1 /* 2 * drivers/cpufreq/cpufreq_governor.c 3 * 4 * CPUFREQ governors common code 5 * 6 * Copyright (C) 2001 Russell King 7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com> 9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk> 10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 24 #include "cpufreq_governor.h" 25 26 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs); 27 28 static DEFINE_MUTEX(gov_dbs_data_mutex); 29 30 /* Common sysfs tunables */ 31 /** 32 * store_sampling_rate - update sampling rate effective immediately if needed. 33 * 34 * If new rate is smaller than the old, simply updating 35 * dbs.sampling_rate might not be appropriate. For example, if the 36 * original sampling_rate was 1 second and the requested new sampling rate is 10 37 * ms because the user needs immediate reaction from ondemand governor, but not 38 * sure if higher frequency will be required or not, then, the governor may 39 * change the sampling rate too late; up to 1 second later. Thus, if we are 40 * reducing the sampling rate, we need to make the new value effective 41 * immediately. 42 * 43 * This must be called with dbs_data->mutex held, otherwise traversing 44 * policy_dbs_list isn't safe. 45 */ 46 ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf, 47 size_t count) 48 { 49 struct policy_dbs_info *policy_dbs; 50 unsigned int rate; 51 int ret; 52 ret = sscanf(buf, "%u", &rate); 53 if (ret != 1) 54 return -EINVAL; 55 56 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate); 57 58 /* 59 * We are operating under dbs_data->mutex and so the list and its 60 * entries can't be freed concurrently. 61 */ 62 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) { 63 mutex_lock(&policy_dbs->timer_mutex); 64 /* 65 * On 32-bit architectures this may race with the 66 * sample_delay_ns read in dbs_update_util_handler(), but that 67 * really doesn't matter. If the read returns a value that's 68 * too big, the sample will be skipped, but the next invocation 69 * of dbs_update_util_handler() (when the update has been 70 * completed) will take a sample. 71 * 72 * If this runs in parallel with dbs_work_handler(), we may end 73 * up overwriting the sample_delay_ns value that it has just 74 * written, but it will be corrected next time a sample is 75 * taken, so it shouldn't be significant. 76 */ 77 gov_update_sample_delay(policy_dbs, 0); 78 mutex_unlock(&policy_dbs->timer_mutex); 79 } 80 81 return count; 82 } 83 EXPORT_SYMBOL_GPL(store_sampling_rate); 84 85 /** 86 * gov_update_cpu_data - Update CPU load data. 87 * @dbs_data: Top-level governor data pointer. 88 * 89 * Update CPU load data for all CPUs in the domain governed by @dbs_data 90 * (that may be a single policy or a bunch of them if governor tunables are 91 * system-wide). 92 * 93 * Call under the @dbs_data mutex. 94 */ 95 void gov_update_cpu_data(struct dbs_data *dbs_data) 96 { 97 struct policy_dbs_info *policy_dbs; 98 99 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) { 100 unsigned int j; 101 102 for_each_cpu(j, policy_dbs->policy->cpus) { 103 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 104 105 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, 106 dbs_data->io_is_busy); 107 if (dbs_data->ignore_nice_load) 108 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 109 } 110 } 111 } 112 EXPORT_SYMBOL_GPL(gov_update_cpu_data); 113 114 static inline struct dbs_data *to_dbs_data(struct kobject *kobj) 115 { 116 return container_of(kobj, struct dbs_data, kobj); 117 } 118 119 static inline struct governor_attr *to_gov_attr(struct attribute *attr) 120 { 121 return container_of(attr, struct governor_attr, attr); 122 } 123 124 static ssize_t governor_show(struct kobject *kobj, struct attribute *attr, 125 char *buf) 126 { 127 struct dbs_data *dbs_data = to_dbs_data(kobj); 128 struct governor_attr *gattr = to_gov_attr(attr); 129 130 return gattr->show(dbs_data, buf); 131 } 132 133 static ssize_t governor_store(struct kobject *kobj, struct attribute *attr, 134 const char *buf, size_t count) 135 { 136 struct dbs_data *dbs_data = to_dbs_data(kobj); 137 struct governor_attr *gattr = to_gov_attr(attr); 138 int ret = -EBUSY; 139 140 mutex_lock(&dbs_data->mutex); 141 142 if (dbs_data->usage_count) 143 ret = gattr->store(dbs_data, buf, count); 144 145 mutex_unlock(&dbs_data->mutex); 146 147 return ret; 148 } 149 150 /* 151 * Sysfs Ops for accessing governor attributes. 