xref: /linux/drivers/cpufreq/cpufreq_governor.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright	(C) 2001 Russell King
7  *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 
24 #include "cpufreq_governor.h"
25 
26 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
27 
28 static DEFINE_MUTEX(gov_dbs_data_mutex);
29 
30 /* Common sysfs tunables */
31 /**
32  * store_sampling_rate - update sampling rate effective immediately if needed.
33  *
34  * If new rate is smaller than the old, simply updating
35  * dbs.sampling_rate might not be appropriate. For example, if the
36  * original sampling_rate was 1 second and the requested new sampling rate is 10
37  * ms because the user needs immediate reaction from ondemand governor, but not
38  * sure if higher frequency will be required or not, then, the governor may
39  * change the sampling rate too late; up to 1 second later. Thus, if we are
40  * reducing the sampling rate, we need to make the new value effective
41  * immediately.
42  *
43  * This must be called with dbs_data->mutex held, otherwise traversing
44  * policy_dbs_list isn't safe.
45  */
46 ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
47 			    size_t count)
48 {
49 	struct policy_dbs_info *policy_dbs;
50 	unsigned int rate;
51 	int ret;
52 	ret = sscanf(buf, "%u", &rate);
53 	if (ret != 1)
54 		return -EINVAL;
55 
56 	dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
57 
58 	/*
59 	 * We are operating under dbs_data->mutex and so the list and its
60 	 * entries can't be freed concurrently.
61 	 */
62 	list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
63 		mutex_lock(&policy_dbs->timer_mutex);
64 		/*
65 		 * On 32-bit architectures this may race with the
66 		 * sample_delay_ns read in dbs_update_util_handler(), but that
67 		 * really doesn't matter.  If the read returns a value that's
68 		 * too big, the sample will be skipped, but the next invocation
69 		 * of dbs_update_util_handler() (when the update has been
70 		 * completed) will take a sample.
71 		 *
72 		 * If this runs in parallel with dbs_work_handler(), we may end
73 		 * up overwriting the sample_delay_ns value that it has just
74 		 * written, but it will be corrected next time a sample is
75 		 * taken, so it shouldn't be significant.
76 		 */
77 		gov_update_sample_delay(policy_dbs, 0);
78 		mutex_unlock(&policy_dbs->timer_mutex);
79 	}
80 
81 	return count;
82 }
83 EXPORT_SYMBOL_GPL(store_sampling_rate);
84 
85 /**
86  * gov_update_cpu_data - Update CPU load data.
87  * @dbs_data: Top-level governor data pointer.
88  *
89  * Update CPU load data for all CPUs in the domain governed by @dbs_data
90  * (that may be a single policy or a bunch of them if governor tunables are
91  * system-wide).
92  *
93  * Call under the @dbs_data mutex.
94  */
95 void gov_update_cpu_data(struct dbs_data *dbs_data)
96 {
97 	struct policy_dbs_info *policy_dbs;
98 
99 	list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
100 		unsigned int j;
101 
102 		for_each_cpu(j, policy_dbs->policy->cpus) {
103 			struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
104 
105 			j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall,
106 								  dbs_data->io_is_busy);
107 			if (dbs_data->ignore_nice_load)
108 				j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
109 		}
110 	}
111 }
112 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
113 
114 static inline struct dbs_data *to_dbs_data(struct kobject *kobj)
115 {
116 	return container_of(kobj, struct dbs_data, kobj);
117 }
118 
119 static inline struct governor_attr *to_gov_attr(struct attribute *attr)
120 {
121 	return container_of(attr, struct governor_attr, attr);
122 }
123 
124 static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
125 			     char *buf)
126 {
127 	struct dbs_data *dbs_data = to_dbs_data(kobj);
128 	struct governor_attr *gattr = to_gov_attr(attr);
129 
130 	return gattr->show(dbs_data, buf);
131 }
132 
133 static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
134 			      const char *buf, size_t count)
135 {
136 	struct dbs_data *dbs_data = to_dbs_data(kobj);
137 	struct governor_attr *gattr = to_gov_attr(attr);
138 	int ret = -EBUSY;
139 
140 	mutex_lock(&dbs_data->mutex);
141 
142 	if (dbs_data->usage_count)
143 		ret = gattr->store(dbs_data, buf, count);
144 
145 	mutex_unlock(&dbs_data->mutex);
146 
147 	return ret;
148 }
149 
150 /*
151  * Sysfs Ops for accessing governor attributes.
