1 /* 2 * drivers/cpufreq/cpufreq_governor.c 3 * 4 * CPUFREQ governors common code 5 * 6 * Copyright (C) 2001 Russell King 7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com> 9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk> 10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 24 #include "cpufreq_governor.h" 25 26 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs); 27 28 static DEFINE_MUTEX(gov_dbs_data_mutex); 29 30 /* Common sysfs tunables */ 31 /** 32 * store_sampling_rate - update sampling rate effective immediately if needed. 33 * 34 * If new rate is smaller than the old, simply updating 35 * dbs.sampling_rate might not be appropriate. For example, if the 36 * original sampling_rate was 1 second and the requested new sampling rate is 10 37 * ms because the user needs immediate reaction from ondemand governor, but not 38 * sure if higher frequency will be required or not, then, the governor may 39 * change the sampling rate too late; up to 1 second later. Thus, if we are 40 * reducing the sampling rate, we need to make the new value effective 41 * immediately. 42 * 43 * This must be called with dbs_data->mutex held, otherwise traversing 44 * policy_dbs_list isn't safe. 45 */ 46 ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf, 47 size_t count) 48 { 49 struct policy_dbs_info *policy_dbs; 50 unsigned int rate; 51 int ret; 52 ret = sscanf(buf, "%u", &rate); 53 if (ret != 1) 54 return -EINVAL; 55 56 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate); 57 58 /* 59 * We are operating under dbs_data->mutex and so the list and its 60 * entries can't be freed concurrently. 61 */ 62 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) { 63 mutex_lock(&policy_dbs->timer_mutex); 64 /* 65 * On 32-bit architectures this may race with the 66 * sample_delay_ns read in dbs_update_util_handler(), but that 67 * really doesn't matter. If the read returns a value that's 68 * too big, the sample will be skipped, but the next invocation 69 * of dbs_update_util_handler() (when the update has been 70 * completed) will take a sample. 71 * 72 * If this runs in parallel with dbs_work_handler(), we may end 73 * up overwriting the sample_delay_ns value that it has just 74 * written, but it will be corrected next time a sample is 75 * taken, so it shouldn't be significant. 76 */ 77 gov_update_sample_delay(policy_dbs, 0); 78 mutex_unlock(&policy_dbs->timer_mutex); 79 } 80 81 return count; 82 } 83 EXPORT_SYMBOL_GPL(store_sampling_rate); 84 85 /** 86 * gov_update_cpu_data - Update CPU load data. 87 * @dbs_data: Top-level governor data pointer. 88 * 89 * Update CPU load data for all CPUs in the domain governed by @dbs_data 90 * (that may be a single policy or a bunch of them if governor tunables are 91 * system-wide). 92 * 93 * Call under the @dbs_data mutex. 94 */ 95 void gov_update_cpu_data(struct dbs_data *dbs_data) 96 { 97 struct policy_dbs_info *policy_dbs; 98 99 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) { 100 unsigned int j; 101 102 for_each_cpu(j, policy_dbs->policy->cpus) { 103 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 104 105 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, 106 dbs_data->io_is_busy); 107 if (dbs_data->ignore_nice_load) 108 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 109 } 110 } 111 } 112 EXPORT_SYMBOL_GPL(gov_update_cpu_data); 113 114 static inline struct dbs_data *to_dbs_data(struct kobject *kobj) 115 { 116 return container_of(kobj, struct dbs_data, kobj); 117 } 118 119 static inline struct governor_attr *to_gov_attr(struct attribute *attr) 120 { 121 return container_of(attr, struct governor_attr, attr); 122 } 123 124 static ssize_t governor_show(struct kobject *kobj, struct attribute *attr, 125 char *buf) 126 { 127 struct dbs_data *dbs_data = to_dbs_data(kobj); 128 struct