152 * 153 * All show/store invocations for governor specific sysfs attributes, will first 154 * call the below show/store callbacks and the attribute specific callback will 155 * be called from within it. 156 */ 157 static const struct sysfs_ops governor_sysfs_ops = { 158 .show = governor_show, 159 .store = governor_store, 160 }; 161 162 unsigned int dbs_update(struct cpufreq_policy *policy) 163 { 164 struct policy_dbs_info *policy_dbs = policy->governor_data; 165 struct dbs_data *dbs_data = policy_dbs->dbs_data; 166 unsigned int ignore_nice = dbs_data->ignore_nice_load; 167 unsigned int max_load = 0; 168 unsigned int sampling_rate, io_busy, j; 169 170 /* 171 * Sometimes governors may use an additional multiplier to increase 172 * sample delays temporarily. Apply that multiplier to sampling_rate 173 * so as to keep the wake-up-from-idle detection logic a bit 174 * conservative. 175 */ 176 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult; 177 /* 178 * For the purpose of ondemand, waiting for disk IO is an indication 179 * that you're performance critical, and not that the system is actually 180 * idle, so do not add the iowait time to the CPU idle time then. 181 */ 182 io_busy = dbs_data->io_is_busy; 183 184 /* Get Absolute Load */ 185 for_each_cpu(j, policy->cpus) { 186 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 187 u64 cur_wall_time, cur_idle_time; 188 unsigned int idle_time, wall_time; 189 unsigned int load; 190 191 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy); 192 193 wall_time = cur_wall_time - j_cdbs->prev_cpu_wall; 194 j_cdbs->prev_cpu_wall = cur_wall_time; 195 196 if (cur_idle_time <= j_cdbs->prev_cpu_idle) { 197 idle_time = 0; 198 } else { 199 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle; 200 j_cdbs->prev_cpu_idle = cur_idle_time; 201 } 202 203 if (ignore_nice) { 204 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 205 206 idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice); 207 j_cdbs->prev_cpu_nice = cur_nice; 208 } 209 210 if (unlikely(!wall_time || wall_time < idle_time)) 211 continue; 212 213 /* 214 * If the CPU had gone completely idle, and a task just woke up 215 * on this CPU now, it would be unfair to calculate 'load' the 216 * usual way for this elapsed time-window, because it will show 217 * near-zero load, irrespective of how CPU intensive that task 218 * actually is. This is undesirable for latency-sensitive bursty 219 * workloads. 220 * 221 * To avoid this, we reuse the 'load' from the previous 222 * time-window and give this task a chance to start with a 223 * reasonably high CPU frequency. (However, we shouldn't over-do 224 * this copy, lest we get stuck at a high load (high frequency) 225 * for too long, even when the current system load has actually 226 * dropped down. So we perform the copy only once, upon the 227 * first wake-up from idle.) 228 * 229 * Detecting this situation is easy: the governor's utilization 230 * update handler would not have run during CPU-idle periods. 231 * Hence, an unusually large 'wall_time' (as compared to the 232 * sampling rate) indicates this scenario. 