152  *
153  * All show/store invocations for governor specific sysfs attributes, will first
154  * call the below show/store callbacks and the attribute specific callback will
155  * be called from within it.
156  */
157 static const struct sysfs_ops governor_sysfs_ops = {
158 	.show	= governor_show,
159 	.store	= governor_store,
160 };
161 
162 unsigned int dbs_update(struct cpufreq_policy *policy)
163 {
164 	struct policy_dbs_info *policy_dbs = policy->governor_data;
165 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
166 	unsigned int ignore_nice = dbs_data->ignore_nice_load;
167 	unsigned int max_load = 0;
168 	unsigned int sampling_rate, io_busy, j;
169 
170 	/*
171 	 * Sometimes governors may use an additional multiplier to increase
172 	 * sample delays temporarily.  Apply that multiplier to sampling_rate
173 	 * so as to keep the wake-up-from-idle detection logic a bit
174 	 * conservative.
175 	 */
176 	sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
177 	/*
178 	 * For the purpose of ondemand, waiting for disk IO is an indication
179 	 * that you're performance critical, and not that the system is actually
180 	 * idle, so do not add the iowait time to the CPU idle time then.
181 	 */
182 	io_busy = dbs_data->io_is_busy;
183 
184 	/* Get Absolute Load */
185 	for_each_cpu(j, policy->cpus) {
186 		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
187 		u64 cur_wall_time, cur_idle_time;
188 		unsigned int idle_time, wall_time;
189 		unsigned int load;
190 
191 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
192 
193 		wall_time = cur_wall_time - j_cdbs->prev_cpu_wall;
194 		j_cdbs->prev_cpu_wall = cur_wall_time;
195 
196 		if (cur_idle_time <= j_cdbs->prev_cpu_idle) {
197 			idle_time = 0;
198 		} else {
199 			idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
200 			j_cdbs->prev_cpu_idle = cur_idle_time;
201 		}
202 
203 		if (ignore_nice) {
204 			u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
205 
206 			idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
207 			j_cdbs->prev_cpu_nice = cur_nice;
208 		}
209 
210 		if (unlikely(!wall_time || wall_time < idle_time))
211 			continue;
212 
213 		/*
214 		 * If the CPU had gone completely idle, and a task just woke up
215 		 * on this CPU now, it would be unfair to calculate 'load' the
216 		 * usual way for this elapsed time-window, because it will show
217 		 * near-zero load, irrespective of how CPU intensive that task
218 		 * actually is. This is undesirable for latency-sensitive bursty
219 		 * workloads.
220 		 *
221 		 * To avoid this, we reuse the 'load' from the previous
222 		 * time-window and give this task a chance to start with a
223 		 * reasonably high CPU frequency. (However, we shouldn't over-do
224 		 * this copy, lest we get stuck at a high load (high frequency)
225 		 * for too long, even when the current system load has actually
226 		 * dropped down. So we perform the copy only once, upon the
227 		 * first wake-up from idle.)
228 		 *
229 		 * Detecting this situation is easy: the governor's utilization
230 		 * update handler would not have run during CPU-idle periods.
231 		 * Hence, an unusually large 'wall_time' (as compared to the
232 		 * sampling rate) indicates this scenario.
233 		 *
234 		 * prev_load can be zero in two cases and we must recalculate it
235 		 * for both cases:
236 		 * - during long idle intervals
237 		 * - explicitly set to zero
238 		 */
239 		if (unlikely(wall_time > (2 * sampling_rate) &&
240 			     j_cdbs->prev_load)) {
241 			load = j_cdbs->prev_load;
242 
243 			/*
244 			 * Perform a destructive copy, to ensure that we copy
245 			 * the previous load only once, upon the first wake-up
246 			 * from idle.