governor_attr *gattr = to_gov_attr(attr); 129 130 return gattr->show(dbs_data, buf); 131 } 132 133 static ssize_t governor_store(struct kobject *kobj, struct attribute *attr, 134 const char *buf, size_t count) 135 { 136 struct dbs_data *dbs_data = to_dbs_data(kobj); 137 struct governor_attr *gattr = to_gov_attr(attr); 138 int ret = -EBUSY; 139 140 mutex_lock(&dbs_data->mutex); 141 142 if (dbs_data->usage_count) 143 ret = gattr->store(dbs_data, buf, count); 144 145 mutex_unlock(&dbs_data->mutex); 146 147 return ret; 148 } 149 150 /* 151 * Sysfs Ops for accessing governor attributes. 152 * 153 * All show/store invocations for governor specific sysfs attributes, will first 154 * call the below show/store callbacks and the attribute specific callback will 155 * be called from within it. 156 */ 157 static const struct sysfs_ops governor_sysfs_ops = { 158 .show = governor_show, 159 .store = governor_store, 160 }; 161 162 unsigned int dbs_update(struct cpufreq_policy *policy) 163 { 164 struct policy_dbs_info *policy_dbs = policy->governor_data; 165 struct dbs_data *dbs_data = policy_dbs->dbs_data; 166 unsigned int ignore_nice = dbs_data->ignore_nice_load; 167 unsigned int max_load = 0; 168 unsigned int sampling_rate, io_busy, j; 169 170 /* 171 * Sometimes governors may use an additional multiplier to increase 172 * sample delays temporarily. Apply that multiplier to sampling_rate 173 * so as to keep the wake-up-from-idle detection logic a bit 174 * conservative. 175 */ 176 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult; 177 /* 178 * For the purpose of ondemand, waiting for disk IO is an indication 179 * that you're performance critical, and not that the system is actually 180 * idle, so do not add the iowait time to the CPU idle time then. 181 */ 182 io_busy = dbs_data->io_is_busy; 183 184 /* Get Absolute Load */ 185 for_each_cpu(j, policy->cpus) { 186 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 187 u64 cur_wall_time, cur_idle_time; 188 unsigned int idle_time, wall_time; 189 unsigned int load; 190 191 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy); 192 193 wall_time = cur_wall_time - j_cdbs->prev_cpu_wall; 194 j_cdbs->prev_cpu_wall = cur_wall_time; 195 196 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle; 197 j_cdbs->prev_cpu_idle = cur_idle_time; 198 199 if (ignore_nice) { 200 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 201 202 idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice); 203 j_cdbs->prev_cpu_nice = cur_nice; 204 } 205 206 if (unlikely(!wall_time || wall_time < idle_time)) 207 continue; 208 209 /* 210 * If the CPU had gone completely idle, and a task just woke up 211 * on this CPU now, it would be unfair to calculate 'load' the 212 * usual way for this elapsed time-window, because it will show 213 * near-zero load, irrespective of how CPU intensive that task 214 * actually is. This is undesirable for latency-sensitive bursty 215 * workloads. 216 * 217 * To avoid this, we reuse the 'load' from the previous 218 * time-window and give this task a chance to start with a 219 * reasonably high CPU frequency. (However, we shouldn't over-do 220 * this copy, lest we get stuck at a high load (high frequency) 221 * for too long, even when the current system load has actually 222 * dropped down. So we perform the copy only once, upon the 223 * first wake-up from idle.) 224 * 225 * Detecting this situation is easy: the governor's utilization 226 * update handler would not have run during CPU-idle periods. 227 * Hence, an unusually large 'wall_time' (as compared to the 228 * sampling rate) indicates this scenario. 