xref: /linux/drivers/cpufreq/cpufreq_conservative.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/sched.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36 
37 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
39 
40 /*
41  * The polling frequency of this governor depends on the capability of
42  * the processor. Default polling frequency is 1000 times the transition
43  * latency of the processor. The governor will work on any processor with
44  * transition latency <= 10mS, using appropriate sampling
45  * rate.
46  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
47  * this governor will not work.
48  * All times here are in uS.
49  */
50 static unsigned int 				def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO			(2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
54 #define MIN_SAMPLING_RATE			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
56 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
57 #define DEF_SAMPLING_DOWN_FACTOR		(1)
58 #define MAX_SAMPLING_DOWN_FACTOR		(10)
59 #define TRANSITION_LATENCY_LIMIT		(10 * 1000)
60 
61 static void do_dbs_timer(void *data);
62 
63 struct cpu_dbs_info_s {
64 	struct cpufreq_policy 	*cur_policy;
65 	unsigned int 		prev_cpu_idle_up;
66 	unsigned int 		prev_cpu_idle_down;
67 	unsigned int 		enable;
68 	unsigned int		down_skip;
69 	unsigned int		requested_freq;
70 };
71 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
72 
73 static unsigned int dbs_enable;	/* number of CPUs using this policy */
74 
75 static DEFINE_MUTEX 	(dbs_mutex);
76 static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);
77 
78 struct dbs_tuners {
79 	unsigned int 		sampling_rate;
80 	unsigned int		sampling_down_factor;
81 	unsigned int		up_threshold;
82 	unsigned int		down_threshold;
83 	unsigned int		ignore_nice;
84 	unsigned int		freq_step;
85 };
86 
87 static struct dbs_tuners dbs_tuners_ins = {
88 	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
89 	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
90 	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
91 	.ignore_nice		= 0,
92 	.freq_step		= 5,
93 };
94 
95 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
96 {
97 	return	kstat_cpu(cpu).cpustat.idle +
98 		kstat_cpu(cpu).cpustat.iowait +
99 		( dbs_tuners_ins.ignore_nice ?
100 		  kstat_cpu(cpu).cpustat.nice :
101 		  0);
102 }
103 
104 /************************** sysfs interface ************************/
105 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
106 {
107 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
108 }
109 
110 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
111 {
112 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
113 }
114 
115 #define define_one_ro(_name) 					\
116 static struct freq_attr _name =  				\
117 __ATTR(_name, 0444, show_##_name, NULL)
118 
119 define_one_ro(sampling_rate_max);
120 define_one_ro(sampling_rate_min);
121 
122 /* cpufreq_conservative Governor Tunables */
123 #define show_one(file_name, object)					\
124 static ssize_t show_##file_name						\
125 (struct cpufreq_policy *unused, char *buf)				\
126 {									\
127 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
128 }
129 show_one(sampling_rate, sampling_rate);
130 show_one(sampling_down_factor, sampling_down_factor);
131 show_one(up_threshold, up_threshold);
132 show_one(down_threshold, down_threshold);
133 show_one(ignore_nice_load, ignore_nice);
134 show_one(freq_step, freq_step);
135 
136 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
137 		const char *buf, size_t count)
138 {
139 	unsigned int input;
140 	int ret;
141 	ret = sscanf (buf, "%u", &input);
142 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
143 		return -EINVAL;
144 
145 	mutex_lock(&dbs_mutex);
146 	dbs_tuners_ins.sampling_down_factor = input;
147 	mutex_unlock(&dbs_mutex);
148 
149 	return count;
150 }
151 
152 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
153 		const char *buf, size_t count)
154 {
155 	unsigned int input;
156 	int ret;
157 	ret = sscanf (buf, "%u", &input);
158 
159 	mutex_lock(&dbs_mutex);
160 	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
161 		mutex_unlock(&dbs_mutex);
162 		return -EINVAL;