247 			 */
248 			j_cdbs->prev_load = 0;
249 		} else {
250 			load = 100 * (wall_time - idle_time) / wall_time;
251 			j_cdbs->prev_load = load;
252 		}
253 
254 		if (load > max_load)
255 			max_load = load;
256 	}
257 	return max_load;
258 }
259 EXPORT_SYMBOL_GPL(dbs_update);
260 
261 static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
262 				unsigned int delay_us)
263 {
264 	struct cpufreq_policy *policy = policy_dbs->policy;
265 	int cpu;
266 
267 	gov_update_sample_delay(policy_dbs, delay_us);
268 	policy_dbs->last_sample_time = 0;
269 
270 	for_each_cpu(cpu, policy->cpus) {
271 		struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
272 
273 		cpufreq_set_update_util_data(cpu, &cdbs->update_util);
274 	}
275 }
276 
277 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
278 {
279 	int i;
280 
281 	for_each_cpu(i, policy->cpus)
282 		cpufreq_set_update_util_data(i, NULL);
283 
284 	synchronize_sched();
285 }
286 
287 static void gov_cancel_work(struct cpufreq_policy *policy)
288 {
289 	struct policy_dbs_info *policy_dbs = policy->governor_data;
290 
291 	gov_clear_update_util(policy_dbs->policy);
292 	irq_work_sync(&policy_dbs->irq_work);
293 	cancel_work_sync(&policy_dbs->work);
294 	atomic_set(&policy_dbs->work_count, 0);
295 	policy_dbs->work_in_progress = false;
296 }
297 
298 static void dbs_work_handler(struct work_struct *work)
299 {
300 	struct policy_dbs_info *policy_dbs;
301 	struct cpufreq_policy *policy;
302 	struct dbs_governor *gov;
303 
304 	policy_dbs = container_of(work, struct policy_dbs_info, work);
305 	policy = policy_dbs->policy;
306 	gov = dbs_governor_of(policy);
307 
308 	/*
309 	 * Make sure cpufreq_governor_limits() isn't evaluating load or the
310 	 * ondemand governor isn't updating the sampling rate in parallel.
311 	 */
312 	mutex_lock(&policy_dbs->timer_mutex);
313 	gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy));
314 	mutex_unlock(&policy_dbs->timer_mutex);
315 
316 	/* Allow the utilization update handler to queue up more work. */
317 	atomic_set(&policy_dbs->work_count, 0);
318 	/*
319 	 * If the update below is reordered with respect to the sample delay
320 	 * modification, the utilization update handler may end up using a stale
321 	 * sample delay value.
322 	 */
323 	smp_wmb();
324 	policy_dbs->work_in_progress = false;
325 }
326 
327 static void dbs_irq_work(struct irq_work *irq_work)
328 {
329 	struct policy_dbs_info *policy_dbs;
330 
331 	policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
332 	schedule_work_on(smp_processor_id(), &policy_dbs->work);
333 }
334 
335 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
336 				    unsigned long util, unsigned long max)
337 {
338 	struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
339 	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
340 	u64 delta_ns, lst;
341 
342 	/*
343 	 * The work may not be allowed to be queued up right now.
344 	 * Possible reasons:
345 	 * - Work has already been queued up or is in progress.
346 	 * - It is too early (too little time from the previous sample).
347 	 */
348 	if (policy_dbs->work_in_progress)
349 		return;
350 
351 	/*
352 	 * If the reads below are reordered before the check above, the value
353 	 * of sample_delay_ns used in the computation may be stale.
354 	 */
355 	smp_rmb();
356 	lst = READ_ONCE(policy_dbs->last_sample_time);
357 	delta_ns = time - lst;
358 	if ((s64)delta_ns < policy_dbs->sample_delay_ns)
359 		return;
360 
361 	/*
362 	 * If the policy is not shared, the irq_work may be queued up right away
363 	 * at this point.  Otherwise, we need to ensure that only one of the
364 	 * CPUs sharing the policy will do that.
365 	 */
366 	if (policy_dbs->is_shared) {
367 		if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
368 			return;
369 
370 		/*
371 		 * If another CPU updated last_sample_time in the meantime, we
372 		 * shouldn't be here, so clear the work counter and bail out.