229 * 230 * prev_load can be zero in two cases and we must recalculate it 231 * for both cases: 232 * - during long idle intervals 233 * - explicitly set to zero 234 */ 235 if (unlikely(wall_time > (2 * sampling_rate) && 236 j_cdbs->prev_load)) { 237 load = j_cdbs->prev_load; 238 239 /* 240 * Perform a destructive copy, to ensure that we copy 241 * the previous load only once, upon the first wake-up 242 * from idle. 243 */ 244 j_cdbs->prev_load = 0; 245 } else { 246 load = 100 * (wall_time - idle_time) / wall_time; 247 j_cdbs->prev_load = load; 248 } 249 250 if (load > max_load) 251 max_load = load; 252 } 253 return max_load; 254 } 255 EXPORT_SYMBOL_GPL(dbs_update); 256 257 static void gov_set_update_util(struct policy_dbs_info *policy_dbs, 258 unsigned int delay_us) 259 { 260 struct cpufreq_policy *policy = policy_dbs->policy; 261 int cpu; 262 263 gov_update_sample_delay(policy_dbs, delay_us); 264 policy_dbs->last_sample_time = 0; 265 266 for_each_cpu(cpu, policy->cpus) { 267 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu); 268 269 cpufreq_set_update_util_data(cpu, &cdbs->update_util); 270 } 271 } 272 273 static inline void gov_clear_update_util(struct cpufreq_policy *policy) 274 { 275 int i; 276 277 for_each_cpu(i, policy->cpus) 278 cpufreq_set_update_util_data(i, NULL); 279 280 synchronize_sched(); 281 } 282 283 static void gov_cancel_work(struct cpufreq_policy *policy) 284 { 285 struct policy_dbs_info *policy_dbs = policy->governor_data; 286 287 gov_clear_update_util(policy_dbs->policy); 288 irq_work_sync(&policy_dbs->irq_work); 289 cancel_work_sync(&policy_dbs->work); 290 atomic_set(&policy_dbs->work_count, 0); 291 policy_dbs->work_in_progress = false; 292 } 293 294 static void dbs_work_handler(struct work_struct *work) 295 { 296 struct policy_dbs_info *policy_dbs; 297 struct cpufreq_policy *policy; 298 struct dbs_governor *gov; 299 300 policy_dbs = container_of(work, struct policy_dbs_info, work); 301 policy = policy_dbs->policy; 302 gov = dbs_governor_of(policy); 303 304 /* 305 * Make sure cpufreq_governor_limits() isn't evaluating load or the 306 * ondemand governor isn't updating the sampling rate in parallel. 307 */ 308 mutex_lock(&policy_dbs->timer_mutex); 309 gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy)); 310 mutex_unlock(&policy_dbs->timer_mutex); 311 312 /* Allow the utilization update handler to queue up more work. */ 313 atomic_set(&policy_dbs->work_count, 0); 314 /* 315 * If the update below is reordered with respect to the sample delay 316 * modification, the utilization update handler may end up using a stale 317 * sample delay value. 318 */ 319 smp_wmb(); 320 policy_dbs->work_in_progress = false; 321 } 322 323 static void dbs_irq_work(struct irq_work *irq_work) 324 { 325 struct policy_dbs_info *policy_dbs; 326 327 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work); 328 schedule_work_on(smp_processor_id(), &policy_dbs->work); 329 } 330 331 static void dbs_update_util_handler(struct update_util_data *data, u64 time, 332 unsigned long util, unsigned long max) 333 { 334 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util); 335 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs; 336 u64 delta_ns, lst; 337 338 /* 339 * The work may not be allowed to be queued up right now. 340 * Possible reasons: 341 * - Work has already been queued up or is in progress. 342 * - It is too early (too little time from the previous sample). 343 */ 344 if (policy_dbs->work_in_progress) 345 return; 346 347 /* 348 * If the reads below are reordered before the check above, the value 349 * of sample_delay_ns used in the computation may be stale. 