163 	}
164 
165 	dbs_tuners_ins.sampling_rate = input;
166 	mutex_unlock(&dbs_mutex);
167 
168 	return count;
169 }
170 
171 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
172 		const char *buf, size_t count)
173 {
174 	unsigned int input;
175 	int ret;
176 	ret = sscanf (buf, "%u", &input);
177 
178 	mutex_lock(&dbs_mutex);
179 	if (ret != 1 || input > 100 || input < 0 ||
180 			input <= dbs_tuners_ins.down_threshold) {
181 		mutex_unlock(&dbs_mutex);
182 		return -EINVAL;
183 	}
184 
185 	dbs_tuners_ins.up_threshold = input;
186 	mutex_unlock(&dbs_mutex);
187 
188 	return count;
189 }
190 
191 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
192 		const char *buf, size_t count)
193 {
194 	unsigned int input;
195 	int ret;
196 	ret = sscanf (buf, "%u", &input);
197 
198 	mutex_lock(&dbs_mutex);
199 	if (ret != 1 || input > 100 || input < 0 ||
200 			input >= dbs_tuners_ins.up_threshold) {
201 		mutex_unlock(&dbs_mutex);
202 		return -EINVAL;
203 	}
204 
205 	dbs_tuners_ins.down_threshold = input;
206 	mutex_unlock(&dbs_mutex);
207 
208 	return count;
209 }
210 
211 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
212 		const char *buf, size_t count)
213 {
214 	unsigned int input;
215 	int ret;
216 
217 	unsigned int j;
218 
219 	ret = sscanf (buf, "%u", &input);
220 	if ( ret != 1 )
221 		return -EINVAL;
222 
223 	if ( input > 1 )
224 		input = 1;
225 
226 	mutex_lock(&dbs_mutex);
227 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
228 		mutex_unlock(&dbs_mutex);
229 		return count;
230 	}
231 	dbs_tuners_ins.ignore_nice = input;
232 
233 	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
234 	for_each_online_cpu(j) {
235 		struct cpu_dbs_info_s *j_dbs_info;
236 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
237 		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
238 		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
239 	}
240 	mutex_unlock(&dbs_mutex);
241 
242 	return count;
243 }
244 
245 static ssize_t store_freq_step(struct cpufreq_policy *policy,
246 		const char *buf, size_t count)
247 {
248 	unsigned int input;
249 	int ret;
250 
251 	ret = sscanf (buf, "%u", &input);
252 
253 	if ( ret != 1 )
254 		return -EINVAL;
255 
256 	if ( input > 100 )
257 		input = 100;
258 
259 	/* no need to test here if freq_step is zero as the user might actually
260 	 * want this, they would be crazy though :) */
261 	mutex_lock(&dbs_mutex);
262 	dbs_tuners_ins.freq_step = input;
263 	mutex_unlock(&dbs_mutex);
264 
265 	return count;
266 }
267 
268 #define define_one_rw(_name) \
269 static struct freq_attr _name = \
270 __ATTR(_name, 0644, show_##_name, store_##_name)
271 
272 define_one_rw(sampling_rate);
273 define_one_rw(sampling_down_factor);
274 define_one_rw(up_threshold);
275 define_one_rw(down_threshold);
276 define_one_rw(ignore_nice_load);
277 define_one_rw(freq_step);
278 
279 static struct attribute * dbs_attributes[] = {
280 	&sampling_rate_max.attr,
281 	&sampling_rate_min.attr,
282 	&sampling_rate.attr,
283 	&sampling_down_factor.attr,
284 	&up_threshold.attr,
285 	&down_threshold.attr,
286 	&ignore_nice_load.attr,
287 	&freq_step.attr,
288 	NULL
289 };
290 
291 static struct attribute_group dbs_attr_group = {
292 	.attrs = dbs_attributes,
293 	.name = "conservative",
294 };
295 
296 /************************** sysfs end ************************/
297 
298 static void dbs_check_cpu(int cpu)
299 {
300 	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
301 	unsigned int tmp_idle_ticks, total_idle_ticks;
302 	unsigned int freq_step;
303 	unsigned int freq_down_sampling_rate;
304 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
305 	struct cpufreq_policy *policy;
306 
307 	if (!this_dbs_info->enable)
308 		return;
309 
310 	policy = this_dbs_info->cur_policy;
311 
312 	/*
313 	 * The default safe range is 20% to 80%
314 	 * Every sampling_rate, we check
315 	 * 	- If current idle time is less than 20%, then we try to
316 	 * 	  increase frequency
317 	 * Every sampling_rate*sampling_down_factor, we check
318 	 * 	- If current idle time is more than 80%, then we try to
319 	 * 	  decrease frequency
320 	 *
321 	 * Any frequency increase takes it to the maximum frequency.