373 		 */
374 		if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
375 			atomic_set(&policy_dbs->work_count, 0);
376 			return;
377 		}
378 	}
379 
380 	policy_dbs->last_sample_time = time;
381 	policy_dbs->work_in_progress = true;
382 	irq_work_queue(&policy_dbs->irq_work);
383 }
384 
385 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
386 						     struct dbs_governor *gov)
387 {
388 	struct policy_dbs_info *policy_dbs;
389 	int j;
390 
391 	/* Allocate memory for per-policy governor data. */
392 	policy_dbs = gov->alloc();
393 	if (!policy_dbs)
394 		return NULL;
395 
396 	policy_dbs->policy = policy;
397 	mutex_init(&policy_dbs->timer_mutex);
398 	atomic_set(&policy_dbs->work_count, 0);
399 	init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
400 	INIT_WORK(&policy_dbs->work, dbs_work_handler);
401 
402 	/* Set policy_dbs for all CPUs, online+offline */
403 	for_each_cpu(j, policy->related_cpus) {
404 		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
405 
406 		j_cdbs->policy_dbs = policy_dbs;
407 		j_cdbs->update_util.func = dbs_update_util_handler;
408 	}
409 	return policy_dbs;
410 }
411 
412 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
413 				 struct dbs_governor *gov)
414 {
415 	int j;
416 
417 	mutex_destroy(&policy_dbs->timer_mutex);
418 
419 	for_each_cpu(j, policy_dbs->policy->related_cpus) {
420 		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
421 
422 		j_cdbs->policy_dbs = NULL;
423 		j_cdbs->update_util.func = NULL;
424 	}
425 	gov->free(policy_dbs);
426 }
427 
428 static int cpufreq_governor_init(struct cpufreq_policy *policy)
429 {
430 	struct dbs_governor *gov = dbs_governor_of(policy);
431 	struct dbs_data *dbs_data;
432 	struct policy_dbs_info *policy_dbs;
433 	unsigned int latency;
434 	int ret = 0;
435 
436 	/* State should be equivalent to EXIT */
437 	if (policy->governor_data)
438 		return -EBUSY;
439 
440 	policy_dbs = alloc_policy_dbs_info(policy, gov);
441 	if (!policy_dbs)
442 		return -ENOMEM;
443 
444 	/* Protect gov->gdbs_data against concurrent updates. */
445 	mutex_lock(&gov_dbs_data_mutex);
446 
447 	dbs_data = gov->gdbs_data;
448 	if (dbs_data) {
449 		if (WARN_ON(have_governor_per_policy())) {
450 			ret = -EINVAL;
451 			goto free_policy_dbs_info;
452 		}
453 		policy_dbs->dbs_data = dbs_data;
454 		policy->governor_data = policy_dbs;
455 
456 		mutex_lock(&dbs_data->mutex);
457 		dbs_data->usage_count++;
458 		list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
459 		mutex_unlock(&dbs_data->mutex);
460 		goto out;
461 	}
462 
463 	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
464 	if (!dbs_data) {
465 		ret = -ENOMEM;
466 		goto free_policy_dbs_info;
467 	}
468 
469 	INIT_LIST_HEAD(&dbs_data->policy_dbs_list);
470 	mutex_init(&dbs_data->mutex);
471 
472 	ret = gov->init(dbs_data, !policy->governor->initialized);
473 	if (ret)
474 		goto free_policy_dbs_info;
475 
476 	/* policy latency is in ns. Convert it to us first */
477 	latency = policy->cpuinfo.transition_latency / 1000;
478 	if (latency == 0)
479 		latency = 1;
480 
481 	/* Bring kernel and HW constraints together */
482 	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
483 					  MIN_LATENCY_MULTIPLIER * latency);
484 	dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
485 				      LATENCY_MULTIPLIER * latency);
486 
487 	if (!have_governor_per_policy())
488 		gov->gdbs_data = dbs_data;
489 
490 	policy->governor_data = policy_dbs;
491 
492 	policy_dbs->dbs_data = dbs_data;
493 	dbs_data->usage_count = 1;
494 	list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
495 
496 	gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
497 	ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type,
498 				   get_governor_parent_kobj(policy),
499 				   "%s", gov->gov.name);
500 	if (!ret)
501 		goto out;
502 
503 	/* Failure, so roll back. */