233 * 234 * prev_load can be zero in two cases and we must recalculate it 235 * for both cases: 236 * - during long idle intervals 237 * - explicitly set to zero 238 */ 239 if (unlikely(wall_time > (2 * sampling_rate) && 240 j_cdbs->prev_load)) { 241 load = j_cdbs->prev_load; 242 243 /* 244 * Perform a destructive copy, to ensure that we copy 245 * the previous load only once, upon the first wake-up 246 * from idle. 247 */ 248 j_cdbs->prev_load = 0; 249 } else { 250 load = 100 * (wall_time - idle_time) / wall_time; 251 j_cdbs->prev_load = load; 252 } 253 254 if (load > max_load) 255 max_load = load; 256 } 257 return max_load; 258 } 259 EXPORT_SYMBOL_GPL(dbs_update); 260 261 static void gov_set_update_util(struct policy_dbs_info *policy_dbs, 262 unsigned int delay_us) 263 { 264 struct cpufreq_policy *policy = policy_dbs->policy; 265 int cpu; 266 267 gov_update_sample_delay(policy_dbs, delay_us); 268 policy_dbs->last_sample_time = 0; 269 270 for_each_cpu(cpu, policy->cpus) { 271 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu); 272 273 cpufreq_set_update_util_data(cpu, &cdbs->update_util); 274 } 275 } 276 277 static inline void gov_clear_update_util(struct cpufreq_policy *policy) 278 { 279 int i; 280 281 for_each_cpu(i, policy->cpus) 282 cpufreq_set_update_util_data(i, NULL); 283 284 synchronize_sched(); 285 } 286 287 static void gov_cancel_work(struct cpufreq_policy *policy) 288 { 289 struct policy_dbs_info *policy_dbs = policy->governor_data; 290 291 gov_clear_update_util(policy_dbs->policy); 292 irq_work_sync(&policy_dbs->irq_work); 293 cancel_work_sync(&policy_dbs->work); 294 atomic_set(&policy_dbs->work_count, 0); 295 policy_dbs->work_in_progress = false; 296 } 297 298 static void dbs_work_handler(struct work_struct *work) 299 { 300 struct policy_dbs_info *policy_dbs; 301 struct cpufreq_policy *policy; 302 struct dbs_governor *gov; 303 304 policy_dbs = container_of(work, struct policy_dbs_info, work); 305 policy = policy_dbs->policy; 306 gov = dbs_governor_of(policy); 307 308 /* 309 * Make sure cpufreq_governor_limits() isn't evaluating load or the 310 * ondemand governor isn't updating the sampling rate in parallel. 311 */ 312 mutex_lock(&policy_dbs->timer_mutex); 313 gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy)); 314 mutex_unlock(&policy_dbs->timer_mutex); 315 316 /* Allow the utilization update handler to queue up more work. */ 317 atomic_set(&policy_dbs->work_count, 0); 318 /* 319 * If the update below is reordered with respect to the sample delay 320 * modification, the utilization update handler may end up using a stale 321 * sample delay value. 322 */ 323 smp_wmb(); 324 policy_dbs->work_in_progress = false; 325 } 326 327 static void dbs_irq_work(struct irq_work *irq_work) 328 { 329 struct policy_dbs_info *policy_dbs; 330 331 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work); 332 schedule_work_on(smp_processor_id(), &policy_dbs->work); 333 } 334 335 static void dbs_update_util_handler(struct update_util_data *data, u64 time, 336 unsigned long util, unsigned long max) 337 { 338 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util); 339 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs; 340 u64 delta_ns, lst; 341 342 /* 343 * The work may not be allowed to be queued up right now. 344 * Possible reasons: 345 * - Work has already been queued up or is in progress. 346 * - It is too early (too little time from the previous sample). 347 */ 348 if (policy_dbs->work_in_progress) 349 return; 350 351 /* 352 * If the reads below are reordered before the check above, the value 353 * of sample_delay_ns used in the computation may be stale. 