irq_work *irq_work) 263 { 264 struct policy_dbs_info *policy_dbs; 265 266 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work); 267 schedule_work_on(smp_processor_id(), &policy_dbs->work); 268 } 269 270 static void dbs_update_util_handler(struct update_util_data *data, u64 time, 271 unsigned int flags) 272 { 273 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util); 274 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs; 275 u64 delta_ns, lst; 276 277 if (!cpufreq_this_cpu_can_update(policy_dbs->policy)) 278 return; 279 280 /* 281 * The work may not be allowed to be queued up right now. 282 * Possible reasons: 283 * - Work has already been queued up or is in progress. 284 * - It is too early (too little time from the previous sample). 285 */ 286 if (policy_dbs->work_in_progress) 287 return; 288 289 /* 290 * If the reads below are reordered before the check above, the value 291 * of sample_delay_ns used in the computation may be stale. 292 */ 293 smp_rmb(); 294 lst = READ_ONCE(policy_dbs->last_sample_time); 295 delta_ns = time - lst; 296 if ((s64)delta_ns < policy_dbs->sample_delay_ns) 297 return; 298 299 /* 300 * If the policy is not shared, the irq_work may be queued up right away 301 * at this point. Otherwise, we need to ensure that only one of the 302 * CPUs sharing the policy will do that. 303 */ 304 if (policy_dbs->is_shared) { 305 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1)) 306 return; 307 308 /* 309 * If another CPU updated last_sample_time in the meantime, we 310 * shouldn't be here, so clear the work counter and bail out. 311 */ 312 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) { 313 atomic_set(&policy_dbs->work_count, 0); 314 return; 315 } 316 } 317 318 policy_dbs->last_sample_time = time; 319 policy_dbs->work_in_progress = true; 320 irq_work_queue(&policy_dbs->irq_work); 321 } 322 323 static void gov_set_update_util(struct policy_dbs_info *policy_dbs, 324 unsigned int delay_us) 325 { 326 struct cpufreq_policy *policy = policy_dbs->policy; 327 int cpu; 328 329 gov_update_sample_delay(policy_dbs, delay_us); 330 policy_dbs->last_sample_time = 0; 331 332 for_each_cpu(cpu, policy->cpus) { 333 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu); 334 335 cpufreq_add_update_util_hook(cpu, &cdbs->update_util, 336 dbs_update_util_handler); 337 } 338 } 339 340 static inline void gov_clear_update_util(struct cpufreq_policy *policy) 341 { 342 int i; 343 344 for_each_cpu(i, policy->cpus) 345 cpufreq_remove_update_util_hook(i); 346 347 synchronize_rcu(); 348 } 349 350 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy, 351 struct dbs_governor *gov) 352 { 353 struct policy_dbs_info *policy_dbs; 354 int j; 355 356 /* Allocate memory for per-policy governor data. */ 357 policy_dbs = gov->alloc(); 358 if (!policy_dbs) 359 return NULL; 360 361 policy_dbs->policy = policy; 362 mutex_init(&policy_dbs->update_mutex); 363 atomic_set(&policy_dbs->work_count, 0); 364 init_irq_work(&policy_dbs->irq_work, dbs_irq_work); 365 INIT_WORK(&policy_dbs->work, dbs_work_handler); 366 367 /* Set policy_dbs for all CPUs, online+offline */ 368 for_each_cpu(j, policy->related_cpus) { 369 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 370 371 j_cdbs->policy_dbs = policy_dbs; 372 } 373 return policy_dbs; 374 } 375 376 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs, 377 struct dbs_governor *gov) 378 { 379 int j; 380 381 mutex_destroy(&policy_dbs->update_mutex); 382 383 for_each_cpu(j, policy_dbs->policy->related_cpus) { 384 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 385 386 j_cdbs->policy_dbs = NULL; 387 j_cdbs->update_util.func = NULL; 388 } 389 gov->free(policy_dbs); 390 } 391 392 static void cpufreq_dbs_data_release(struct kobject *kobj) 393 { 394 struct dbs_data *dbs_data = to_dbs_data(to_gov_attr_set(kobj)); 395 struct dbs_governor *gov = dbs_data->gov; 396 397 gov->exit(dbs_data); 398 kfree(dbs_data); 399 } 400 401 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy) 402 { 403 struct dbs_governor *gov = dbs_governor_of(policy); 404 struct dbs_data *dbs_data; 405 struct policy_dbs_info *policy_dbs; 406 int ret = 0; 407 408 /* State should be equivalent to EXIT */ 409 if (policy->governor_data) 410 return -EBUSY; 411 412 policy_dbs = alloc_policy_dbs_info(policy, gov); 413 if (!policy_dbs) 414 return -ENOMEM; 415 416 /* Protect gov->gdbs_data against concurrent updates. */ 417 mutex_lock(&gov_dbs_data_mutex); 418 419 dbs_data = gov->gdbs_data; 420 if (dbs_data) { 421 if (WARN_ON(have_governor_per_policy())) { 422 ret = -EINVAL; 423 goto free_policy_dbs_info; 424 } 425 policy_dbs->dbs_data = dbs_data; 426 policy->governor_data = policy_dbs; 427 428 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list); 429 goto out; 430 } 431 432 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); 433 if (!dbs_data) { 434 ret = -ENOMEM; 435 goto free_policy_dbs_info; 436 } 437 438 dbs_data->gov = gov; 439 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list); 440 441 ret = gov->init(dbs_data); 442 if (ret) 443 goto free_dbs_data; 444 445 /* 446 * The sampling interval should not be less than the transition latency 447 * of the CPU and it also cannot be too small for dbs_update() to work 448 * correctly. 