350 */ 351 smp_rmb(); 352 lst = READ_ONCE(policy_dbs->last_sample_time); 353 delta_ns = time - lst; 354 if ((s64)delta_ns < policy_dbs->sample_delay_ns) 355 return; 356 357 /* 358 * If the policy is not shared, the irq_work may be queued up right away 359 * at this point. Otherwise, we need to ensure that only one of the 360 * CPUs sharing the policy will do that. 361 */ 362 if (policy_dbs->is_shared) { 363 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1)) 364 return; 365 366 /* 367 * If another CPU updated last_sample_time in the meantime, we 368 * shouldn't be here, so clear the work counter and bail out. 369 */ 370 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) { 371 atomic_set(&policy_dbs->work_count, 0); 372 return; 373 } 374 } 375 376 policy_dbs->last_sample_time = time; 377 policy_dbs->work_in_progress = true; 378 irq_work_queue(&policy_dbs->irq_work); 379 } 380 381 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy, 382 struct dbs_governor *gov) 383 { 384 struct policy_dbs_info *policy_dbs; 385 int j; 386 387 /* Allocate memory for per-policy governor data. */ 388 policy_dbs = gov->alloc(); 389 if (!policy_dbs) 390 return NULL; 391 392 policy_dbs->policy = policy; 393 mutex_init(&policy_dbs->timer_mutex); 394 atomic_set(&policy_dbs->work_count, 0); 395 init_irq_work(&policy_dbs->irq_work, dbs_irq_work); 396 INIT_WORK(&policy_dbs->work, dbs_work_handler); 397 398 /* Set policy_dbs for all CPUs, online+offline */ 399 for_each_cpu(j, policy->related_cpus) { 400 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 401 402 j_cdbs->policy_dbs = policy_dbs; 403 j_cdbs->update_util.func = dbs_update_util_handler; 404 } 405 return policy_dbs; 406 } 407 408 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs, 409 struct dbs_governor *gov) 410 { 411 int j; 412 413 mutex_destroy(&policy_dbs->timer_mutex); 414 415 for_each_cpu(j, policy_dbs->policy->related_cpus) { 416 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 417 418 j_cdbs->policy_dbs = NULL; 419 j_cdbs->update_util.func = NULL; 420 } 421 gov->free(policy_dbs); 422 } 423 424 static int cpufreq_governor_init(struct cpufreq_policy *policy) 425 { 426 struct dbs_governor *gov = dbs_governor_of(policy); 427 struct dbs_data *dbs_data; 428 struct policy_dbs_info *policy_dbs; 429 unsigned int latency; 430 int ret = 0; 431 432 /* State should be equivalent to EXIT */ 433 if (policy->governor_data) 434 return -EBUSY; 435 436 policy_dbs = alloc_policy_dbs_info(policy, gov); 437 if (!policy_dbs) 438 return -ENOMEM; 439 440 /* Protect gov->gdbs_data against concurrent updates. */ 441 mutex_lock(&gov_dbs_data_mutex); 442 443 dbs_data = gov->gdbs_data; 444 if (dbs_data) { 445 if (WARN_ON(have_governor_per_policy())) { 446 ret = -EINVAL; 447 goto free_policy_dbs_info; 448 } 449 policy_dbs->dbs_data = dbs_data; 450 policy->governor_data = policy_dbs; 451 452 mutex_lock(&dbs_data->mutex); 453 dbs_data->usage_count++; 454 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list); 455 mutex_unlock(&dbs_data->mutex); 456 goto out; 457 } 458 459 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); 460 if (!dbs_data) { 461 ret = -ENOMEM; 462 goto free_policy_dbs_info; 463 } 464 465 INIT_LIST_HEAD(&dbs_data->policy_dbs_list); 466 mutex_init(&dbs_data->mutex); 467 468 ret = gov->init(dbs_data, !policy->governor->initialized); 469 if (ret) 470 goto free_policy_dbs_info; 471 472 /* policy latency is in ns. Convert it to us first */ 473 latency = policy->cpuinfo.transition_latency / 1000; 474 if (latency == 0) 475 latency = 1; 476 477 /* Bring kernel and HW constraints together */ 478 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate, 479 MIN_LATENCY_MULTIPLIER * latency); 480 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate, 481 LATENCY_MULTIPLIER * latency); 482 483 if (!have_governor_per_policy()) 484 gov->gdbs_data = dbs_data; 485 486 policy->governor_data = policy_dbs; 487 488 policy_dbs->dbs_data = dbs_data; 489 dbs_data->usage_count = 1; 490 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list); 491 492 gov->kobj_type.sysfs_ops = &governor_sysfs_ops; 493 ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type, 494 get_governor_parent_kobj(policy), 