354 */ 355 smp_rmb(); 356 lst = READ_ONCE(policy_dbs->last_sample_time); 357 delta_ns = time - lst; 358 if ((s64)delta_ns < policy_dbs->sample_delay_ns) 359 return; 360 361 /* 362 * If the policy is not shared, the irq_work may be queued up right away 363 * at this point. Otherwise, we need to ensure that only one of the 364 * CPUs sharing the policy will do that. 365 */ 366 if (policy_dbs->is_shared) { 367 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1)) 368 return; 369 370 /* 371 * If another CPU updated last_sample_time in the meantime, we 372 * shouldn't be here, so clear the work counter and bail out. 373 */ 374 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) { 375 atomic_set(&policy_dbs->work_count, 0); 376 return; 377 } 378 } 379 380 policy_dbs->last_sample_time = time; 381 policy_dbs->work_in_progress = true; 382 irq_work_queue(&policy_dbs->irq_work); 383 } 384 385 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy, 386 struct dbs_governor *gov) 387 { 388 struct policy_dbs_info *policy_dbs; 389 int j; 390 391 /* Allocate memory for per-policy governor data. */ 392 policy_dbs = gov->alloc(); 393 if (!policy_dbs) 394 return NULL; 395 396 policy_dbs->policy = policy; 397 mutex_init(&policy_dbs->timer_mutex); 398 atomic_set(&policy_dbs->work_count, 0); 399 init_irq_work(&policy_dbs->irq_work, dbs_irq_work); 400 INIT_WORK(&policy_dbs->work, dbs_work_handler); 401 402 /* Set policy_dbs for all CPUs, online+offline */ 403 for_each_cpu(j, policy->related_cpus) { 404 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 405 406 j_cdbs->policy_dbs = policy_dbs; 407 j_cdbs->update_util.func = dbs_update_util_handler; 408 } 409 return policy_dbs; 410 } 411 412 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs, 413 struct dbs_governor *gov) 414 { 415 int j; 416 417 mutex_destroy(&policy_dbs->timer_mutex); 418 419 for_each_cpu(j, policy_dbs->policy->related_cpus) { 420 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 421 422 j_cdbs->policy_dbs = NULL; 423 j_cdbs->update_util.func = NULL; 424 } 425 gov->free(policy_dbs); 426 } 427 428 static int cpufreq_governor_init(struct cpufreq_policy *policy) 429 { 430 struct dbs_governor *gov = dbs_governor_of(policy); 431 struct dbs_data *dbs_data; 432 struct policy_dbs_info *policy_dbs; 433 unsigned int latency; 434 int ret = 0; 435 436 /* State should be equivalent to EXIT */ 437 if (policy->governor_data) 438 return -EBUSY; 439 440 policy_dbs = alloc_policy_dbs_info(policy, gov); 441 if (!policy_dbs) 442 return -ENOMEM; 443 444 /* Protect gov->gdbs_data against concurrent updates. */ 445 mutex_lock(&gov_dbs_data_mutex); 446 447 dbs_data = gov->gdbs_data; 448 if (dbs_data) { 449 if (WARN_ON(have_governor_per_policy())) { 450 ret = -EINVAL; 451 goto free_policy_dbs_info; 452 } 453 policy_dbs->dbs_data = dbs_data; 454 policy->governor_data = policy_dbs; 455 456 mutex_lock(&dbs_data->mutex); 457 dbs_data->usage_count++; 458 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list); 459 mutex_unlock(&dbs_data->mutex); 460 goto out; 461 } 462 463 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); 464 if (!dbs_data) { 465 ret = -ENOMEM; 466 goto free_policy_dbs_info; 467 } 468 469 INIT_LIST_HEAD(&dbs_data->policy_dbs_list); 470 mutex_init(&dbs_data->mutex); 471 472 ret = gov->init(dbs_data, !policy->governor->initialized); 473 if (ret) 474 goto free_policy_dbs_info; 475 476 /* policy latency is in ns. Convert it to us first */ 477 latency = policy->cpuinfo.transition_latency / 1000; 478 if (latency == 0) 479 latency = 1; 480 481 /* Bring kernel and HW constraints together */ 482 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate, 483 MIN_LATENCY_MULTIPLIER * latency); 484 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate, 485 LATENCY_MULTIPLIER * latency); 486 487 if (!have_governor_per_policy()) 488 gov->gdbs_data = dbs_data; 489 490 policy->governor_data = policy_dbs; 491 492 policy_dbs->dbs_data = dbs_data; 493 dbs_data->usage_count = 1; 494 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list); 495 496 gov->kobj_type.sysfs_ops = &governor_sysfs_ops; 497 ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type, 498 