449 */ 450 dbs_data->sampling_rate = max_t(unsigned int, 451 CPUFREQ_DBS_MIN_SAMPLING_INTERVAL, 452 cpufreq_policy_transition_delay_us(policy)); 453 454 if (!have_governor_per_policy()) 455 gov->gdbs_data = dbs_data; 456 457 policy_dbs->dbs_data = dbs_data; 458 policy->governor_data = policy_dbs; 459 460 gov->kobj_type.sysfs_ops = &governor_sysfs_ops; 461 gov->kobj_type.release = cpufreq_dbs_data_release; 462 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type, 463 get_governor_parent_kobj(policy), 464 "%s", gov->gov.name); 465 if (!ret) 466 goto out; 467 468 /* Failure, so roll back. */ 469 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret); 470 471 kobject_put(&dbs_data->attr_set.kobj); 472 473 policy->governor_data = NULL; 474 475 if (!have_governor_per_policy()) 476 gov->gdbs_data = NULL; 477 gov->exit(dbs_data); 478 479 free_dbs_data: 480 kfree(dbs_data); 481 482 free_policy_dbs_info: 483 free_policy_dbs_info(policy_dbs, gov); 484 485 out: 486 mutex_unlock(&gov_dbs_data_mutex); 487 return ret; 488 } 489 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init); 490 491 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy) 492 { 493 struct dbs_governor *gov = dbs_governor_of(policy); 494 struct policy_dbs_info *policy_dbs = policy->governor_data; 495 struct dbs_data *dbs_data = policy_dbs->dbs_data; 496 unsigned int count; 497 498 /* Protect gov->gdbs_data against concurrent updates. */ 499 mutex_lock(&gov_dbs_data_mutex); 500 501 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list); 502 503 policy->governor_data = NULL; 504 505 if (!count && !have_governor_per_policy()) 506 gov->gdbs_data = NULL; 507 508 free_policy_dbs_info(policy_dbs, gov); 509 510 mutex_unlock(&gov_dbs_data_mutex); 511 } 512 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit); 513 514 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy) 515 { 516 struct dbs_governor *gov = dbs_governor_of(policy); 517 struct policy_dbs_info *policy_dbs = policy->governor_data; 518 struct dbs_data *dbs_data = policy_dbs->dbs_data; 519 unsigned int sampling_rate, ignore_nice, j; 520 unsigned int io_busy; 521 522 if (!policy->cur) 523 return -EINVAL; 524 525 policy_dbs->is_shared = policy_is_shared(policy); 526 policy_dbs->rate_mult = 1; 527 528 sampling_rate = dbs_data->sampling_rate; 529 ignore_nice = dbs_data->ignore_nice_load; 530 io_busy = dbs_data->io_is_busy; 531 532 for_each_cpu(j, policy->cpus) { 533 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 534 535 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy); 536 /* 537 * Make the first invocation of dbs_update() compute the load. 538 */ 539 j_cdbs->prev_load = 0; 540 541 if (ignore_nice) 542 j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j); 543 } 544 545 gov->start(policy); 546 547 gov_set_update_util(policy_dbs, sampling_rate); 548 return 0; 549 } 550 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start); 551 552 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy) 553 { 554 struct policy_dbs_info *policy_dbs = policy->governor_data; 555 556 gov_clear_update_util(policy_dbs->policy); 557 irq_work_sync(&policy_dbs->irq_work); 558 cancel_work_sync(&policy_dbs->work); 559 atomic_set(&policy_dbs->work_count, 0); 560 policy_dbs->work_in_progress = false; 561 } 562 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop); 563 564 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy) 565 { 566 struct policy_dbs_info *policy_dbs; 567 568 /* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */ 569 mutex_lock(&gov_dbs_data_mutex); 570 policy_dbs = policy->governor_data; 571 if (!policy_dbs) 572 goto out; 573 574 mutex_lock(&policy_dbs->update_mutex); 575 cpufreq_policy_apply_limits(policy); 576 gov_update_sample_delay(policy_dbs, 0); 577 mutex_unlock(&policy_dbs->update_mutex); 578 579 out: 580 mutex_unlock(&gov_dbs_data_mutex); 581 } 582 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits); 583