495 "%s", gov->gov.name); 496 if (!ret) 497 goto out; 498 499 /* Failure, so roll back. */ 500 pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret); 501 502 policy->governor_data = NULL; 503 504 if (!have_governor_per_policy()) 505 gov->gdbs_data = NULL; 506 gov->exit(dbs_data, !policy->governor->initialized); 507 kfree(dbs_data); 508 509 free_policy_dbs_info: 510 free_policy_dbs_info(policy_dbs, gov); 511 512 out: 513 mutex_unlock(&gov_dbs_data_mutex); 514 return ret; 515 } 516 517 static int cpufreq_governor_exit(struct cpufreq_policy *policy) 518 { 519 struct dbs_governor *gov = dbs_governor_of(policy); 520 struct policy_dbs_info *policy_dbs = policy->governor_data; 521 struct dbs_data *dbs_data = policy_dbs->dbs_data; 522 int count; 523 524 /* Protect gov->gdbs_data against concurrent updates. */ 525 mutex_lock(&gov_dbs_data_mutex); 526 527 mutex_lock(&dbs_data->mutex); 528 list_del(&policy_dbs->list); 529 count = --dbs_data->usage_count; 530 mutex_unlock(&dbs_data->mutex); 531 532 if (!count) { 533 kobject_put(&dbs_data->kobj); 534 535 policy->governor_data = NULL; 536 537 if (!have_governor_per_policy()) 538 gov->gdbs_data = NULL; 539 540 gov->exit(dbs_data, policy->governor->initialized == 1); 541 mutex_destroy(&dbs_data->mutex); 542 kfree(dbs_data); 543 } else { 544 policy->governor_data = NULL; 545 } 546 547 free_policy_dbs_info(policy_dbs, gov); 548 549 mutex_unlock(&gov_dbs_data_mutex); 550 return 0; 551 } 552 553 static int cpufreq_governor_start(struct cpufreq_policy *policy) 554 { 555 struct dbs_governor *gov = dbs_governor_of(policy); 556 struct policy_dbs_info *policy_dbs = policy->governor_data; 557 struct dbs_data *dbs_data = policy_dbs->dbs_data; 558 unsigned int sampling_rate, ignore_nice, j; 559 unsigned int io_busy; 560 561 if (!policy->cur) 562 return -EINVAL; 563 564 policy_dbs->is_shared = policy_is_shared(policy); 565 policy_dbs->rate_mult = 1; 566 567 sampling_rate = dbs_data->sampling_rate; 568 ignore_nice = dbs_data->ignore_nice_load; 569 io_busy = dbs_data->io_is_busy; 570 571 for_each_cpu(j, policy->cpus) { 572 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 573 unsigned int prev_load; 574 575 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy); 576 577 prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle; 578 j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall; 579 580 if (ignore_nice) 581 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 582 } 583 584 gov->start(policy); 585 586 gov_set_update_util(policy_dbs, sampling_rate); 587 return 0; 588 } 589 590 static int cpufreq_governor_stop(struct cpufreq_policy *policy) 591 { 592 gov_cancel_work(policy); 593 return 0; 594 } 595 596 static int cpufreq_governor_limits(struct cpufreq_policy *policy) 597 { 598 struct policy_dbs_info *policy_dbs = policy->governor_data; 599 600 mutex_lock(&policy_dbs->timer_mutex); 601 602 if (policy->max < policy->cur) 603 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); 604 else if (policy->min > policy->cur) 605 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L); 606 607 gov_update_sample_delay(policy_dbs, 0); 608 609 mutex_unlock(&policy_dbs->timer_mutex); 610 611 return 0; 612 } 613 614 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event) 615 { 616 if (event == CPUFREQ_GOV_POLICY_INIT) { 617 return cpufreq_governor_init(policy); 618 } else if (policy->governor_data) { 619 switch (event) { 620 case CPUFREQ_GOV_POLICY_EXIT: 621 return cpufreq_governor_exit(policy); 622 case CPUFREQ_GOV_START: 623 return cpufreq_governor_start(policy); 624 case CPUFREQ_GOV_STOP: 625 return cpufreq_governor_stop(policy); 626 case CPUFREQ_GOV_LIMITS: 627 return cpufreq_governor_limits(policy); 628 } 629 } 630 return -EINVAL; 631 } 632 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs); 633