504 	pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
505 
506 	policy->governor_data = NULL;
507 
508 	if (!have_governor_per_policy())
509 		gov->gdbs_data = NULL;
510 	gov->exit(dbs_data, !policy->governor->initialized);
511 	kfree(dbs_data);
512 
513 free_policy_dbs_info:
514 	free_policy_dbs_info(policy_dbs, gov);
515 
516 out:
517 	mutex_unlock(&gov_dbs_data_mutex);
518 	return ret;
519 }
520 
521 static int cpufreq_governor_exit(struct cpufreq_policy *policy)
522 {
523 	struct dbs_governor *gov = dbs_governor_of(policy);
524 	struct policy_dbs_info *policy_dbs = policy->governor_data;
525 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
526 	int count;
527 
528 	/* Protect gov->gdbs_data against concurrent updates. */
529 	mutex_lock(&gov_dbs_data_mutex);
530 
531 	mutex_lock(&dbs_data->mutex);
532 	list_del(&policy_dbs->list);
533 	count = --dbs_data->usage_count;
534 	mutex_unlock(&dbs_data->mutex);
535 
536 	if (!count) {
537 		kobject_put(&dbs_data->kobj);
538 
539 		policy->governor_data = NULL;
540 
541 		if (!have_governor_per_policy())
542 			gov->gdbs_data = NULL;
543 
544 		gov->exit(dbs_data, policy->governor->initialized == 1);
545 		mutex_destroy(&dbs_data->mutex);
546 		kfree(dbs_data);
547 	} else {
548 		policy->governor_data = NULL;
549 	}
550 
551 	free_policy_dbs_info(policy_dbs, gov);
552 
553 	mutex_unlock(&gov_dbs_data_mutex);
554 	return 0;
555 }
556 
557 static int cpufreq_governor_start(struct cpufreq_policy *policy)
558 {
559 	struct dbs_governor *gov = dbs_governor_of(policy);
560 	struct policy_dbs_info *policy_dbs = policy->governor_data;
561 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
562 	unsigned int sampling_rate, ignore_nice, j;
563 	unsigned int io_busy;
564 
565 	if (!policy->cur)
566 		return -EINVAL;
567 
568 	policy_dbs->is_shared = policy_is_shared(policy);
569 	policy_dbs->rate_mult = 1;
570 
571 	sampling_rate = dbs_data->sampling_rate;
572 	ignore_nice = dbs_data->ignore_nice_load;
573 	io_busy = dbs_data->io_is_busy;
574 
575 	for_each_cpu(j, policy->cpus) {
576 		struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
577 		unsigned int prev_load;
578 
579 		j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
580 
581 		prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle;
582 		j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall;
583 
584 		if (ignore_nice)
585 			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
586 	}
587 
588 	gov->start(policy);
589 
590 	gov_set_update_util(policy_dbs, sampling_rate);
591 	return 0;
592 }
593 
594 static int cpufreq_governor_stop(struct cpufreq_policy *policy)
595 {
596 	gov_cancel_work(policy);
597 	return 0;
598 }
599 
600 static int cpufreq_governor_limits(struct cpufreq_policy *policy)
601 {
602 	struct policy_dbs_info *policy_dbs = policy->governor_data;
603 
604 	mutex_lock(&policy_dbs->timer_mutex);
605 
606 	if (policy->max < policy->cur)
607 		__cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
608 	else if (policy->min > policy->cur)
609 		__cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
610 
611 	gov_update_sample_delay(policy_dbs, 0);
612 
613 	mutex_unlock(&policy_dbs->timer_mutex);
614 
615 	return 0;
616 }
617 
618 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
619 {
620 	if (event == CPUFREQ_GOV_POLICY_INIT) {
621 		return cpufreq_governor_init(policy);
622 	} else if (policy->governor_data) {
623 		switch (event) {
624 		case CPUFREQ_GOV_POLICY_EXIT:
625 			return cpufreq_governor_exit(policy);
626 		case CPUFREQ_GOV_START:
627 			return cpufreq_governor_start(policy);
628 		case CPUFREQ_GOV_STOP:
629 			return cpufreq_governor_stop(policy);
630 		case CPUFREQ_GOV_LIMITS:
631 			return cpufreq_governor_limits(policy);
632 		}
633 	}
634 	return -EINVAL;
635 }
636 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);
637