get_governor_parent_kobj(policy), 499 "%s", gov->gov.name); 500 if (!ret) 501 goto out; 502 503 /* Failure, so roll back. */ 504 pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret); 505 506 policy->governor_data = NULL; 507 508 if (!have_governor_per_policy()) 509 gov->gdbs_data = NULL; 510 gov->exit(dbs_data, !policy->governor->initialized); 511 kfree(dbs_data); 512 513 free_policy_dbs_info: 514 free_policy_dbs_info(policy_dbs, gov); 515 516 out: 517 mutex_unlock(&gov_dbs_data_mutex); 518 return ret; 519 } 520 521 static int cpufreq_governor_exit(struct cpufreq_policy *policy) 522 { 523 struct dbs_governor *gov = dbs_governor_of(policy); 524 struct policy_dbs_info *policy_dbs = policy->governor_data; 525 struct dbs_data *dbs_data = policy_dbs->dbs_data; 526 int count; 527 528 /* Protect gov->gdbs_data against concurrent updates. */ 529 mutex_lock(&gov_dbs_data_mutex); 530 531 mutex_lock(&dbs_data->mutex); 532 list_del(&policy_dbs->list); 533 count = --dbs_data->usage_count; 534 mutex_unlock(&dbs_data->mutex); 535 536 if (!count) { 537 kobject_put(&dbs_data->kobj); 538 539 policy->governor_data = NULL; 540 541 if (!have_governor_per_policy()) 542 gov->gdbs_data = NULL; 543 544 gov->exit(dbs_data, policy->governor->initialized == 1); 545 mutex_destroy(&dbs_data->mutex); 546 kfree(dbs_data); 547 } else { 548 policy->governor_data = NULL; 549 } 550 551 free_policy_dbs_info(policy_dbs, gov); 552 553 mutex_unlock(&gov_dbs_data_mutex); 554 return 0; 555 } 556 557 static int cpufreq_governor_start(struct cpufreq_policy *policy) 558 { 559 struct dbs_governor *gov = dbs_governor_of(policy); 560 struct policy_dbs_info *policy_dbs = policy->governor_data; 561 struct dbs_data *dbs_data = policy_dbs->dbs_data; 562 unsigned int sampling_rate, ignore_nice, j; 563 unsigned int io_busy; 564 565 if (!policy->cur) 566 return -EINVAL; 567 568 policy_dbs->is_shared = policy_is_shared(policy); 569 policy_dbs->rate_mult = 1; 570 571 sampling_rate = dbs_data->sampling_rate; 572 ignore_nice = dbs_data->ignore_nice_load; 573 io_busy = dbs_data->io_is_busy; 574 575 for_each_cpu(j, policy->cpus) { 576 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 577 unsigned int prev_load; 578 579 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy); 580 581 prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle; 582 j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall; 583 584 if (ignore_nice) 585 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 586 } 587 588 gov->start(policy); 589 590 gov_set_update_util(policy_dbs, sampling_rate); 591 return 0; 592 } 593 594 static int cpufreq_governor_stop(struct cpufreq_policy *policy) 595 { 596 gov_cancel_work(policy); 597 return 0; 598 } 599 600 static int cpufreq_governor_limits(struct cpufreq_policy *policy) 601 { 602 struct policy_dbs_info *policy_dbs = policy->governor_data; 603 604 mutex_lock(&policy_dbs->timer_mutex); 605 606 if (policy->max < policy->cur) 607 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); 608 else if (policy->min > policy->cur) 609 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L); 610 611 gov_update_sample_delay(policy_dbs, 0); 612 613 mutex_unlock(&policy_dbs->timer_mutex); 614 615 return 0; 616 } 617 618 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event) 619 { 620 if (event == CPUFREQ_GOV_POLICY_INIT) { 621 return cpufreq_governor_init(policy); 622 } else if (policy->governor_data) { 623 switch (event) { 624 case CPUFREQ_GOV_POLICY_EXIT: 625 return cpufreq_governor_exit(policy); 626 case CPUFREQ_GOV_START: 627 return cpufreq_governor_start(policy); 628 case CPUFREQ_GOV_STOP: 629 return cpufreq_governor_stop(policy); 630 case CPUFREQ_GOV_LIMITS: 631 return cpufreq_governor_limits(policy); 632 } 633 } 634 return -EINVAL; 635 } 636 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs); 637