322 	 * Frequency reduction happens at minimum steps of
323 	 * 5% (default) of max_frequency
324 	 */
325 
326 	/* Check for frequency increase */
327 	idle_ticks = UINT_MAX;
328 
329 	/* Check for frequency increase */
330 	total_idle_ticks = get_cpu_idle_time(cpu);
331 	tmp_idle_ticks = total_idle_ticks -
332 		this_dbs_info->prev_cpu_idle_up;
333 	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
334 
335 	if (tmp_idle_ticks < idle_ticks)
336 		idle_ticks = tmp_idle_ticks;
337 
338 	/* Scale idle ticks by 100 and compare with up and down ticks */
339 	idle_ticks *= 100;
340 	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
341 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
342 
343 	if (idle_ticks < up_idle_ticks) {
344 		this_dbs_info->down_skip = 0;
345 		this_dbs_info->prev_cpu_idle_down =
346 			this_dbs_info->prev_cpu_idle_up;
347 
348 		/* if we are already at full speed then break out early */
349 		if (this_dbs_info->requested_freq == policy->max)
350 			return;
351 
352 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
353 
354 		/* max freq cannot be less than 100. But who knows.... */
355 		if (unlikely(freq_step == 0))
356 			freq_step = 5;
357 
358 		this_dbs_info->requested_freq += freq_step;
359 		if (this_dbs_info->requested_freq > policy->max)
360 			this_dbs_info->requested_freq = policy->max;
361 
362 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
363 			CPUFREQ_RELATION_H);
364 		return;
365 	}
366 
367 	/* Check for frequency decrease */
368 	this_dbs_info->down_skip++;
369 	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
370 		return;
371 
372 	/* Check for frequency decrease */
373 	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
374 	tmp_idle_ticks = total_idle_ticks -
375 		this_dbs_info->prev_cpu_idle_down;
376 	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
377 
378 	if (tmp_idle_ticks < idle_ticks)
379 		idle_ticks = tmp_idle_ticks;
380 
381 	/* Scale idle ticks by 100 and compare with up and down ticks */
382 	idle_ticks *= 100;
383 	this_dbs_info->down_skip = 0;
384 
385 	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
386 		dbs_tuners_ins.sampling_down_factor;
387 	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
388 		usecs_to_jiffies(freq_down_sampling_rate);
389 
390 	if (idle_ticks > down_idle_ticks) {
391 		/*
392 		 * if we are already at the lowest speed then break out early
393 		 * or if we 'cannot' reduce the speed as the user might want
394 		 * freq_step to be zero
395 		 */
396 		if (this_dbs_info->requested_freq == policy->min
397 				|| dbs_tuners_ins.freq_step == 0)
398 			return;
399 
400 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
401 
402 		/* max freq cannot be less than 100. But who knows.... */
403 		if (unlikely(freq_step == 0))
404 			freq_step = 5;
405 
406 		this_dbs_info->requested_freq -= freq_step;
407 		if (this_dbs_info->requested_freq < policy->min)
408 			this_dbs_info->requested_freq = policy->min;
409 
410 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
411 				CPUFREQ_RELATION_H);
412 		return;
413 	}
414 }
415 
416 static void do_dbs_timer(void *data)
417 {
418 	int i;
419 	mutex_lock(&dbs_mutex);
420 	for_each_online_cpu(i)
421 		dbs_check_cpu(i);
422 	schedule_delayed_work(&dbs_work,
423 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
424 	mutex_unlock(&dbs_mutex);
425 }
426 
427 static inline void dbs_timer_init(void)
428 {
429 	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
430 	schedule_delayed_work(&dbs_work,
431 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
432 	return;
433 }
434 
435 static inline void dbs_timer_exit(void)
436 {
437 	cancel_delayed_work(&dbs_work);
438 	return;
439 }
440 
441 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
442 				   unsigned int event)
443 {
444 	unsigned int cpu = policy->cpu;
445 	struct cpu_dbs_info_s *this_dbs_info;
446 	unsigned int j;
447 
448 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
449 
450 	switch (event) {
451 	case CPUFREQ_GOV_START:
452 		if ((!cpu_online(cpu)) ||
453 		    (!policy->cur))
454 			return -EINVAL;
455 
456 		if (policy->cpuinfo.transition_latency >
457 				(TRANSITION_LATENCY_LIMIT * 1000))
458 			return -EINVAL;
459 		if (this_dbs_info->enable) /* Already enabled */
460 			break;
461 
462 		mutex_lock(&dbs_mutex);
463 		for_each_cpu_mask(j, policy->cpus) {
464 			struct cpu_dbs_info_s *j_dbs_info;
465 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
466 			j_dbs_info->cur_policy = policy;
467 
468 			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
469 			j_dbs_info->prev_cpu_idle_down
470 				= j_dbs_info->prev_cpu_idle_up;
471 		}
472 		this_dbs_info->enable = 1;
473 		this_dbs_info->down_skip = 0;
474 		this_dbs_info->requested_freq = policy->cur;
475 		sysfs_create_group(&policy->kobj, &dbs_attr_group);
476 		dbs_enable++;
477 		/*
478 		 * Start the timerschedule work, when this governor
479 		 * is used for first time
480 		 */
481 		if (dbs_enable == 1) {
482 			unsigned int latency;
483 			/* policy latency is in nS. Convert it to uS first */
484 			latency = policy->cpuinfo.transition_latency / 1000;
485 			if (latency == 0)
486 				latency = 1;
487 
488 			def_sampling_rate = 10 * latency *
489 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
490 
491 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
492 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
493 
494 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
495 
496 			dbs_timer_init();
497 		}
498 
499 		mutex_unlock(&dbs_mutex);
500 		break;
501 
502 	case CPUFREQ_GOV_STOP:
503 		mutex_lock(&dbs_mutex);
504 		this_dbs_info->enable = 0;
505 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
506 		dbs_enable--;
507 		/*
508 		 * Stop the timerschedule work, when this governor
509 		 * is used for first time
510 		 */
511 		if (dbs_enable == 0)
512 			dbs_timer_exit();
513 
514 		mutex_unlock(&dbs_mutex);
515 
516 		break;
517 
518 	case CPUFREQ_GOV_LIMITS:
519 		mutex_lock(&dbs_mutex);
520 		if (policy->max < this_dbs_info->cur_policy->cur)
521 			__cpufreq_driver_target(
522 					this_dbs_info->cur_policy,
523 				       	policy->max, CPUFREQ_RELATION_H);
524 		else if (policy->min > this_dbs_info->cur_policy->cur)
525 			__cpufreq_driver_target(
526 					this_dbs_info->cur_policy,
527 				       	policy->min, CPUFREQ_RELATION_L);
528 		mutex_unlock(&dbs_mutex);
529 		break;
530 	}
531 	return 0;
532 }
533 
534 static struct cpufreq_governor cpufreq_gov_dbs = {
535 	.name		= "conservative",
536 	.governor	= cpufreq_governor_dbs,
537 	.owner		= THIS_MODULE,
538 };
539 
540 static int __init cpufreq_gov_dbs_init(void)
541 {
542 	return cpufreq_register_governor(&cpufreq_gov_dbs);
543 }
544 
545 static void __exit cpufreq_gov_dbs_exit(void)
546 {
547 	/* Make sure that the scheduled work is indeed not running */
548 	flush_scheduled_work();
549 
550 	cpufreq_unregister_governor(&cpufreq_gov_dbs);
551 }
552 
553 
554 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
555 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
556 		"Low Latency Frequency Transition capable processors "
557 		"optimised for use in a battery environment");
558 MODULE_LICENSE ("GPL");
559 
560 module_init(cpufreq_gov_dbs_init);
561 module_exit(cpufreq_gov_dbs_exit);
562